Curves

Cycloid. A cycloid is the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage.

Assume the wheel is a unit circle, its rolls on the x-axis and in the upper half-plane with unit speed and the time t = 0 the point on the rim is in the origin. Let us find the position vector $\mathbf{f}(t)$ of the point on the rim at time t.

Note that coordinates of the center of the wheel at time t is $\mathbf{c}(t) = (t, 1)$.

Since there is no slippage the arc from the point $\mathbf{d}(t) = (t, 0)$ on the rim to the $\mathbf{f}(t)$ has length t. It follows that the angle the vectors $\mathbf{w}(t) = \mathbf{f}(t) - \mathbf{c}(t)$ is clockwise rotation of the vector $(0, -1) = \mathbf{d}(t) - \mathbf{c}(t)$ by angle t. Therefore

$$\mathbf{w}(t) = (-\sin t, -\cos t)$$

and

$$\mathbf{f}(t) = \mathbf{c}(t) + \mathbf{w}(t) = (t - \sin t, 1 - \cos t).$$

Pedal curve. The pedal curve is traced by the orthogonal projection of a fixed point P on the tangent lines of a given curve $\mathbf{f}(t)$.

Write a parametric expression $\mathbf{h}(t)$ for the pedal curve for the unit circle $\mathbf{f}(t) = (\cos(t), \sin t)$ and the point P = (1, 0), so its position vector is **i**.

Denote by $\mathbf{w}(t)$ the projection of $\mathbf{v}(t) = \mathbf{i} - \mathbf{f}(t)$ to the tangent line at $\mathbf{f}(t)$, so $\mathbf{h}(t) = \mathbf{f}(t) + \mathbf{w}(t)$.

The velocity vector $\mathbf{f}'(t) = (-\sin t, \cos t)$ is parallel to the tangent line at $\mathbf{f}(t)$. Note that $\|\mathbf{f}'(t)\| = 1$ for any

t. Therefore

$$\mathbf{w}(t) = (\mathbf{f}'(t) \cdot \mathbf{v}(t))\mathbf{f}'(t) = (\mathbf{f}'(t) \cdot (\mathbf{i} - \mathbf{f}(t)))\mathbf{f}'(t) = = (\sin^2 t, -\sin t \cos t).$$

and

$$\mathbf{h}(t) = \mathbf{f}(t) + \mathbf{w}(t)$$
$$= (\cos t + \sin^2 t, \sin t - \sin t \cos t)$$

Involute. Involute is a curve obtained from another given curve by attaching an imaginary taut string to the given curve and tracing its free end as it is wound onto that given curve.

Write a parametric expression $\mathbf{h}(t)$ for the involute for the unit circle $\mathbf{f}(t) = (\cos(t), \sin t)$ starting at the point P = (1, 0), so its position vector is **i**.

Note that $\mathbf{f}'(t) = (-\sin t, \cos t)$ and $\|\mathbf{f}'(t)\| = 1$.

Note that the vector $\mathbf{w}(t) = \mathbf{h}(t) - \mathbf{f}(t)$ is tangent to the circle at $\mathbf{f}(t)$ and since the length of the string equals to the length of unwound we get

$$\mathbf{h}(t) - \mathbf{f}(t) = -t\mathbf{f}'(t).$$

Therefore

$$\mathbf{h}(t) = \mathbf{f}(t) - t\mathbf{f}'(t)$$

= (\cos t + t\sin t, \sin t - t\cos t).

