Cohomology of Lie groups and Lie algebras

Somnath Basu?

1 Introduction

The aim of this expository essay is to illustrate one example of a local-to-global phenomenon. What we mean by that is better illustrated by explaining the topic at hand. We aim to understand the de Rham cohomology groups of a Lie group. But instead of doing it using actual differential forms, we shall use the properties of a Lie group (especially the fact that it is a group) to reduce calculations on the de Rham complex to calculations involving the Lie algebra and its tensor powers. On the one hand, this reduces the problem to a local one while on the other, makes it easier to solve by virtue of being a linear problem. In what follows, we explain the passage from global to local in §2 and then exhibit a few computations of the cohomology groups in §3.

2 Cohomology of Lie groups

Let G be a connected compact Lie group of dimension n with a normalized bi-invariant measure μ on it. Let $L_g: G \to G$ denote the left multiplication by $g \in G$ and $m: G \times G \to G$ the multiplication. We will be working with real coefficients throughout this section unless specified otherwise.

Definition 2.1. Let (C(G), d) denote the cochain complex of de Rham differential forms on G. An element $\alpha \in C(G)$ is called a *left-invariant form* if $L_g^*\alpha = \alpha$ for any $g \in G$. The space of all left-invariant forms will be denoted by $C_L(G)$.

Observe that $C_L(G)$ is a graded d-closed subalgebra and the inclusion map $\iota: C_L(G) \to C(G)$ induces a map of graded algebras

$$\iota_*: H_L^*(G; \mathbb{R}) \to H^*(G; \mathbb{R}).$$

Notice that $C_L^1(G) = \mathfrak{g}^*$ is the dual to the left-invariant vector fields and $C_L(G)$ is the exterior algebra over \mathfrak{g}^* . We have an averaging map $\rho: C(G) \to C_L(G)$ defined by

$$\alpha \mapsto \int_G L_g^* \alpha \, d\mu.$$

This is a map of cochain complexes which is identity on $C_L(G)$ and $\rho \circ \iota$ is the identity on $C_L(G)$. This implies that ι_* is injective. We claim that

Proposition 2.2. The map $\iota_*: H^*_L(G; \mathbb{R}) \to H^*(G; \mathbb{R})$ is an isomorphism.

Proof Suppose we have constructed a chain map $h: C^i(G) \to C^{i-1}(G)$ of degree -1 such that

$$\iota \circ \rho - \mathrm{Id} = dh + hd$$

on C(G). Since $\iota_* \circ \rho_* = \operatorname{Id}$, ι_* is surjective. It is injective from the previous discussion, whence it is an isomorphism. We construct h as a composition of $h_G \circ m^*$ where $h_G : C(G \times G) \to C(G)$ is homogeneous of degree -1.

Let $\pi_1: G \times G \to G$ denote the projection of the trivial G-bundle to G. We have a map $\int^G: C(G \times G) \to C(G)$ called the *fibre integral* and is defined at $g \in G$ by integrating it over the fibre at g. It is a homogeneous map of degree -n and commutes with d. We now define a degree 0 map

$$I_{\Omega}: C(G \times G) \to C(G)$$

by setting

$$I_{\Omega}(\omega)(g) := \int_{-\infty}^{G} \omega \wedge \pi_1^* \Omega,$$

where Ω is the normalized left-invariant volume form on G. For any $\alpha \in C(G)$

$$[(I_{\Omega} \circ m^*)\alpha](g) = \int_G^G m^*\alpha \wedge \pi_1^*(\Omega) = \int_G (L_g^*\alpha)(g) \, d\mu.$$

This proves that $I_{\Omega} \circ m^* = \rho$. Let $i: G \to G \times G$ denote the map sending g to (g,1). Then $m \circ i = \text{Id}$ and consequently $i^* \circ m^* = \text{Id}$. If we construct

$$h_G: C(G \times G) \to C(G)$$

such that $I_{\Omega} - i^* = dh_G + h_G d$ then it follows that

$$\iota \circ \rho - \mathrm{Id} = I_{\Omega} \circ m^* - i^* \circ m^* = (dh_G + h_G d) \circ m^* = d(h_G m^*) + (h_G m^*) d,$$

where the last equality holds since L^* is a cochain map.

If we change the the volume form Ω to another n-form Ψ supported in a contractible local chart $U \ni 1$ of G such that $\int_G \Psi = 1$, then $\Omega - \Psi = d\eta$ for some (n-1)-form η . Then the maps I_{Ω} and I_{Ψ} are chain homotopic. The homotopy is given by

$$h_{\eta}(\alpha) = (-1)^i \int_{-\alpha}^{G} \alpha \wedge \pi_1^* \eta, \quad \alpha \in C^i(G \times G).$$

Choosing Ψ has the advantage that $I_{\Psi}: C(U \times G) \to C(G)$ and clearly $U \times G$ deformation retracts to G. Thus, I_{Ψ} and i^* are chain homotopic, whence I_{Ω} and i^* are also chain homotopic. \square

Remark 2.3. The same proof, with slight modifications, works well for a G-action on a manifold M by a compact, connected Lie group. We can prove that the inclusion of the subcomplex of G-invariant forms on M into the complex of all forms on M is an isomorphism in cohomology.

We shift our focus to *invariant forms*, i.e., forms invariant under the left and right actions L_g and R_g respectively. In particular, these are invariant under the adjoint action $\operatorname{Ad}_g = L_g \circ R_{g^{-1}}$. These forms are invariant under d. If we define the action I, of $G \times G$ on G, by

$$I_{q_1,q_2}(g) = g_1 g g_2^{-1}$$

then the algebra of differential forms that are invariant under this action is precisely the space of invariant forms, denoted $C_I(G)$.

Lemma 2.4. $C_I(G)$ consists of closed forms.

Proof First observe that if $\tau: G \to G$ denotes the inverse map, then

$$d\tau_g = -(R_{g^{-1}})_* \circ (L_{g^{-1}})_*, \ g \in G$$

and $\tau^*\alpha = (-1)^p\alpha$ for $\alpha \in C_I^p(G)$. Since $d\alpha \in C_I^{p+1}(G)$,

$$(-1)^{p+1}d\alpha = \tau^* d\alpha = d\tau^* \alpha = (-1)^p d\alpha,$$

whence $d\alpha = 0$.

Since $C_I(G)$ is closed, $H_I^*(G) = C_I(G)$ and by the remark, it is isomorphic to $H^*(G)$. We have isomorphisms

$$(2.1) C_I(G) \cong H_L^*(G) \cong H^*(G).$$

If G is semisimple, this isomorphism is just a manifestation of the Hodge theorem. More precisely, it is known that for any semisimple group one can find a bi-invariant Riemannian metric on G. Hodge had proved that the harmonic forms with respect to such a metric are exactly $C_I(G)$.

We have the multiplication $m: G \times G \to G$ and $m^*: C(G) \to C(G \times G)$ which induces a map

$$\Delta: H^*(G) \longrightarrow H^*(G \times G) \stackrel{\cong}{\longrightarrow} H^*(G) \otimes H^*(G).$$

of degree 0. Let $i_1, i_2: G \to G \times G$ be the inclusion maps opposite 1. If $\gamma \in H^*(G \times G)$ then

$$\gamma = i_1^* \gamma \otimes 1 + \beta + 1 \otimes i_2^* \gamma,$$

where $\beta \in H^+(G)^{\otimes 2}$. Since $m \circ i_1 = m \circ i_2 = \mathrm{Id}$,

$$\Delta(\alpha) = \alpha \otimes 1 + \beta + 1 \otimes \alpha, \ \alpha \in H^*(G), \beta \in H^+(G)^{\otimes 2}.$$

Definition 2.5. An element $\alpha \in H^+(G)$ is called *primitive* if

$$\Delta(\alpha) = \alpha \otimes 1 + 1 \otimes \alpha.$$

Remark 2.6. It is classically known that any compact connected Lie group is rationally homotopy equivalent to a product of odd spheres. The volume forms of these spheres generate the primitive elements of $H^*(G)$.

The primitive elements form a graded subspace, P_G , of $H^*(G)$. Notice that there are no even primitives because if α was one such then $1 \otimes \alpha$ and $\alpha \otimes 1$ would commute, both being even. Now let k be the least positive number such that $\alpha^k = 0$. Then

$$0 = \Delta(\alpha^k) = (\alpha \otimes 1 + 1 \otimes \alpha)^k = \sum_{i=1}^{k-1} \alpha^i \otimes \alpha^{k-i}.$$

In particular, $\alpha \otimes \alpha^{k-1} = 0$, whence $\alpha = 0$. Since every homogeneous element of P_G is odd, it's square is zero. Thus, the inclusion $P_G \hookrightarrow H^*(G)$ extends to a homomorphism

$$(2.3) \lambda_G : \Lambda P_G \to H^*(G)$$

of graded algebras. It can be shown using properties of power maps and its eigenspaces that dim $P_G = \operatorname{rank} G$ and λ_G is an isomorphism. Thus, $H^*(G)$ is of dimension $2^{\operatorname{rank} G}$.

3 Cohomology of Lie algebras

Let \mathfrak{g} be a finite dimensional Lie algebra. By Lie's theorem, it corresponds to a simply connected Lie group G. To each \mathfrak{g} -module M we can associate a cochain complex $C^k(\mathfrak{g}; M)$, whose cohomology is defined to be the *Lie algebra cohomology of* \mathfrak{g} with values in M. We define

(3.1)
$$C^{k}(\mathfrak{g}; M) := \operatorname{Hom}(\Lambda^{k}\mathfrak{g}, M), \ k = 0, 1, \dots, \dim \mathfrak{g},$$

the vector space of real valued multilinear, skew maps with values in M. The coboundary operator $\delta: C^k(\mathfrak{g}; M) \to C^{k+1}(\mathfrak{g}; M)$ is defined by

(3.2)
$$(\delta\omega)(x_0, \dots, x_k) := \sum_{i=0}^k (-1)^i x_i \cdot \omega(\dots, \hat{x}_i, \dots)$$

$$+ \sum_{0 \le i < j \le k} (-1)^{i+j} \omega([x_i, x_j], \dots, \hat{x}_i, \dots, \hat{x}_j, \dots).$$

It is easily verified, using Jacobi and the properties of the \mathfrak{g} -action on M, that $\delta \circ \delta = 0$.

Since our main object of interest is cohomology with values in \mathbb{R} , we set $M = \mathbb{R}$ with the trivial action of \mathfrak{g} . We will also abbreviate notation and denote $C^k(\mathfrak{g};\mathbb{R})$ by $C^k(\mathfrak{g})$ and the corresponding cohomology groups $H^k(\mathfrak{g};\mathbb{R})$ by $H^k(\mathfrak{g})$. Observe that the cohomology groups so obtained are just the the cohomology group of left-invariant forms on G and δ is exactly d. By definition, $C^0(\mathfrak{g}) = \mathbb{R}$ and $C^1(\mathfrak{g}) = \mathfrak{g}^* \cong \mathfrak{g}$. The first three coboundary maps are :

$$(3.3) (\delta\alpha)(x) = 0,$$

$$(3.4) \qquad (\delta\beta)(x,y) = -\beta([x,y]),$$

$$(3.5) (\delta\gamma)(x,y,z) = -\gamma([x,y],z) - \gamma([y,z],x) - \gamma([z,x],y).$$

where $x, y, z \in \mathfrak{g}$ and α, β, γ are 0, 1 and 2-cochains.

For small values of k, the cohomology groups have certain interesting interpretations. The first equation (3.3) implies that

$$(3.6) H^0(\mathfrak{g}) = \mathbb{R}.$$

Using (3.4) we see that $H^1(\mathfrak{g})$ is exactly the kernel of $\delta: C^1(\mathfrak{g}) \to C^2(\mathfrak{g})$ since the map $\delta: C^0(\mathfrak{g}) \to C^1(\mathfrak{g})$ is zero. Elements α in the kernel are precisely the ones that vanish on commutators, i.e., $\alpha([x,y]) = 0$ for any $x,y \in \mathfrak{g}$. Alternatively, these can be viewed as maps from $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ to \mathbb{R} , whence

$$(3.7) H^1(\mathfrak{g}) \cong \mathfrak{g}/\left[\mathfrak{g},\mathfrak{g}\right].$$

In particular, the first cohomology vanishes for a semisimple Lie algebra.

To interpret $H^2(\mathfrak{g})$ we need to understand the kernel of (3.5), i.e., 2-cochains ω such that

(3.8)
$$\omega(([x,y],z) + \omega([y,z],x) + \omega([z,x],y) = 0.$$

The restraint above is called the *cocycle condition* and is equivalent to ω being closed. Any such ω defines a central extension

$$0 \to \mathbb{R} \to \tilde{\mathfrak{a}} \to \mathfrak{a} \to 0$$

with the Lie bracket on $\tilde{\mathfrak{g}}$ given by

$$[(x,s),(y,t)] := ([x,y],\omega(x,y)).$$

The bracket satisfies the Jacobi identity due to (3.8) and is skew since ω is. Conversely, given a central extension, the bracket on $\tilde{\mathfrak{g}}$ is defined as in (3.9) and ω must satisfy (3.8). Thus, the central extensions of \mathfrak{g} by \mathbb{R} are in bijective correspondence with the 2-cocycles.

We try to see what relations are forced on the 2-cocycles ω, ω' if the corresponding central extensions $\tilde{\mathfrak{g}}, \tilde{\mathfrak{g}}'$ are equivalent. Recall that two extensions $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{g}}'$ are equivalent if there exists a map $\varphi: \tilde{\mathfrak{g}} \to \tilde{\mathfrak{g}}'$ of Lie algebras such that the following commutes:

$$0 \longrightarrow \mathbb{R} \longrightarrow \tilde{\mathfrak{g}} \longrightarrow \mathfrak{g} \longrightarrow 0$$

$$\downarrow_{\mathrm{id}} \qquad \downarrow^{\varphi} \qquad \downarrow_{\mathrm{id}}$$

$$0 \longrightarrow \mathbb{R} \longrightarrow \tilde{\mathfrak{g}}' \longrightarrow \mathfrak{g} \longrightarrow 0.$$

Both the extensions are $\mathfrak{g} \oplus \mathbb{R}$ as vector spaces and $\varphi : \mathfrak{g} \oplus \mathbb{R} \to \mathfrak{g} \oplus \mathbb{R}$ is the identity when restricted to \mathbb{R} . Moreover, φ is an isomorphism (by the five-lemma) and $\varphi(x,0) = x + \alpha(x)$ where $\alpha \in C^1(\mathfrak{g})$. We have

$$[\varphi(x,0),\varphi(y,0)] = [(x,\alpha(x)),(y,\alpha(y))] = ([x,y],\omega'(x,y))$$

and we also have

$$\varphi([(x,0),(y,0)]) = \varphi(([x,y],\omega(x,y)) = ([x,y],\alpha([x,y]) + \omega(x,y)).$$

Thus, the 2-cocycles are cohomologous via α .

Proposition 3.1. Equivalence classes of central extensions of \mathfrak{g} by \mathbb{R} are in bijective correspondence with elements of $H^2(\mathfrak{g})$.

It can be deduced that if \mathfrak{g} is semisimple then there are no non-trivial central extensions.

Remark 3.2. If G is simply connected then $H^2(G; \mathbb{Z}) \hookrightarrow H^2(G; \mathbb{R})$ is an injection. Recall that isomorphism classes of circle bundles over G correspond to $H^2(G; \mathbb{Z})$ and the total space of any such bundle can be made into a group, i.e., there is a short exact sequence of groups

$$1 \to S^1 \to \widetilde{G} \to G \to 1$$

realizing such a bundle. The map of Lie algebras then give us the integral central extensions.

To discuss $H^3(\mathfrak{g})$, we shall restrict ourselves to algebras such that $H^1(\mathfrak{g}) = 0 = H^2(\mathfrak{g})$. The Lie algebras of any connected compact semisimple Lie group G satisfies this property. It follows from (3.4) that the negative of the dual of δ is a map

(3.10)
$$\delta^* : \Lambda^2 \mathfrak{g} \to \mathfrak{g}, \ x \wedge y \mapsto [x, y].$$

Since $\delta: \Lambda \mathfrak{g}^* \to \Lambda \mathfrak{g}^*$ satisfies $\delta^2 = 0$, the map δ^* extends to $\Lambda \mathfrak{g}$ and satisfies $\delta^* \circ \delta^* = 0$. The resulting homology groups will be called the *homology groups* of \mathfrak{g} and denoted by $H_i(\mathfrak{g})$. By our assumption that the first two cohomology groups vanish, it follows from the duality of δ and δ^* that $H_1(\mathfrak{g}) = 0 = H_2(\mathfrak{g})$. In fact, the explicit formula of δ^* is

$$(3.11) x_0 \wedge \cdots \wedge x_p \xrightarrow{\delta^*} \sum_{i < j} (-1)^{i+j+1} [x_i, x_j] \wedge x_0 \wedge \cdots \hat{x_i} \cdots \hat{x_j} \cdots \wedge x_p.$$

Notice that δ^* may not be a derivation.

Since $\mathfrak{g} \cong \mathfrak{g}^*$ as \mathfrak{g} -modules, the space of (symmetric) invariant bilinear forms on \mathfrak{g} , $\operatorname{Bil}(\mathfrak{g}) = (S^2\mathfrak{g})^{\mathfrak{g}}$, is isomorphic to $(S^2\mathfrak{g}^*)^{\mathfrak{g}}$. With this identification, define a map

$$\varphi: (S^2\mathfrak{g}^*)^{\mathfrak{g}} \to (\Lambda^3\mathfrak{g}^*)^{\mathfrak{g}}$$

$$(3.12) B \mapsto \varphi(B) : (x \wedge y \wedge z) \to B([x, y], z) = B(\delta^*(x \wedge y), z).$$

The 3-form $\varphi(B)$ is anti-symmetric since B is invariant and symmetric and [,] is skew. The invariance follows from the Jacobi identity and the invariance of B, viz,

$$\varphi(B)([w,x] \land y \land z) + \varphi(B)(x \land [w,y] \land y) + \varphi(B)(x \land y \land [w,z])$$

$$= B([[w,x],y],z) + B([[y,w],x],z) + B([x,y],[w,z])$$

$$= -B([[x,y],w],z) + B([x,y],[w,z])$$

$$= 0.$$

Let $\omega \in (\Lambda^3 \mathfrak{g}^*)^{\mathfrak{g}}$. Since ω is closed, we have

$$0 = \underbrace{\omega([x_{0}, x_{1}] \land x_{2} \land x_{3}) - \omega([x_{0}, x_{2}] \land x_{1} \land x_{3}) + \omega([x_{0}, x_{3}] \land x_{1} \land x_{2})}_{= 0 \text{ by invariance}}$$

$$+\omega([x_{1}, x_{2}] \land x_{0} \land x_{3}) - \omega([x_{1}, x_{3}] \land x_{0} \land x_{2}) + \omega([x_{2}, x_{3}] \land x_{0} \land x_{1})$$

$$= \underbrace{\omega([x_{1}, x_{2}] \land x_{0} \land x_{3}) - \omega([x_{1}, x_{3}] \land x_{0} \land x_{2}) + \omega([x_{1}, x_{0}] \land x_{3} \land x_{2})}_{= 0 \text{ by invariance}}$$

$$+\omega([x_{2}, x_{3}] \land x_{0} \land x_{1}) - \omega([x_{0}, x_{1}] \land x_{2} \land x_{3})$$

$$= \omega([x_{2}, x_{3}] \land x_{0} \land x_{1}) - \omega(x_{2} \land x_{3} \land [x_{0}, x_{1}]).$$

This implies

$$(3.13) \qquad \qquad \omega(u \wedge \delta^* v) = \omega(\delta^* u \wedge v)$$

$$(3.14) \omega(\delta^* w \wedge y) = 0$$

for $u, v \in (\Lambda^2 \mathfrak{g})^{\mathfrak{g}}, w \in (\Lambda^3 \mathfrak{g})^{\mathfrak{g}}$. We are now prepared to prove the following proposition which provides the connection between $\mathrm{Bil}(\mathfrak{g})$ and $H^3(G) \cong (\Lambda^3 \mathfrak{g}^*)^{\mathfrak{g}}$.

Proposition 3.3. The map $\varphi: (S^2\mathfrak{g}^*)^{\mathfrak{g}} \to (\Lambda^3\mathfrak{g}^*)^{\mathfrak{g}}$ is an isomorphism for any semisimple Lie algebra \mathfrak{g} .

Proof Injectivity of φ follows from $H^1(\mathfrak{g}) = 0$ (equivalently $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$). To prove surjectivity, let $\omega \in (\Lambda^3 \mathfrak{g}^*)^{\mathfrak{g}}$. Define $B \in (S^2 \mathfrak{g}^*)^{\mathfrak{g}}$ by

$$B(x,y) = \omega(u \wedge y)$$
, where $\delta^* u = x$.

This is well defined since if $\delta^*v = x$ then $\delta^*(u - v) = 0$. Since $H_2(\mathfrak{g}; \mathbb{R}) = 0$, there exists $w \in (\Lambda^3 \mathfrak{g})^{\mathfrak{g}}$ such that $\delta^*w = u - v$. Then $\omega(\delta^*w \wedge y) = 0$ by (3.14). Using (3.13) and the surjectivity of $\delta^* : \Lambda^2 \mathfrak{g} \to \mathfrak{g}$,

$$B(\delta^*u, \delta^*v) = \omega(u \wedge \delta^*v) = \omega(v \wedge \delta^*u) = B(\delta^*v, \delta^*u),$$

the symmetry of B follows. By definition $\varphi(B) = \omega$. Since

$$B([x, w], y) = \omega(x \land w \land y) = \omega(w \land y \land x) = B(x, [w, y]),$$

B is invariant. \Box

In view of this result and the discussion preceding it, we conclude that $\mathrm{Bil}(\mathfrak{g})$ is isomorphic to $H^3(G;\mathbb{R})$. If G is simple, then it is 1-dimensional since any such bilinear form is a multiple of the Killing form on \mathfrak{g} .