Problem. Let Γ_1 and Γ_2 be two distinct circles with centers at O_1 and O_2 and radii r_1 and r_2 , and let $d = O_1O_2$ Show that Γ_1 is tangent to Γ_2 if and only if

$$d = r_1 + r_2$$
 or $d = |r_1 - r_2|$.

Let P be the common poornt of the circles T, and T2 WLOG assume 12 71. Since the circles are tangent $20_1 PO_2 = 90^{\circ}$ By the Pythogorean theorem, $d^2 = r_1^2 + r_2^2$ and $\Gamma_2^2 = d^2 - \Gamma_1^2 = (d + \Gamma_1)(d - \Gamma_1).$ Therefore, either $r_2 = d_1 + r_1$ or $r_2 = d - r_1$ Hence the statement follows.