Quiz 1.

1. Let $x, y \in F$, where F is an ordered field. Suppose $0<x<y$. Show that

$$
x^{2}<y^{2}
$$

Solution: Since $x, y>0$, multiplying $x<y$ by x and y, we get

$$
x^{2}<y x \quad \text { and } \quad x y<y^{2} .
$$

Therefore

$$
x^{2}<y^{2} .
$$

2. Show that the following identity holds in any field

$$
(-x) y=-x y
$$

Solution: In addition to the properties of the field (Definition 1.1.5) we will use the identity $0 y=0$ which was proved already.

$$
x y+(-x y)=0=0 y=(x+(-x)) y=x y+(-x) y .
$$

Therefore

$$
x y+(-x y)=x y+(-x) y .
$$

Adding $(-x y)$ to both sides, we get

$$
(-x y)=(-x) y
$$

Quiz 2.

1. Let $S \subset \mathbb{R}$ be a nonempty set, bounded from above. Show that for every $\varepsilon>0$ there exists $x \in S$ such that

$$
\sup S-\varepsilon<x \leq \sup S
$$

Solution: The second inequality holds for any $x \in S$ since $\sup S$ is an upper bound of S.

If there is no $x \in S$ such that $\sup S-\varepsilon<x$ then $x \leq \sup S-\varepsilon$ for any $x \in S$. That is, $\sup S-\varepsilon$ is an upper bound of S. In particular $\sup S$ is not the least upper bound, a contradiction.
2. Let $A, B \subset \mathbb{R}$ be bounded nonempty sets. Assume for any $a \in A$ there is $b \in B$ such that $a \leq b$. Show that $\sup A \leq \sup B$.

Solution: Since for any $a \in A$ there is $b \in B$ such that $a \leq b$, any upper bound for B is an upper bound for A. In particular, $\sup B$ is an upper bound for A. Therefore $\sup A \leq \sup B$.

Quiz 3.

1. Let A and B be two nonempty bounded sets of real numbers. Let

$$
C:=\{a+b: a \in A, b \in B\} .
$$

Show that C is a bounded set and that

$$
\sup C=\sup A+\sup B .
$$

Solution: Since $a \leq \sup A$ for any $a \in A$ and $b \leq \sup B$ for any $b \in B$, we have

$$
a+b \leq \sup A+\sup B
$$

for any $a \leq \sup A$ and $b \in B$. That is sup $A+\sup B$ is an upper bound for C.
Note that for any $\varepsilon>0$ there is $a \in A$ such that $a>\sup A-\frac{\varepsilon}{2}$ and $b \in B$ such that $b>\sup B-\frac{\varepsilon}{2}$. Therefore $a+b>\sup A+\sup B-\varepsilon$. That is $\sup A+\sup B-\varepsilon$ is not an upper bound for any $\varepsilon>0$; hence the statement follows.
2. Give a definition of absolute value.

Solution:

$$
|x|=\left[\begin{array}{rl}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Use it to prove that $|-x|=|x|$ for any $x \in \mathbb{R}$.

Solution:

$$
\begin{array}{lllll}
\text { If } x=0 \text { then } x=-x & & \Rightarrow & & |x|=|-x| ; \\
\text { If } x>0 \text { then }-x<0 & \Rightarrow & |x|=x \text { and }|-x|=x & \Rightarrow & |x|=|-x| ; \\
\text { If } x<0 \text { then }-x>0 & \Rightarrow & |x|=-x \text { and }|x|=-x & \Rightarrow & |x|=|-x| .
\end{array}
$$

Quiz 4.

1. Suppose S is a set of disjoint open intervals in \mathbb{R}. That is, if $(a, b) \in S$ and $(c, d) \in S$, then either $(a, b)=(c, d)$ or $(a, b) \cap(c, d)=\emptyset$.

Prove S is a countable set.

Solution: Since the set of rationals is dense in \mathbb{R}, we can choose a rational number $q \in \mathbb{Q}$ in each interval from S; that is, there is an bijection from S to a subset of \mathbb{Q}.

Since \mathbb{Q} is countable, the statement follows.
2. Show that the set of irrational numbers is uncountable.

Solution: Arguing by contradiction, assume the set irrational numbers $\mathbb{I}=$ $\mathbb{R} \backslash \mathbb{Q}$ is countable. In this case the \mathbb{R} can be presented as a union of two countable sets \mathbb{I} and \mathbb{Q}. Therefore \mathbb{R} is countable. The latter contradicts Cantor's theorem.

Quiz 5.

1. Let $\left\{x_{n}\right\}$ be a sequence.
a) Show that $\lim x_{n}=0$ (that is, the limit exists and is zero) if and only if $\lim \left|x_{n}\right|=0$.

Solution: $\lim x_{n}=0 \Leftrightarrow$ "for any $\varepsilon>0$ there is $M \in \mathbb{N}$ such that $\left|x_{n}-0\right|<\varepsilon$ for any $n \geq M "$. Since

$$
\left|\left|x_{n}\right|-0\right|=\left|x_{n}\right|=\left|x_{n}-0\right| .
$$

This statement is equivalent to the following "for any $\varepsilon>0$ there is $M \in \mathbb{N}$ such that $\left|\left|x_{n}\right|-0\right|<\varepsilon$ for any $n \geq M "$. The latter means that $\left|x_{n}\right| \rightarrow 0$.
b) Find an example such that $\left\{\left|x_{n}\right|\right\}$ converges and $\left\{x_{n}\right\}$ diverges.

Solution: $x_{n}=(-1)^{n}$.
2. Prove that any convergent sequence has a unique limit.

See Proposition 2.1.6.

