Curves

Cycloid. A cycloid is the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage.

Assume the wheel is a unit circle, its rolls on the x-axis and in the upper half-plane with unit speed and the time $t=0$ the point on the rim is in the origin. Let us find the position vector $\mathbf{f}(t)$ of the point on the rim at time t.

Note that coordinates of the center of the wheel at time t is $\mathbf{c}(t)=(t, 1)$.
Since there is no slippage the arc from the point $\mathbf{d}(t)=(t, 0)$ on the rim to the $\mathbf{f}(t)$ has length t. It follows that the angle the vectors $\mathbf{w}(t)=\mathbf{f}(t)-\mathbf{c}(t)$ is clockwise rotation of the vector $(0,-1)=\mathbf{d}(t)-\mathbf{c}(t)$ by angle t. Therefore

$$
\mathbf{w}(t)=(-\sin t,-\cos t)
$$

and

$$
\mathbf{f}(t)=\mathbf{c}(t)+\mathbf{w}(t)=(t-\sin t, 1-\cos t)
$$

Pedal curve. The pedal curve is traced by the orthogonal projection of a fixed point P on the tangent lines of a given curve $\mathbf{f}(t)$.

Write a parametric expression $\mathbf{h}(t)$ for the pedal curve for the unit circle $\mathbf{f}(t)=(\cos (t), \sin t)$ and the point $P=(1,0)$, so its position vector is \mathbf{i}.

Denote by $\mathbf{w}(t)$ the projection of $\mathbf{v}(t)=\mathbf{i}-\mathbf{f}(t)$ to the tangent line at $\mathbf{f}(t)$, so $\mathbf{h}(t)=\mathbf{f}(t)+\mathbf{w}(t)$.

The velocity vector $\mathbf{f}^{\prime}(t)=(-\sin t, \cos t)$ is parallel to the tangent line at $\mathbf{f}(t)$. Note that $\left\|\mathbf{f}^{\prime}(t)\right\|=1$ for any

t. Therefore

$$
\begin{aligned}
\mathbf{w}(t) & =\left(\mathbf{f}^{\prime}(t) \cdot \mathbf{v}(t)\right) \mathbf{f}^{\prime}(t) \\
& =\left(\mathbf{f}^{\prime}(t) \cdot(\mathbf{i}-\mathbf{f}(t))\right) \mathbf{f}^{\prime}(t)= \\
& =\left(\sin ^{2} t,-\sin t \cos t\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{h}(t) & =\mathbf{f}(t)+\mathbf{w}(t) \\
& =\left(\cos t+\sin ^{2} t, \sin t-\sin t \cos t\right)
\end{aligned}
$$

Involute. Involute is a curve obtained from another given curve by attaching an imaginary taut string to the given curve and tracing its free end as it is wound onto that given curve.

Write a parametric expression $\mathbf{h}(t)$ for the involute for the unit circle $\mathbf{f}(t)=$ $(\cos (t), \sin t)$ starting at the point $P=(1,0)$, so its position vector is \mathbf{i}.

Note that $\mathbf{f}^{\prime}(t)=(-\sin t, \cos t)$ and $\left\|\mathbf{f}^{\prime}(t)\right\|=1$.
Note that the vector $\mathbf{w}(t)=\mathbf{h}(t)-\mathbf{f}(t)$ is tangent to the circle at $\mathbf{f}(t)$ and since the length of the string equals to the length of unwound we get

$$
\mathbf{h}(t)-\mathbf{f}(t)=-t \mathbf{f}^{\prime}(t)
$$

Therefore

$$
\begin{aligned}
\mathbf{h}(t) & =\mathbf{f}(t)-t \mathbf{f}^{\prime}(t) \\
& =(\cos t+t \sin t, \sin t-t \cos t)
\end{aligned}
$$

