Extra credit problems

Math 427

0 . Find a mistake or misprint in the book. (The score depends on the type of mistake.)

1. Describe all the motions of the Manhattan plane.
2. Construct a metric space \mathcal{X} and a distance-preserving map $f: \mathcal{X} \rightarrow \mathcal{X}$ that is not a motion of \mathcal{X}.
3. Note that the following quantity

$$
\tilde{\measuredangle} A B C=\left[\begin{array}{clc}
\pi & \text { if } \quad \measuredangle A B C=\pi \\
-\measuredangle A B C & \text { if } & \measuredangle A B C<\pi .
\end{array}\right.
$$

can serve as the angle measure; that is, the axioms hold if one changes everywhere \measuredangle to \measuredangle.
(a) Show that \measuredangle and $\tilde{\measuredangle}$ are the only possible angle measures on the plane.
(b) Show that without Axiom IIIc, this is not longer true.
4. Show that a composition of three reflections in the sides of a nondegenerate triangle does not have a fixed point.
5. Lines ℓ and m are tangent to two circles of radiuses r and R on such a way the circles are on one side of ℓ and on different sides of m. Let A and B be tangential points of ℓ and Q be the point of intersection ℓ and m. Show that

$$
Q A \cdot Q B=R \cdot r .
$$

6. Given a line segment with a marked midpoint, make a ruler-only construction a line thru a given point P parallel to the segment.
7. Let $A B C$ be a nondegenerate triangele and $A^{\prime} \in(B C), B^{\prime} \in(C A), C^{\prime} \in$ $\in(A B)$ be the points such that

$$
2 \cdot \measuredangle A A^{\prime} B \equiv 2 \cdot \measuredangle B B^{\prime} C \equiv 2 \cdot \measuredangle C C^{\prime} A \equiv \frac{2}{3} \cdot \pi .
$$

Show that the triangle formed by the lines $\left(B B^{\prime}\right),\left(C C^{\prime}\right)$, and $\left(A A^{\prime}\right)$, is congruent to $\triangle A B C$.
8. Give a ruler-and-compass construction of an inscribed quadrilateral with given sides.
9. A circle Γ, a point $P \in \Gamma$, and a line ℓ are given. Assume ℓ passes thru the center of Γ. Make a ruler-only construction of a line thru P that is perpendicular to ℓ.
10. Let A and C be two different points a circle Γ with the center O. For any third point P of the circle let X and Y be the midpoints of the segments $[A P]$ and $[C P]$. Finally, let H be the orthocenter of the triangle $O X Y$. Prove that the position of the point H does not depend on the choice of P.
11. Two points A and B lie on one side of a line ℓ. Two points M and N are chosen on ℓ such that $A M+B M$ is minimal and $A N=B N$. Show that points A, B, M and N lie on one circle.
12. Suppose D and E lie on the same side from $(A C),(A E) \|(C D)$, and $A B=B C$. Let K be the intersection of the bisectors of the angles $E A B$ and $B C D$. Prove that $(B K) \|(A E)$.
13. Give a ruler-and-compass construction of a circle or a line which perpendicular to each of three given circles. (You may assume any two of three given circles do not intersect. Play with the java applet "Perpendicular to 3 circles.html" on anton-petrunin.github.io/birkhoff/car/.)
14. Show that a neutral plane is Euclidean if and only if it has a rectangle.

