Cohomology of Lie groups and Lie algebras

1 Introduction

The aim of this expository essay is to illustrate one example of a local-to-global phenomenon. What we mean by that is better illustrated by explaining the topic at hand. We aim to understand the de Rham cohomology groups of a Lie group. But instead of doing it using actual differential forms, we shall use the properties of a Lie group (especially the fact that it is a group) to reduce calculations on the de Rham complex to calculations involving the Lie algebra and its tensor powers. On the one hand, this reduces the problem to a local one while on the other, makes it easier to solve by virtue of being a linear problem. In what follows, we explain the passage from global to local in $\S 2$ and then exhibit a few computations of the cohomology groups in $\S 3$.

2 Cohomology of Lie groups

Let G be a connected compact Lie group of dimension n with a normalized bi-invariant measure μ on it. Let $L_{g}: G \rightarrow G$ denote the left multiplication by $g \in G$ and $m: G \times G \rightarrow G$ the multiplication. We will be working with real coefficients throughout this section unless specified otherwise.

Definition 2.1. Let $(C(G), d)$ denote the cochain complex of de Rham differential forms on G. An element $\alpha \in C(G)$ is called a left-invariant form if $L_{g}^{*} \alpha=\alpha$ for any $g \in G$. The space of all left-invariant forms will be denoted by $C_{L}(G)$.

Observe that $C_{L}(G)$ is a graded d-closed subalgebra and the inclusion map $\iota: C_{L}(G) \rightarrow C(G)$ induces a map of graded algebras

$$
\iota_{*}: H_{L}^{*}(G ; \mathbb{R}) \rightarrow H^{*}(G ; \mathbb{R}) .
$$

Notice that $C_{L}^{1}(G)=\mathfrak{g}^{*}$ is the dual to the left-invariant vector fields and $C_{L}(G)$ is the exterior algebra over \mathfrak{g}^{*}. We have an averaging map $\rho: C(G) \rightarrow C_{L}(G)$ defined by

$$
\alpha \mapsto \int_{G} L_{g}^{*} \alpha d \mu
$$

This is a map of cochain complexes which is identity on $C_{L}(G)$ and $\rho \circ \iota$ is the identity on $C_{L}(G)$. This implies that ι_{*} is injective. We claim that
Proposition 2.2. The map $\iota_{*}: H_{L}^{*}(G ; \mathbb{R}) \rightarrow H^{*}(G ; \mathbb{R})$ is an isomorphism.
Proof Suppose we have constructed a chain map $h: C^{i}(G) \rightarrow C^{i-1}(G)$ of degree -1 such that

$$
\iota \circ \rho-\mathrm{Id}=d h+h d
$$

on $C(G)$. Since $\iota_{*} \circ \rho_{*}=\mathrm{Id}, \iota_{*}$ is surjective. It is injective from the previous discussion, whence it is an isomorphism. We construct h as a composition of $h_{G} \circ m^{*}$ where $h_{G}: C(G \times G) \rightarrow C(G)$ is homogeneous of degree -1 .

Let $\pi_{1}: G \times G \rightarrow G$ denote the projection of the trivial G-bundle to G. We have a map $\int^{G}: C(G \times G) \rightarrow C(G)$ called the fibre integral and is defined at $g \in G$ by integrating it over the fibre at g. It is a homogeneous map of degree $-n$ and commutes with d. We now define a degree 0 map

$$
I_{\Omega}: C(G \times G) \rightarrow C(G)
$$

by setting

$$
I_{\Omega}(\omega)(g):=\int^{G} \omega \wedge \pi_{1}^{*} \Omega
$$

where Ω is the normalized left-invariant volume form on G. For any $\alpha \in C(G)$

$$
\left[\left(I_{\Omega} \circ m^{*}\right) \alpha\right](g)=\int^{G} m^{*} \alpha \wedge \pi_{1}^{*}(\Omega)=\int_{G}\left(L_{g}^{*} \alpha\right)(g) d \mu .
$$

This proves that $I_{\Omega} \circ m^{*}=\rho$. Let $i: G \rightarrow G \times G$ denote the map sending g to $(g, 1)$. Then $m \circ i=\operatorname{Id}$ and consequently $i^{*} \circ m^{*}=\mathrm{Id}$. If we construct

$$
h_{G}: C(G \times G) \rightarrow C(G)
$$

such that $I_{\Omega}-i^{*}=d h_{G}+h_{G} d$ then it follows that

$$
\iota \circ \rho-\mathrm{Id}=I_{\Omega} \circ m^{*}-i^{*} \circ m^{*}=\left(d h_{G}+h_{G} d\right) \circ m^{*}=d\left(h_{G} m^{*}\right)+\left(h_{G} m^{*}\right) d,
$$

where the last equality holds since L^{*} is a cochain map.
If we change the the volume form Ω to another n-form Ψ supported in a contractible local chart $U \ni 1$ of G such that $\int_{G} \Psi=1$, then $\Omega-\Psi=d \eta$ for some $(n-1)$-form η. Then the maps I_{Ω} and I_{Ψ} are chain homotopic. The homotopy is given by

$$
h_{\eta}(\alpha)=(-1)^{i} \int^{G} \alpha \wedge \pi_{1}^{*} \eta, \quad \alpha \in C^{i}(G \times G) .
$$

Choosing Ψ has the advantage that $I_{\Psi}: C(U \times G) \rightarrow C(G)$ and clearly $U \times G$ deformation retracts to G. Thus, I_{Ψ} and i^{*} are chain homotopic, whence I_{Ω} and i^{*} are also chain homotopic.

Remark 2.3. The same proof, with slight modifications, works well for a G-action on a manifold M by a compact, connected Lie group. We can prove that the inclusion of the subcomplex of G invariant forms on M into the complex of all forms on M is an isomorphism in cohomology.

We shift our focus to invariant forms, i.e., forms invariant under the left and right actions L_{g} and R_{g} respectively. In particular, these are invariant under the adjoint action $\operatorname{Ad}_{g}=L_{g} \circ R_{g^{-1}}$. These forms are invariant under d. If we define the action I, of $G \times G$ on G, by

$$
I_{g_{1}, g_{2}}(g)=g_{1} g g_{2}^{-1}
$$

then the algebra of differential forms that are invariant under this action is precisely the space of invariant forms, denoted $C_{I}(G)$.

Lemma 2.4. $C_{I}(G)$ consists of closed forms.
Proof First observe that if $\tau: G \rightarrow G$ denotes the inverse map, then

$$
d \tau_{g}=-\left(R_{g^{-1}}\right)_{*} \circ\left(L_{g^{-1}}\right)_{*}, g \in G
$$

and $\tau^{*} \alpha=(-1)^{p} \alpha$ for $\alpha \in C_{I}^{p}(G)$. Since $d \alpha \in C_{I}^{p+1}(G)$,

$$
(-1)^{p+1} d \alpha=\tau^{*} d \alpha=d \tau^{*} \alpha=(-1)^{p} d \alpha,
$$

whence $d \alpha=0$.
Since $C_{I}(G)$ is closed, $H_{I}^{*}(G)=C_{I}(G)$ and by the remark, it is isomorphic to $H^{*}(G)$. We have isomorphisms

$$
\begin{equation*}
C_{I}(G) \cong H_{L}^{*}(G) \cong H^{*}(G) . \tag{2.1}
\end{equation*}
$$

If G is semisimple, this isomorphism is just a manifestation of the Hodge theorem. More precisely, it is known that for any semisimple group one can find a bi-invariant Riemannian metric on G. Hodge had proved that the harmonic forms with respect to such a metric are exactly $C_{I}(G)$.

We have the multiplication $m: G \times G \rightarrow G$ and $m^{*}: C(G) \rightarrow C(G \times G)$ which induces a map

$$
\Delta: H^{*}(G) \longrightarrow H^{*}(G \times G) \xrightarrow{\cong} H^{*}(G) \otimes H^{*}(G)
$$

of degree 0 . Let $i_{1}, i_{2}: G \rightarrow G \times G$ be the inclusion maps opposite 1. If $\gamma \in H^{*}(G \times G)$ then

$$
\gamma=i_{1}^{*} \gamma \otimes 1+\beta+1 \otimes i_{2}^{*} \gamma,
$$

where $\beta \in H^{+}(G)^{\otimes 2}$. Since $m \circ i_{1}=m \circ i_{2}=\mathrm{Id}$,

$$
\Delta(\alpha)=\alpha \otimes 1+\beta+1 \otimes \alpha, \alpha \in H^{*}(G), \beta \in H^{+}(G)^{\otimes 2}
$$

Definition 2.5. An element $\alpha \in H^{+}(G)$ is called primitive if

$$
\begin{equation*}
\Delta(\alpha)=\alpha \otimes 1+1 \otimes \alpha \tag{2.2}
\end{equation*}
$$

Remark 2.6. It is classically known that any compact connected Lie group is rationally homotopy equivalent to a product of odd spheres. The volume forms of these spheres generate the primitive elements of $H^{*}(G)$.

The primitive elements form a graded subspace, P_{G}, of $H^{*}(G)$. Notice that there are no even primitives because if α was one such then $1 \otimes \alpha$ and $\alpha \otimes 1$ would commute, both being even. Now let k be the least positive number such that $\alpha^{k}=0$. Then

$$
0=\Delta\left(\alpha^{k}\right)=(\alpha \otimes 1+1 \otimes \alpha)^{k}=\sum_{i=1}^{k-1} \alpha^{i} \otimes \alpha^{k-i}
$$

In particular, $\alpha \otimes \alpha^{k-1}=0$, whence $\alpha=0$. Since every homogeneous element of P_{G} is odd, it's square is zero. Thus, the inclusion $P_{G} \hookrightarrow H^{*}(G)$ extends to a homomorphism

$$
\begin{equation*}
\lambda_{G}: \Lambda P_{G} \rightarrow H^{*}(G) \tag{2.3}
\end{equation*}
$$

of graded algebras. It can be shown using properties of power maps and its eigenspaces that dim $P_{G}=\operatorname{rank} G$ and λ_{G} is an isomorphism. Thus, $H^{*}(G)$ is of dimension $2^{\operatorname{rank} G}$.

3 Cohomology of Lie algebras

Let \mathfrak{g} be a finite dimensional Lie algebra. By Lie's theorem, it corresponds to a simply connected Lie group G. To each \mathfrak{g}-module M we can associate a cochain complex $C^{k}(\mathfrak{g} ; M)$, whose cohomology is defined to be the Lie algebra cohomology of \mathfrak{g} with values in M. We define

$$
\begin{equation*}
C^{k}(\mathfrak{g} ; M):=\operatorname{Hom}\left(\Lambda^{k} \mathfrak{g}, M\right), k=0,1, \ldots, \operatorname{dim} \mathfrak{g} \tag{3.1}
\end{equation*}
$$

the vector space of real valued multilinear, skew maps with values in M. The coboundary operator $\delta: C^{k}(\mathfrak{g} ; M) \rightarrow C^{k+1}(\mathfrak{g} ; M)$ is defined by

$$
\begin{align*}
(\delta \omega)\left(x_{0}, \ldots, x_{k}\right):= & \sum_{i=0}^{k}(-1)^{i} x_{i} \cdot \omega\left(\ldots, \hat{x_{i}}, \ldots\right) \tag{3.2}\\
& +\sum_{0 \leq i<j \leq k}(-1)^{i+j} \omega\left(\left[x_{i}, x_{j}\right], \ldots, \hat{x_{i}}, \ldots, \hat{x_{j}}, \ldots\right) .
\end{align*}
$$

It is easily verified, using Jacobi and the properties of the \mathfrak{g}-action on M, that $\delta \circ \delta=0$.
Since our main object of interest is cohomology with values in \mathbb{R}, we set $M=\mathbb{R}$ with the trivial action of \mathfrak{g}. We will also abbreviate notation and denote $C^{k}(\mathfrak{g} ; \mathbb{R})$ by $C^{k}(\mathfrak{g})$ and the corresponding cohomology groups $H^{k}(\mathfrak{g} ; \mathbb{R})$ by $H^{k}(\mathfrak{g})$. Observe that the cohomology groups so obtained are just the the cohomology group of left-invariant forms on G and δ is exactly d. By definition, $C^{0}(\mathfrak{g})=\mathbb{R}$ and $C^{1}(\mathfrak{g})=\mathfrak{g}^{*} \cong \mathfrak{g}$. The first three coboundary maps are :

$$
\begin{align*}
(\delta \alpha)(x) & =0 \tag{3.3}\\
(\delta \beta)(x, y) & =-\beta([x, y]) \tag{3.4}\\
(\delta \gamma)(x, y, z) & =-\gamma([x, y], z)-\gamma([y, z], x)-\gamma([z, x], y) \tag{3.5}
\end{align*}
$$

where $x, y, z \in \mathfrak{g}$ and α, β, γ are 0,1 and 2 -cochains.
For small values of k, the cohomology groups have certain interesting interpretations. The first equation (3.3) implies that

$$
\begin{equation*}
H^{0}(\mathfrak{g})=\mathbb{R} . \tag{3.6}
\end{equation*}
$$

Using (3.4) we see that $H^{1}(\mathfrak{g})$ is exactly the kernel of $\delta: C^{1}(\mathfrak{g}) \rightarrow C^{2}(\mathfrak{g})$ since the map $\delta: C^{0}(\mathfrak{g}) \rightarrow$ $C^{1}(\mathfrak{g})$ is zero. Elements α in the kernel are precisely the ones that vanish on commutators, i.e., $\alpha([x, y])=0$ for any $x, y \in \mathfrak{g}$. Alternatively, these can be viewed as maps from $\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}]$ to \mathbb{R}, whence

$$
\begin{equation*}
H^{1}(\mathfrak{g}) \cong \mathfrak{g} /[\mathfrak{g}, \mathfrak{g}] . \tag{3.7}
\end{equation*}
$$

In particular, the first cohomology vanishes for a semisimple Lie algebra.
To interpret $H^{2}(\mathfrak{g})$ we need to understand the kernel of (3.5), i.e., 2-cochains ω such that

$$
\begin{equation*}
\omega(([x, y], z)+\omega([y, z], x)+\omega([z, x], y)=0 \tag{3.8}
\end{equation*}
$$

The restraint above is called the cocycle condition and is equivalent to ω being closed. Any such ω defines a central extension

$$
0 \rightarrow \mathbb{R} \rightarrow \tilde{\mathfrak{g}} \rightarrow \mathfrak{g} \rightarrow 0
$$

with the Lie bracket on $\tilde{\mathfrak{g}}$ given by

$$
\begin{equation*}
[(x, s),(y, t)]:=([x, y], \omega(x, y)) \tag{3.9}
\end{equation*}
$$

The bracket satisfies the Jacobi identity due to (3.8) and is skew since ω is. Conversely, given a central extension, the bracket on $\tilde{\mathfrak{g}}$ is defined as in (3.9) and ω must satisfy (3.8). Thus, the central extensions of \mathfrak{g} by \mathbb{R} are in bijective correspondence with the 2 -cocycles.

We try to see what relations are forced on the 2-cocycles ω, ω^{\prime} if the corresponding central extensions $\tilde{\mathfrak{g}}, \tilde{\mathfrak{g}}^{\prime}$ are equivalent. Recall that two extensions $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{g}}^{\prime}$ are equivalent if there exists a $\operatorname{map} \varphi: \tilde{\mathfrak{g}} \rightarrow \tilde{\mathfrak{g}}^{\prime}$ of Lie algebras such that the following commutes :

Both the extensions are $\mathfrak{g} \oplus \mathbb{R}$ as vector spaces and $\varphi: \mathfrak{g} \oplus \mathbb{R} \rightarrow \mathfrak{g} \oplus \mathbb{R}$ is the identity when restricted to \mathbb{R}. Moreover, φ is an isomorphism (by the five-lemma) and $\varphi(x, 0)=x+\alpha(x)$ where $\alpha \in C^{1}(\mathfrak{g})$. We have

$$
[\varphi(x, 0), \varphi(y, 0)]=[(x, \alpha(x)),(y, \alpha(y))]=\left([x, y], \omega^{\prime}(x, y)\right)
$$

and we also have

$$
\varphi([(x, 0),(y, 0)])=\varphi(([x, y], \omega(x, y))=([x, y], \alpha([x, y])+\omega(x, y)) .
$$

Thus, the 2-cocycles are cohomologous via α.
Proposition 3.1. Equivalence classes of central extensions of \mathfrak{g} by \mathbb{R} are in bijective correspondence with elements of $H^{2}(\mathfrak{g})$.

It can be deduced that if \mathfrak{g} is semisimple then there are no non-trivial central extensions.
Remark 3.2. If G is simply connected then $H^{2}(G ; \mathbb{Z}) \hookrightarrow H^{2}(G ; \mathbb{R})$ is an injection. Recall that isomorphism classes of circle bundles over G correspond to $H^{2}(G ; \mathbb{Z})$ and the total space of any such bundle can be made into a group, i.e., there is a short exact sequence of groups

$$
1 \rightarrow S^{1} \rightarrow \widetilde{G} \rightarrow G \rightarrow 1
$$

realizing such a bundle. The map of Lie algebras then give us the integral central extensions.
To discuss $H^{3}(\mathfrak{g})$, we shall restrict ourselves to algebras such that $H^{1}(\mathfrak{g})=0=H^{2}(\mathfrak{g})$. The Lie algebras of any connected compact semisimple Lie group G satisfies this property. It follows from (3.4) that the negative of the dual of δ is a map

$$
\begin{equation*}
\delta^{*}: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}, x \wedge y \mapsto[x, y] . \tag{3.10}
\end{equation*}
$$

Since $\delta: \Lambda \mathfrak{g}^{*} \rightarrow \Lambda \mathfrak{g}^{*}$ satisfies $\delta^{2}=0$, the map δ^{*} extends to $\Lambda \mathfrak{g}$ and satisfies $\delta^{*} \circ \delta^{*}=0$. The resulting homology groups will be called the homology groups of \mathfrak{g} and denoted by $H_{i}(\mathfrak{g})$. By our assumption that the first two cohomology groups vanish, it follows from the duality of δ and δ^{*} that $H_{1}(\mathfrak{g})=0=H_{2}(\mathfrak{g})$. In fact, the explicit formula of δ^{*} is

$$
\begin{equation*}
x_{0} \wedge \cdots \wedge x_{p} \xrightarrow{\delta^{*}} \sum_{i<j}(-1)^{i+j+1}\left[x_{i}, x_{j}\right] \wedge x_{0} \wedge \cdots \hat{x_{i}} \cdots \hat{x_{j}} \cdots \wedge x_{p} . \tag{3.11}
\end{equation*}
$$

Notice that δ^{*} may not be a derivation.
Since $\mathfrak{g} \cong \mathfrak{g}^{*}$ as \mathfrak{g}-modules, the space of (symmetric) invariant bilinear forms on $\mathfrak{g}, \operatorname{Bil}(\mathfrak{g})=$ $\left(S^{2} \mathfrak{g}\right)^{\mathfrak{g}}$, is isomorphic to $\left(S^{2} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$. With this identification, define a map

$$
\begin{gather*}
\varphi:\left(S^{2} \mathfrak{g}^{*}\right)^{\mathfrak{g}} \rightarrow\left(\Lambda^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}} \\
B \mapsto \varphi(B):(x \wedge y \wedge z) \rightarrow B([x, y], z)=B\left(\delta^{*}(x \wedge y), z\right) . \tag{3.12}
\end{gather*}
$$

The 3 -form $\varphi(B)$ is anti-symmetric since B is invariant and symmetric and [,] is skew. The invariance follows from the Jacobi identity and the invariance of B, viz,

$$
\begin{aligned}
& \varphi(B)([w, x] \wedge y \wedge z)+\varphi(B)(x \wedge[w, y] \wedge y)+\varphi(B)(x \wedge y \wedge[w, z]) \\
= & B([[w, x], y], z)+B([[y, w], x], z)+B([x, y],[w, z]) \\
= & -B([[x, y], w], z)+B([x, y],[w, z]) \\
= & 0
\end{aligned}
$$

Let $\omega \in\left(\Lambda^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$. Since ω is closed, we have

$$
\begin{aligned}
0= & \underbrace{\omega\left(\left[x_{0}, x_{1}\right] \wedge x_{2} \wedge x_{3}\right)-\omega\left(\left[x_{0}, x_{2}\right] \wedge x_{1} \wedge x_{3}\right)+\omega\left(\left[x_{0}, x_{3}\right] \wedge x_{1} \wedge x_{2}\right)}_{=0 \text { by invariance }} \\
& +\omega\left(\left[x_{1}, x_{2}\right] \wedge x_{0} \wedge x_{3}\right)-\omega\left(\left[x_{1}, x_{3}\right] \wedge x_{0} \wedge x_{2}\right)+\omega\left(\left[x_{2}, x_{3}\right] \wedge x_{0} \wedge x_{1}\right) \\
= & \underbrace{\omega\left(\left[x_{1}, x_{2}\right] \wedge x_{0} \wedge x_{3}\right)-\omega\left(\left[x_{1}, x_{3}\right] \wedge x_{0} \wedge x_{2}\right)+\omega\left(\left[x_{1}, x_{0}\right] \wedge x_{3} \wedge x_{2}\right)}_{=0 \text { by invariance }} \\
& +\omega\left(\left[x_{2}, x_{3}\right] \wedge x_{0} \wedge x_{1}\right)-\omega\left(\left[x_{0}, x_{1}\right] \wedge x_{2} \wedge x_{3}\right) \\
= & \omega\left(\left[x_{2}, x_{3}\right] \wedge x_{0} \wedge x_{1}\right)-\omega\left(x_{2} \wedge x_{3} \wedge\left[x_{0}, x_{1}\right]\right) .
\end{aligned}
$$

This implies

$$
\begin{align*}
\omega\left(u \wedge \delta^{*} v\right) & =\omega\left(\delta^{*} u \wedge v\right) \tag{3.13}\\
\omega\left(\delta^{*} w \wedge y\right) & =0 \tag{3.14}
\end{align*}
$$

for $u, v \in\left(\Lambda^{2} \mathfrak{g}\right)^{\mathfrak{g}}, w \in\left(\Lambda^{3} \mathfrak{g}\right)^{\mathfrak{g}}$. We are now prepared to prove the following proposition which provides the connection between $\operatorname{Bil}(\mathfrak{g})$ and $H^{3}(G) \cong\left(\Lambda^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$.
Proposition 3.3. The map $\varphi:\left(S^{2} \mathfrak{g}^{*}\right)^{\mathfrak{g}} \rightarrow\left(\Lambda^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$ is an isomorphism for any semisimple Lie algebra \mathfrak{g}.

Proof Injectivity of φ follows from $H^{1}(\mathfrak{g})=0$ (equivalently $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]$). To prove surjectivity, let $\omega \in\left(\Lambda^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$. Define $B \in\left(S^{2} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$ by

$$
B(x, y)=\omega(u \wedge y), \text { where } \delta^{*} u=x
$$

This is well defined since if $\delta^{*} v=x$ then $\delta^{*}(u-v)=0$. Since $H_{2}(\mathfrak{g} ; \mathbb{R})=0$, there exists $w \in\left(\Lambda^{3} \mathfrak{g}\right)^{\mathfrak{g}}$ such that $\delta^{*} w=u-v$. Then $\omega\left(\delta^{*} w \wedge y\right)=0$ by (3.14). Using (3.13) and the surjectivity of $\delta^{*}: \Lambda^{2} \mathfrak{g} \rightarrow \mathfrak{g}$,

$$
B\left(\delta^{*} u, \delta^{*} v\right)=\omega\left(u \wedge \delta^{*} v\right)=\omega\left(v \wedge \delta^{*} u\right)=B\left(\delta^{*} v, \delta^{*} u\right)
$$

the symmetry of B follows. By definition $\varphi(B)=\omega$. Since

$$
B([x, w], y)=\omega(x \wedge w \wedge y)=\omega(w \wedge y \wedge x)=B(x,[w, y])
$$

B is invariant.
In view of this result and the discussion preceding it, we conclude that $\operatorname{Bil}(\mathfrak{g})$ is isomorphic to $H^{3}(G ; \mathbb{R})$. If G is simple, then it is 1-dimensional since any such bilinear form is a multiple of the Killing form on \mathfrak{g}.

