
Quiz 1.

1. Let x, y ∈ F , where F is an ordered field. Suppose 0 < x < y. Show that

x2 < y2

Solution: Since x, y > 0, multiplying x < y by x and y, we get

x2 < yx and xy < y2.

Therefore
x2 < y2.

2. Show that the following identity holds in any field

(−x)y = −xy.

Solution: In addition to the properties of the field (Definition 1.1.5) we will
use the identity 0y = 0 which was proved already.

xy + (−xy) = 0 = 0y = (x + (−x))y = xy + (−x)y.

Therefore
xy + (−xy) = xy + (−x)y.

Adding (−xy) to both sides, we get

(−xy) = (−x)y.

Quiz 2.

1. Let S ⊂ R be a nonempty set, bounded from above. Show that for every
ε > 0 there exists x ∈ S such that

supS − ε < x ≤ supS.

Solution: The second inequality holds for any x ∈ S since supS is an upper
bound of S.

If there is no x ∈ S such that supS − ε < x then x ≤ supS − ε for any
x ∈ S. That is, supS− ε is an upper bound of S. In particular supS is not the
least upper bound, a contradiction.

2. Let A,B ⊂ R be bounded nonempty sets. Assume for any a ∈ A there is
b ∈ B such that a ≤ b. Show that supA ≤ supB.

Solution: Since for any a ∈ A there is b ∈ B such that a ≤ b, any upper bound
for B is an upper bound for A. In particular, supB is an upper bound for A.
Therefore supA ≤ supB.
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Quiz 3.

1. Let A and B be two nonempty bounded sets of real numbers. Let

C := {a + b : a ∈ A, b ∈ B}.

Show that C is a bounded set and that

sup C = sup A + sup B.

Solution: Since a ≤ supA for any a ∈ A and b ≤ supB for any b ∈ B, we have

a + b ≤ sup A + sup B

for any a ≤ supA and b ∈ B. That is sup A + sup B is an upper bound for C.
Note that for any ε > 0 there is a ∈ A such that a > supA− ε

2 and b ∈ B such
that b > supB− ε

2 . Therefore a+b > supA+supB−ε. That is supA+supB−ε
is not an upper bound for any ε > 0; hence the statement follows.

2. Give a definition of absolute value.

Solution:

|x| =

[
x if x ≥ 0;

−x if x < 0.

Use it to prove that | − x| = |x| for any x ∈ R.

Solution:

If x = 0 then x = −x ⇒ |x| = | − x|;
If x > 0 then −x < 0 ⇒ |x| = x and | − x| = x ⇒ |x| = | − x|;
If x < 0 then −x > 0 ⇒ |x| = −x and |x| = −x ⇒ |x| = | − x|.

Quiz 4.

1. Suppose S is a set of disjoint open intervals in R. That is, if (a, b) ∈ S and
(c, d) ∈ S, then either (a, b) = (c, d) or (a, b) ∩ (c, d) = ∅.

Prove S is a countable set.

Solution: Since the set of rationals is dense in R, we can choose a rational
number q ∈ Q in each interval from S; that is, there is an bijection from S to a
subset of Q.

Since Q is countable, the statement follows.

2. Show that the set of irrational numbers is uncountable.

Solution: Arguing by contradiction, assume the set irrational numbers I =
R\Q is countable. In this case the R can be presented as a union of two countable
sets I and Q. Therefore R is countable. The latter contradicts Cantor’s theorem.

2



Quiz 5.

1. Let {xn} be a sequence.

a) Show that lim xn = 0 (that is, the limit exists and is zero) if and only if
lim |xn| = 0.

Solution: lim xn = 0⇔ “for any ε > 0 there is M ∈ N such that |xn−0| < ε
for any n ≥M”. Since

||xn| − 0| = |xn| = |xn − 0|.

This statement is equivalent to the following “for any ε > 0 there is M ∈ N
such that ||xn| − 0| < ε for any n ≥M”. The latter means that |xn| → 0.

b) Find an example such that {|xn|} converges and {xn} diverges.

Solution: xn = (−1)n.

2. Prove that any convergent sequence has a unique limit.

See Proposition 2.1.6.
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