
Solutions

Quiz 1

1. Discuss the existence and uniqueness of the following initial value problem:

ẋ = x1/3; x(0) = 0.

Solution. The function x 7→ x1/3 is continuous therefore equation has local
solution for any initial data.

Note that x(t) = 0 is a solution and

x(t) =

{
0 if t ≤ 0

( 2
3 · t)

3/2 if t > 0

is also a solution. The latter is evident for t < 0 and

ẋ = 3
2 · (

2
3 · t)

1/2 · 23 = x1/3

for t ≥ 0.
Hence there is no uniqueness.

Comment. The function x 7→ x1/3 is not Lipschitz at 0, otherwise local unique-
ness would follow we could use Picard’s theorem.

Quiz 2

1. For the following vector field, plot the potential function V (x) and identify
all the equilibrium points and their stability.

ẋ = x(1− x).

Solution.

Quiz 3

1. Consider the equation ẋ = rx + x3, where r > 0 is fixed. Show that
x(t)→ ±∞ in finite time, starting from any initial condition x0 6= 0.

Solution. Since f(x) = rx+x3 is an odd function, it is sufficient to consider the
case x0 > 0.

Since r > 0, we have f(x) > x3 > 0 for x > 0. Therefore it is sufficient to
show that the solution of

ẋ = x3

escapes to ∞ in finite time for any initial condition x0 > 0.



Solving the equation we get

x(t) =
1

( 1
x2
0
− 2t)1/2

;

the solution approach ∞ as t→ 2
x2
0

Quiz 4

1. For the following flow on the circle

θ̇ = µ cos θ + sin(2 · θ),

draw the phase portrait, classify the bifurcations that occur as µ varies, and
find all the bifurcation values of µ.

Solution.
µ cos θ + sin(2 · θ) = 0

if and only if
θ = ±π2 (mod π) or µ = −2 sin θ.

We have two (subcritical) pitchfork bifurcations at µ = ±2.
The following diagram shows the behavior of the flow fro µ ≥ 2, |µ| < 2 and

µ ≤ −2 correspondingly.



2. Sketch some typical trajectories of the linear system{
ẋ = x,

ẏ = x+ y.

Solution. The matrix is ( 1 0
1 1 ); both eigenvalues are 1 and it has only one eigen-

vector ( 0
1 ). So, it is unstable degenerate node. Typical trajectories should be

go like this:

(General solution is x(t) = x0 · et, y(t) = (x0 · t + y0) · et, but you do not
need it.)



Quiz 5

1. For the following system, find the fixed points, classify them, sketch the
neighboring trajectories. {

ẋ = y + x− x3,
ẏ = −y.

Solution. The Jacobian is (
1− 3x2 1

0 −1

)
.

The system {
y + x− x3 = 0,

−y = 0.

has 3 solutions: (−1, 0), (0, 0) and (1, 0)

• for (−1, 0) we have ∆ = 2, τ = −3 — stable node

• for (0, 0) we have ∆ = −1 — saddle.

• for (1, 0) we have ∆ = 2, τ = −3 — stable node

Quiz 6

1. Find a conserved quantity for the system{
ẋ = x · (1− y),

ẏ = µ · y · (x− 1).

Solution.
dy

dx
= µ · y · (x− 1)

x · (1− y)
,

dy · 1−yy = dx · µ · x−1
x ,

ln |y| − y = µ · (x− ln |x|) + C.



So the
V (x, y) = ln |y| − y − µ · (x− ln |x|)

is a conserved quantity.

Quiz 7

1. Show that each of the following systems is reversible; sketch its phase por-
trait. {

ẋ = y · (4− x2),

ẏ = 1− y2.

Solution. The map (x, y, t) 7→ (x,−y,−t) sends a solution to a solution; indeed
in this case ẋ 7→ −ẋ; ẏ 7→ ẏ, y · (4− x2) is odd in y and 1− y2 is even in y.

The system has 4 fixed points (2, 1), (−2, 1), (2,−1), (−2,−1). The lines
x = ±2 and y = ±1 are invariant. Jacobian is(

−2xy 4− x2
0 −2y

)
So the eigenvalues are −2xy and −2y. Therefore

• (−2, 1) is a saddle,

• (−2,−1) is a saddle,

• (2, 1) is a stable node,

• (2,−1) is an unstable node,

The reflection in x-axis should revert the orientation of the trajectories:

Quiz 8

1. Is the origin a nonlinear center for the system{
ẋ = y − x2,
ẏ = x.



Solution. The origin is a fixed point; its Jacobian is(
0 1
1 0

)
the determinant is −1 so it is a saddle point, can not be a nonlinear center.

(By the way, this system is reversible — f(x, y) = y − x2 is odd in y and
g(x, y) = x is even in y, therefore the map (x, y, t) 7→ (x,−y,−t) sends any
solution to a solution.)

Quiz 9

1. Consider the system {
ẋ = x+ 2y,

ẏ = µ+ x2 − y.

a) Sketch the nullclines.

Solution.

b) Find and classify the bifurcation that occur as µ varies.

Solution. Saddle node bifurcation happens at µ = 1
16 — at the moment when

parabola is tangent to the line, its derivative is − 1
2 so 2 · x0 = − 1

2 , y0 = − 1
2 · x0

and y0 = x20 + µ. Hence x0 = − 1
4 , y0 = 1

8 and µ = y0 − x20 = 1
8 −

1
16 = 1

16 .

c) Sketch the phase portraits before and after the bifurcation.

Solution. After the bifuration two new fixed points appear — a saddle a center.
The divergence vanish therefore all orbits near the second fixed points are closed.



Quiz 10

Set

f(x) =
x · (x− 1) · (x− 2)

(x+ 100) · (x+ 101) · (x+ 102)
.

1. A flow on the plane has only one fixed point at the origin and

P (x) = x+ f(x)

is its Poincare map which is defined for the positive x-axis. Classify the fixed
point; how many cycles the system has; classify each. Explain why there is no
more cycles.

Solution. There are two positive fixed points of the Poincare map for: 1 and 2.
each corresponds to a cycle.

By index theory, any cycle surrounds a fixed point. Since the origin is the
only fixed point, any cycle must surround the origin. Therefore it must cross
the positive part of x-axis. Hence any cycle corresponds to a fixed point of P
— we have exactly two cycles.

Quiz 11
ẋ = σ(y − x),

ẏ = rx− y − xz,
ż = xy − bz.

1. Show that there is a certain ellipsoidal region E of the form

rx2 + σy2 + σ(z − 2r)2 ≤ C

such that all trajectories of the Lorenz equations (see above) eventually enter
E and stay in there forever.

Solution. Set
V (x, y, z) = rx2 + σy2 + σ(z − 2r)2.



Then

V̇ = 2rxẋ+ 2σyẏ + 2σ(z − 2r)ż =

= 2rx · σ(y − x) + 2σy · (rx− y − xz) + 2σ(z − 2r) · (xy − bz) =

= −2rx2 − 2σy2 − 2σbz2 − 4rbz.

If 2rx2 + 2σy2 + 2σbz2 is sufficiently large (which happens outside of a bounded
set, denote it by B) then it it larger then the linear term 4rbz. Therefore
V̇ < −1 outside of a bounded set. We can choose the value C so the the
ellipsoid E contains the bounded set B. Therefore V̇ < −1 on any trajectory
outside of E; hence in finite time it gets the value C — at that moment it meets
the ellipsoid and it can not leave it.


