
Cohomology of Lie groups and Lie algebras

1 Introduction

The aim of this expository essay is to illustrate one example of a local-to-global phenomenon.
What we mean by that is better illustrated by explaining the topic at hand. We aim to understand
the de Rham cohomology groups of a Lie group. But instead of doing it using actual differential
forms, we shall use the properties of a Lie group (especially the fact that it is a group) to reduce
calculations on the de Rham complex to calculations involving the Lie algebra and its tensor powers.
On the one hand, this reduces the problem to a local one while on the other, makes it easier to
solve by virtue of being a linear problem. In what follows, we explain the passage from global to
local in §2 and then exhibit a few computations of the cohomology groups in §3.

2 Cohomology of Lie groups

Let G be a connected compact Lie group of dimension n with a normalized bi-invariant
measure µ on it. Let Lg : G→ G denote the left multiplication by g ∈ G and m : G×G→ G the
multiplication. We will be working with real coefficients throughout this section unless specified
otherwise.

Definition 2.1. Let (C(G), d) denote the cochain complex of de Rham differential forms on G.
An element α ∈ C(G) is called a left-invariant form if L∗gα = α for any g ∈ G. The space of all
left-invariant forms will be denoted by CL(G).

Observe that CL(G) is a graded d-closed subalgebra and the inclusion map ι : CL(G) → C(G)
induces a map of graded algebras

ι∗ : H∗L(G; R)→ H∗(G; R).

Notice that C1
L(G) = g∗ is the dual to the left-invariant vector fields and CL(G) is the exterior

algebra over g∗. We have an averaging map ρ : C(G)→ CL(G) defined by

α 7→
∫
G
L∗gαdµ.

This is a map of cochain complexes which is identity on CL(G) and ρ ◦ ι is the identity on CL(G).
This implies that ι∗ is injective. We claim that

Proposition 2.2. The map ι∗ : H∗L(G; R)→ H∗(G; R) is an isomorphism.

Proof Suppose we have constructed a chain map h : Ci(G)→ Ci−1(G) of degree −1 such that

ι ◦ρ− Id = dh+ hd
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on C(G). Since ι∗ ◦ρ∗ = Id, ι∗ is surjective. It is injective from the previous discussion, whence it
is an isomorphism. We construct h as a composition of hG ◦m∗ where hG : C(G × G) → C(G) is
homogeneous of degree −1.

Let π1 : G × G → G denote the projection of the trivial G-bundle to G. We have a map∫ G : C(G×G) → C(G) called the fibre integral and is defined at g ∈ G by integrating it over the
fibre at g. It is a homogeneous map of degree −n and commutes with d. We now define a degree
0 map

IΩ : C(G×G)→ C(G)

by setting

IΩ(ω)(g) :=
∫ G

ω ∧ π∗1Ω,

where Ω is the normalized left-invariant volume form on G. For any α ∈ C(G)

[(IΩ ◦m
∗)α] (g) =

∫ G

m∗α ∧ π∗1(Ω) =
∫
G

(L∗gα)(g) dµ.

This proves that IΩ ◦m
∗ = ρ. Let i : G → G × G denote the map sending g to (g, 1). Then

m ◦ i = Id and consequently i∗ ◦m∗ = Id. If we construct

hG : C(G×G)→ C(G)

such that IΩ − i∗ = dhG + hGd then it follows that

ι ◦ρ− Id = IΩ ◦m
∗ − i∗ ◦m∗ = (dhG + hGd) ◦m∗ = d(hGm∗) + (hGm∗)d,

where the last equality holds since L∗ is a cochain map.
If we change the the volume form Ω to another n-form Ψ supported in a contractible local

chart U 3 1 of G such that
∫
G Ψ = 1, then Ω − Ψ = dη for some (n − 1)-form η. Then the maps

IΩ and IΨ are chain homotopic. The homotopy is given by

hη(α) = (−1)i
∫ G

α ∧ π∗1η, α ∈ Ci(G×G).

Choosing Ψ has the advantage that IΨ : C(U ×G)→ C(G) and clearly U ×G deformation retracts
to G. Thus, IΨ and i∗ are chain homotopic, whence IΩ and i∗ are also chain homotopic. �

Remark 2.3. The same proof, with slight modifications, works well for a G-action on a manifold
M by a compact, connected Lie group. We can prove that the inclusion of the subcomplex of G-
invariant forms on M into the complex of all forms on M is an isomorphism in cohomology.

We shift our focus to invariant forms, i.e., forms invariant under the left and right actions Lg
and Rg respectively. In particular, these are invariant under the adjoint action Adg = Lg ◦Rg−1 .
These forms are invariant under d. If we define the action I, of G×G on G, by

Ig1,g2(g) = g1gg
−1
2

then the algebra of differential forms that are invariant under this action is precisely the space of
invariant forms, denoted CI(G).
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Lemma 2.4. CI(G) consists of closed forms.

Proof First observe that if τ : G→ G denotes the inverse map, then

dτg = −(Rg−1)∗ ◦ (Lg−1)∗, g ∈ G

and τ∗α = (−1)pα for α ∈ CpI (G). Since dα ∈ Cp+1
I (G),

(−1)p+1dα = τ∗dα = dτ∗α = (−1)pdα,

whence dα = 0. �

Since CI(G) is closed, H∗I (G) = CI(G) and by the remark, it is isomorphic to H∗(G). We have
isomorphisms

(2.1) CI(G) ∼= H∗L(G) ∼= H∗(G).

If G is semisimple, this isomorphism is just a manifestation of the Hodge theorem. More precisely,
it is known that for any semisimple group one can find a bi-invariant Riemannian metric on G.
Hodge had proved that the harmonic forms with respect to such a metric are exactly CI(G).

We have the multiplication m : G × G → G and m∗ : C(G) → C(G × G) which induces a
map

∆ : H∗(G) −→ H∗(G×G)
∼=−→ H∗(G)⊗H∗(G).

of degree 0. Let i1, i2 : G→ G×G be the inclusion maps opposite 1. If γ ∈ H∗(G×G) then

γ = i∗1γ ⊗ 1 + β + 1⊗ i∗2γ,

where β ∈ H+(G)⊗2. Since m ◦ i1 = m ◦ i2 = Id,

∆(α) = α⊗ 1 + β + 1⊗ α, α ∈ H∗(G), β ∈ H+(G)⊗2.

Definition 2.5. An element α ∈ H+(G) is called primitive if

(2.2) ∆(α) = α⊗ 1 + 1⊗ α.

Remark 2.6. It is classically known that any compact connected Lie group is rationally homotopy
equivalent to a product of odd spheres. The volume forms of these spheres generate the primitive
elements of H∗(G).

The primitive elements form a graded subspace, PG, of H∗(G). Notice that there are no even
primitives because if α was one such then 1⊗ α and α⊗ 1 would commute, both being even. Now
let k be the least positive number such that αk = 0. Then

0 = ∆(αk) = (α⊗ 1 + 1⊗ α)k =
k−1∑
i=1

αi ⊗ αk−i.

In particular, α ⊗ αk−1 = 0, whence α = 0. Since every homogeneous element of PG is odd, it’s
square is zero. Thus, the inclusion PG ↪→ H∗(G) extends to a homomorphism

(2.3) λG : ΛPG → H∗(G)

of graded algebras. It can be shown using properties of power maps and its eigenspaces that dim
PG = rankG and λG is an isomorphism. Thus, H∗(G) is of dimension 2rankG.
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3 Cohomology of Lie algebras

Let g be a finite dimensional Lie algebra. By Lie’s theorem, it corresponds to a simply
connected Lie group G. To each g-module M we can associate a cochain complex Ck(g;M), whose
cohomology is defined to be the Lie algebra cohomology of g with values in M . We define

(3.1) Ck(g;M) := Hom(Λkg,M), k = 0, 1, . . . ,dim g,

the vector space of real valued multilinear, skew maps with values in M . The coboundary operator
δ : Ck(g;M)→ Ck+1(g;M) is defined by

(δω)(x0, . . . , xk) :=
k∑
i=0

(−1)ixi · ω(. . . , x̂i, . . .)(3.2)

+
∑

0≤i<j≤k
(−1)i+jω([xi, xj ] , . . . , x̂i, . . . , x̂j , . . .).

It is easily verified, using Jacobi and the properties of the g-action on M , that δ ◦δ = 0.
Since our main object of interest is cohomology with values in R, we setM = R with the trivial

action of g. We will also abbreviate notation and denote Ck(g; R) by Ck(g) and the corresponding
cohomology groups Hk(g; R) by Hk(g). Observe that the cohomology groups so obtained are just
the the cohomology group of left-invariant forms on G and δ is exactly d. By definition, C0(g) = R
and C1(g) = g∗ ∼= g. The first three coboundary maps are :

(δα)(x) = 0,(3.3)
(δβ)(x, y) = −β([x, y]),(3.4)

(δγ)(x, y, z) = −γ([x, y] , z)− γ([y, z] , x)− γ([z, x] , y).(3.5)

where x, y, z ∈ g and α, β, γ are 0, 1 and 2-cochains.
For small values of k, the cohomology groups have certain interesting interpretations. The

first equation (3.3) implies that

(3.6) H0(g) = R.

Using (3.4) we see that H1(g) is exactly the kernel of δ : C1(g)→ C2(g) since the map δ : C0(g)→
C1(g) is zero. Elements α in the kernel are precisely the ones that vanish on commutators, i.e.,
α([x, y]) = 0 for any x, y ∈ g. Alternatively, these can be viewed as maps from g/ [g, g] to R, whence

(3.7) H1(g) ∼= g/ [g, g] .

In particular, the first cohomology vanishes for a semisimple Lie algebra.
To interpret H2(g) we need to understand the kernel of (3.5), i.e., 2-cochains ω such that

(3.8) ω(([x, y] , z) + ω([y, z] , x) + ω([z, x] , y) = 0.

The restraint above is called the cocycle condition and is equivalent to ω being closed. Any such ω
defines a central extension

0→ R→ g̃→ g→ 0
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with the Lie bracket on g̃ given by

(3.9) [(x, s), (y, t)] := ([x, y] , ω(x, y)).

The bracket satisfies the Jacobi identity due to (3.8) and is skew since ω is. Conversely, given a
central extension, the bracket on g̃ is defined as in (3.9) and ω must satisfy (3.8). Thus, the central
extensions of g by R are in bijective correspondence with the 2-cocycles.

We try to see what relations are forced on the 2-cocycles ω, ω′ if the corresponding central
extensions g̃, g̃′ are equivalent. Recall that two extensions g̃ and g̃′ are equivalent if there exists a
map ϕ : g̃→ g̃′ of Lie algebras such that the following commutes :

0 // R //

id

��

g̃ //

ϕ

��

g //

id

��

0

0 // R // g̃′ // g // 0.

Both the extensions are g⊕R as vector spaces and ϕ : g⊕R→ g⊕R is the identity when restricted
to R. Moreover, ϕ is an isomorphism (by the five-lemma) and ϕ(x, 0) = x+α(x) where α ∈ C1(g).
We have

[ϕ(x, 0), ϕ(y, 0)] = [(x, α(x)), (y, α(y))] = ([x, y] , ω′(x, y))

and we also have

ϕ([(x, 0), (y, 0)]) = ϕ(([x, y] , ω(x, y)) = ([x, y] , α([x, y]) + ω(x, y)).

Thus, the 2-cocycles are cohomologous via α.

Proposition 3.1. Equivalence classes of central extensions of g by R are in bijective correspondence
with elements of H2(g).

It can be deduced that if g is semisimple then there are no non-trivial central extensions.

Remark 3.2. If G is simply connected then H2(G; Z) ↪→ H2(G; R) is an injection. Recall that
isomorphism classes of circle bundles over G correspond to H2(G; Z) and the total space of any
such bundle can be made into a group, i.e., there is a short exact sequence of groups

1→ S1 → G̃→ G→ 1

realizing such a bundle. The map of Lie algebras then give us the integral central extensions.

To discuss H3(g), we shall restrict ourselves to algebras such that H1(g) = 0 = H2(g). The
Lie algebras of any connected compact semisimple Lie group G satisfies this property. It follows
from (3.4) that the negative of the dual of δ is a map

(3.10) δ∗ : Λ2g→ g, x ∧ y 7→ [x, y] .

Since δ : Λg∗ → Λg∗ satisfies δ2 = 0, the map δ∗ extends to Λg and satisfies δ∗ ◦δ∗ = 0. The
resulting homology groups will be called the homology groups of g and denoted by Hi(g). By our
assumption that the first two cohomology groups vanish, it follows from the duality of δ and δ∗

that H1(g) = 0 = H2(g). In fact, the explicit formula of δ∗ is

(3.11) x0 ∧ · · · ∧ xp
δ∗−→

∑
i<j

(−1)i+j+1 [xi, xj ] ∧ x0 ∧ · · · x̂i · · · x̂j · · · ∧ xp.
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Notice that δ∗ may not be a derivation.
Since g ∼= g∗ as g-modules, the space of (symmetric) invariant bilinear forms on g, Bil(g) =

(S2g)g, is isomorphic to (S2g∗)g. With this identification, define a map

ϕ : (S2g∗)g → (Λ3g∗)g

(3.12) B 7→ ϕ(B) : (x ∧ y ∧ z)→ B([x, y] , z) = B(δ∗(x ∧ y), z).

The 3-form ϕ(B) is anti-symmetric since B is invariant and symmetric and [, ] is skew. The
invariance follows from the Jacobi identity and the invariance of B, viz,

ϕ(B)([w, x] ∧ y ∧ z) + ϕ(B)(x ∧ [w, y] ∧ y) + ϕ(B)(x ∧ y ∧ [w, z])
= B([[w, x] , y] , z) +B([[y, w] , x] , z) +B([x, y] , [w, z])
= −B([[x, y] , w] , z) +B([x, y] , [w, z])
= 0.

Let ω ∈ (Λ3g∗)g. Since ω is closed, we have

0 = ω([x0, x1] ∧ x2 ∧ x3)− ω([x0, x2] ∧ x1 ∧ x3) + ω([x0, x3] ∧ x1 ∧ x2)︸ ︷︷ ︸
= 0 by invariance

+ω([x1, x2] ∧ x0 ∧ x3)− ω([x1, x3] ∧ x0 ∧ x2) + ω([x2, x3] ∧ x0 ∧ x1)
= ω([x1, x2] ∧ x0 ∧ x3)− ω([x1, x3] ∧ x0 ∧ x2) + ω([x1, x0] ∧ x3 ∧ x2)︸ ︷︷ ︸

= 0 by invariance

+ω([x2, x3] ∧ x0 ∧ x1)− ω([x0, x1] ∧ x2 ∧ x3)
= ω([x2, x3] ∧ x0 ∧ x1)− ω(x2 ∧ x3 ∧ [x0, x1]).

This implies

ω(u ∧ δ∗v) = ω(δ∗u ∧ v)(3.13)
ω(δ∗w ∧ y) = 0(3.14)

for u, v ∈ (Λ2g)g, w ∈ (Λ3g)g. We are now prepared to prove the following proposition which
provides the connection between Bil(g) and H3(G) ∼= (Λ3g∗)g.

Proposition 3.3. The map ϕ : (S2g∗)g → (Λ3g∗)g is an isomorphism for any semisimple Lie
algebra g.

Proof Injectivity of ϕ follows from H1(g) = 0 (equivalently g = [g, g]). To prove surjectivity, let
ω ∈ (Λ3g∗)g. Define B ∈ (S2g∗)g by

B(x, y) = ω(u ∧ y), where δ∗u = x.

This is well defined since if δ∗v = x then δ∗(u−v) = 0. Since H2(g; R) = 0, there exists w ∈ (Λ3g)g

such that δ∗w = u − v. Then ω(δ∗w ∧ y) = 0 by (3.14). Using (3.13) and the surjectivity of
δ∗ : Λ2g→ g,

B(δ∗u, δ∗v) = ω(u ∧ δ∗v) = ω(v ∧ δ∗u) = B(δ∗v, δ∗u),
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the symmetry of B follows. By definition ϕ(B) = ω. Since

B([x,w] , y) = ω(x ∧ w ∧ y) = ω(w ∧ y ∧ x) = B(x, [w, y]),

B is invariant. �

In view of this result and the discussion preceding it, we conclude that Bil(g) is isomorphic
to H3(G; R). If G is simple, then it is 1-dimensional since any such bilinear form is a multiple of
the Killing form on g.
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