Solutions

Quiz 1

1. Discuss the existence and uniqueness of the following initial value problem:

$$
\dot{x}=x^{1 / 3} ; \quad x(0)=0 .
$$

Solution. The function $x \mapsto x^{1 / 3}$ is continuous therefore equation has local solution for any initial data.

Note that $x(t)=0$ is a solution and

$$
x(t)= \begin{cases}0 & \text { if } t \leq 0 \\ \left(\frac{2}{3} \cdot t\right)^{3 / 2} & \text { if } t>0\end{cases}
$$

is also a solution. The latter is evident for $t<0$ and

$$
\dot{x}=\frac{3}{2} \cdot\left(\frac{2}{3} \cdot t\right)^{1 / 2} \cdot \frac{2}{3}=x^{1 / 3}
$$

for $t \geq 0$.
Hence there is no uniqueness.
Comment. The function $x \mapsto x^{1 / 3}$ is not Lipschitz at 0 , otherwise local uniqueness would follow we could use Picard's theorem.

Quiz 2

1. For the following vector field, plot the potential function $V(x)$ and identify all the equilibrium points and their stability.

$$
\dot{x}=x(1-x)
$$

Solution.

Quiz 3

1. Consider the equation $\dot{x}=r x+x^{3}$, where $r>0$ is fixed. Show that $x(t) \rightarrow \pm \infty$ in finite time, starting from any initial condition $x_{0} \neq 0$.
Solution. Since $f(x)=r x+x^{3}$ is an odd function, it is sufficient to consider the case $x_{0}>0$.

Since $r>0$, we have $f(x)>x^{3}>0$ for $x>0$. Therefore it is sufficient to show that the solution of

$$
\dot{x}=x^{3}
$$

escapes to ∞ in finite time for any initial condition $x_{0}>0$.

Solving the equation we get

$$
x(t)=\frac{1}{\left(\frac{1}{x_{0}^{2}}-2 t\right)^{1 / 2}}
$$

the solution approach ∞ as $t \rightarrow \frac{2}{x_{0}^{2}}$

Quiz 4

1. For the following flow on the circle

$$
\dot{\theta}=\mu \cos \theta+\sin (2 \cdot \theta)
$$

draw the phase portrait, classify the bifurcations that occur as μ varies, and find all the bifurcation values of μ.
Solution.

$$
\mu \cos \theta+\sin (2 \cdot \theta)=0
$$

if and only if

$$
\theta= \pm \frac{\pi}{2} \quad(\bmod \pi) \quad \text { or } \quad \mu=-2 \sin \theta
$$

We have two (subcritical) pitchfork bifurcations at $\mu= \pm 2$.
The following diagram shows the behavior of the flow fro $\mu \geq 2,|\mu|<2$ and $\mu \leq-2$ correspondingly.

2. Sketch some typical trajectories of the linear system

$$
\left\{\begin{array}{l}
\dot{x}=x, \\
\dot{y}=x+y .
\end{array}\right.
$$

Solution. The matrix is ($\left.\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)$; both eigenvalues are 1 and it has only one eigenvector $\binom{0}{1}$. So, it is unstable degenerate node. Typical trajectories should be go like this:

(General solution is $x(t)=x_{0} \cdot e^{t}, y(t)=\left(x_{0} \cdot t+y_{0}\right) \cdot e^{t}$, but you do not need it.)

Quiz 5

1. For the following system, find the fixed points, classify them, sketch the neighboring trajectories.

$$
\left\{\begin{array}{l}
\dot{x}=y+x-x^{3}, \\
\dot{y}=-y .
\end{array}\right.
$$

Solution. The Jacobian is

$$
\left(\begin{array}{cc}
1-3 x^{2} & 1 \\
0 & -1
\end{array}\right)
$$

The system

$$
\left\{\begin{array}{r}
y+x-x^{3}=0 \\
-y=0
\end{array}\right.
$$

has 3 solutions: $(-1,0),(0,0)$ and $(1,0)$

- for $(-1,0)$ we have $\Delta=2, \tau=-3-$ stable node
- for $(0,0)$ we have $\Delta=-1$ - saddle.
- for $(1,0)$ we have $\Delta=2, \tau=-3-$ stable node

Quiz 6

1. Find a conserved quantity for the system

$$
\left\{\begin{array}{l}
\dot{x}=x \cdot(1-y), \\
\dot{y}=\mu \cdot y \cdot(x-1) .
\end{array}\right.
$$

Solution.

$$
\begin{gathered}
\frac{d y}{d x}=\mu \cdot \frac{y \cdot(x-1)}{x \cdot(1-y)} \\
d y \cdot \frac{1-y}{y}=d x \cdot \mu \cdot \frac{x-1}{x} \\
\ln |y|-y=\mu \cdot(x-\ln |x|)+C .
\end{gathered}
$$

So the

$$
V(x, y)=\ln |y|-y-\mu \cdot(x-\ln |x|)
$$

is a conserved quantity.

Quiz 7

1. Show that each of the following systems is reversible; sketch its phase portrait.

$$
\left\{\begin{array}{l}
\dot{x}=y \cdot\left(4-x^{2}\right), \\
\dot{y}=1-y^{2} .
\end{array}\right.
$$

Solution. The map $(x, y, t) \mapsto(x,-y,-t)$ sends a solution to a solution; indeed in this case $\dot{x} \mapsto-\dot{x} ; \dot{y} \mapsto \dot{y}, y \cdot\left(4-x^{2}\right)$ is odd in y and $1-y^{2}$ is even in y.

The system has 4 fixed points $(2,1),(-2,1),(2,-1),(-2,-1)$. The lines $x= \pm 2$ and $y= \pm 1$ are invariant. Jacobian is

$$
\left(\begin{array}{cc}
-2 x y & 4-x^{2} \\
0 & -2 y
\end{array}\right)
$$

So the eigenvalues are $-2 x y$ and $-2 y$. Therefore

- $(-2,1)$ is a saddle,
- $(-2,-1)$ is a saddle,
- $(2,1)$ is a stable node,
- $(2,-1)$ is an unstable node,

The reflection in x-axis should revert the orientation of the trajectories:

Quiz 8

1. Is the origin a nonlinear center for the system

$$
\left\{\begin{array}{l}
\dot{x}=y-x^{2} \\
\dot{y}=x
\end{array}\right.
$$

Solution. The origin is a fixed point; its Jacobian is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

the determinant is -1 so it is a saddle point, can not be a nonlinear center.
(By the way, this system is reversible - $f(x, y)=y-x^{2}$ is odd in y and $g(x, y)=x$ is even in y, therefore the map $(x, y, t) \mapsto(x,-y,-t)$ sends any solution to a solution.)

Quiz 9

1. Consider the system

$$
\left\{\begin{array}{l}
\dot{x}=x+2 y \\
\dot{y}=\mu+x^{2}-y
\end{array}\right.
$$

a) Sketch the nullclines.

Solution.

b) Find and classify the bifurcation that occur as μ varies.

Solution. Saddle node bifurcation happens at $\mu=\frac{1}{16}$ - at the moment when parabola is tangent to the line, its derivative is $-\frac{1}{2}$ so $2 \cdot x_{0}=-\frac{1}{2}, y_{0}=-\frac{1}{2} \cdot x_{0}$ and $y_{0}=x_{0}^{2}+\mu$. Hence $x_{0}=-\frac{1}{4}, y_{0}=\frac{1}{8}$ and $\mu=y_{0}-x_{0}^{2}=\frac{1}{8}-\frac{1}{16}=\frac{1}{16}$.
c) Sketch the phase portraits before and after the bifurcation.

Solution. After the bifuration two new fixed points appear - a saddle a center. The divergence vanish therefore all orbits near the second fixed points are closed.

Quiz 10
Set

$$
f(x)=\frac{x \cdot(x-1) \cdot(x-2)}{(x+100) \cdot(x+101) \cdot(x+102)} .
$$

1. A flow on the plane has only one fixed point at the origin and

$$
P(x)=x+f(x)
$$

is its Poincare map which is defined for the positive x-axis. Classify the fixed point; how many cycles the system has; classify each. Explain why there is no more cycles.

Solution. There are two positive fixed points of the Poincare map for: 1 and 2. each corresponds to a cycle.

By index theory, any cycle surrounds a fixed point. Since the origin is the only fixed point, any cycle must surround the origin. Therefore it must cross the positive part of x-axis. Hence any cycle corresponds to a fixed point of P - we have exactly two cycles.

Quiz 11

$\left\{\begin{array}{l}\dot{x}=\sigma(y-x), \\ \dot{y}=r x-y-x z, \\ \dot{z}=x y-b z .\end{array}\right.$

1. Show that there is a certain ellipsoidal region E of the form

$$
r x^{2}+\sigma y^{2}+\sigma(z-2 r)^{2} \leq C
$$

such that all trajectories of the Lorenz equations (see above) eventually enter E and stay in there forever.

Solution. Set

$$
V(x, y, z)=r x^{2}+\sigma y^{2}+\sigma(z-2 r)^{2} .
$$

Then

$$
\begin{aligned}
\dot{V} & =2 r x \dot{x}+2 \sigma y \dot{y}+2 \sigma(z-2 r) \dot{z}= \\
& =2 r x \cdot \sigma(y-x)+2 \sigma y \cdot(r x-y-x z)+2 \sigma(z-2 r) \cdot(x y-b z)= \\
& =-2 r x^{2}-2 \sigma y^{2}-2 \sigma b z^{2}-4 r b z
\end{aligned}
$$

If $2 r x^{2}+2 \sigma y^{2}+2 \sigma b z^{2}$ is sufficiently large (which happens outside of a bounded set, denote it by B) then it it larger then the linear term $4 r b z$. Therefore $\dot{V}<-1$ outside of a bounded set. We can choose the value C so the the ellipsoid E contains the bounded set B. Therefore $\dot{V}<-1$ on any trajectory outside of E; hence in finite time it gets the value C - at that moment it meets the ellipsoid and it can not leave it.

