Notes on smooth manifolds

Anton Petrunin

Lectures

1. Inverse function theorem, implicit function theorem. Topological *n*-manifold $=$ second countable locally Euclidean Hausdorff space.

 $Smooth$ manifolds $=$ topological manifold $+$ smooth structure. Chart, gluing map, atlas, maximal atlas, smooth structure. Tangent vectors as equivalence classes of smooth curves.

- 2. Sard's lemma.
- 3. Degree modulo 2, orientation, degree. Transversal intersections, Thom's theorem. Intersection number, vector fields, Euler's number.
- 4. Vector field as a differential operator. Lie bracket, Lie derivative, the straightening lemma.
- 5. Tensor fields. Lie derivative. Einstein notation. Examples of tensor fields (scalar product and cross product in polar coordinates).
- 6. Grassmann algebra, forms, forms as tensor fields, wedge product convention.
- 7. Pullback, exterior differential, internal differential, Cartan calculus.
- 8. Moser's trick. $H_{dR}^n(M^n) = \mathbb{R}$ for oriented closed connected M. De Rham cohomology, degree. Calculations via symmetry for products of \mathbb{S}^n and maybe $\mathbb{C}P^n$.
- 9. Homotopy invariance of De Rham cohomology, Poincaré's lemma, Mayer–Vietoris sequence.
- 10. Morse theory.

Moser's trick

Observe that the flow for a vector field defines a diffeomorphism.

Indeed, let v_t be a smooth time-dependent vector field on a smooth manifold M. Recall that the flow φ^s of the vector field V_t is defined as $\varphi^s: x(0) \mapsto x(s)$, where x is a solution of the following ordinary differential equation $x'(t) = v_t(x(t))$. By the Picard theorem, the flow φ^s is smooth in its domain of definition. Moreover, the same holds for its inverse ψ^s ; indeed, ψ^s is the flow of the vector field $-V_{s-t}$. It follows that, φ^s is a diffeomorphism from its domain of definition to its image.

Moser's trick uses this source of diffeomorphism when it is needed to construct a diffeomorphism with a certain property. Thus, to find a diffeomorphism, we need to construct a vector field of a certain type. The latter problem is typically simpler.

Now we will illustrate this idea with several examples.

A Moser's theorem

Let M be an n-dimensional smooth manifold. An n-form ω on M is called a volume form if it does not vanish at any point. Note that if a manifold has a volume form, then it is orientable.

0.1. Theorem. Let ω_0 and ω_1 be volume forms on a closed connected oriented smooth manifold M. Assume

$$
\int\limits_M \omega_0 = \int\limits_M \omega_1.
$$

Then there is a diffeomorphism $\varphi \colon M \to M$ such that $\omega_0 = \varphi^* \omega_1$. Moreover, we can assume that φ is isotopic to the identity map; that is, there is a smooth map $(x, t) \mapsto \varphi_t(x)$ such that $\varphi_0 = id$, $\varphi_1 = \varphi$, and $x \mapsto \varphi_t(x)$ is a diffeomorphism for each t.

Proof. Observe that $\omega_t = (1 - t) \cdot \omega_0 + t \cdot \omega_1$ is a one-parameter family of volume forms on M . We plan to find a time-dependent vector field V_t

such that

$$
\mathbf{Q} \qquad \qquad \mathcal{L}_{V_t} \,\omega_t + \tfrac{d}{dt} \omega_t = 0.
$$

If φ^t denotes the flow defined by V_t , then

$$
\frac{d}{dt}(\varphi^{t*}\omega_t) = \mathcal{L}_{\mathcal{V}_t}\,\omega_t + \frac{d}{dt}\omega_t.
$$

Therefore, \bullet implies that $\varphi^{t*}\omega_t$ does not depend on t. In particular,

$$
\omega_0 = \varphi^{0*}\omega_0 = \varphi^{1*}\omega_1.
$$

That is, $\varphi = \varphi^1$ does the trick; it only remains to prove **0**.

Suppose M is *n*-dimensional. Recall that $[\omega] \mapsto \int_M \omega$ defines an isomorphism $H_{dR}^n(M) \to \mathbb{R}$. By \bullet , $[\omega_1 - \omega_0] = 0 \in \mathcal{H}_{dR}^n(M)$. That is, $\omega_1 - \omega_0$ is exact; so, there is an $(n-1)$ -form η on M such that

$$
\omega_1 - \omega_0 = d\eta.
$$

Note that $\frac{d}{dt}\omega_t + \eta = 0$.

Since ω_t does not vanish, there is a unique vector field V_t such that $i_{v_t}\omega_t = \eta$. By the magic formula,

$$
\mathcal{L}_{v_t} \omega_t = d i_{v_t} \omega_t + i_{v_t} d \omega_t^{\tau^0} = d\eta = -\frac{d}{dt} \omega_t;
$$

hence ^O follows.

B Open star-shaped domains

0.2. Exercise. Any open star-shaped domain in $\Omega \subset \mathbb{R}^n$ is diffeomorphic to \mathbb{R}^n .

Extended hint. We can assume that the closed unit ball B lies in Ω . Let B be the interior of B. It is sufficient to construct a diffeomorphism $\Omega \to B$

Construct a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ such that $f(\mathbf{x}) = 0$ if $\mathbf{x} \in \Omega$ and $f(x) > 0$ otherwise. Further, construct a smooth function $\varphi \colon \mathbb{R} \to$ [0, 1] such that $\varphi(x) = 1$ if ≤ 0 and $\varphi(x) = 0$ if $x \geq 1$.

Consider the time-dependent vector field

$$
v_t(x) = -\varphi((1+t)\cdot(1-|x|))\cdot f(x)\cdot x.
$$

Let φ^s be the flow of V_t in the interval $[0, s]$.

Prove that given x, the value $\varphi^{s}(x)$ is constant for all sufficiently large s. In particular, $\varphi^{s}(x)$ converges as $s \to \infty$ for any x; denote its limit by $\varphi^{\infty}(x)$.

Show that φ^{∞} is a diffeomorphism $\Omega \to B$; that is, show that φ^{∞} is smooth in Ω , it has a smooth inverse, and $\varphi^{\infty}(\Omega) = B$. \Box

 \Box

C Morse lemma

0.3. Lemma. Let p be a nondegenerate critical point of index k of a smooth function f on a smooth n-dimensional manifold M. Then f can be wrtten as

$$
f(p) - x_1^2 - \dots - x_k^2 + x_{k+1}^2 + \dots + x_n^2.
$$

in some local coordinates (x_1, \ldots, x_n) with the origin at p.

Proof. Without loss of generality we may assume that $f(p) = 0$. Choose local coordinates with the origin at p ; suppose they are given by a chart $s: U \to M$ with domain $U \subset \mathbb{R}^n$.

Let A_x be the Hessian matrix of f at $x \in U$; that is,

$$
(\mathbf{v}\mathbf{w}f)(\mathbf{x}) = \langle A_{\mathbf{x}}\mathbf{v}, \mathbf{w} \rangle
$$

for any $X \in U$ and $V, W \in \mathbb{R}^n$, where \langle , \rangle denotes the standard scalar product on \mathbb{R}^n . (Here and further, we use the same letter (say v) for a vector in \mathbb{R}^n , its corresponding point, and the corresponding parallel vector field.)

Since p is a nondegenerate critical point, the matrix A_0 is invertible. Applying a linear transformation to \mathbb{R}^n , we can assume that A_0 is a diagonal matrix with the first k elements equal to -2 and the remaining $n - k$ elements equal to 2. Then the function $f_0(x) := \frac{1}{2} \cdot \langle A_0 x, x \rangle$ has a constant Hessian matrix A_0 , and

$$
\pmb{\Theta}
$$

$$
\bullet \qquad f_0(x_1,\ldots,x_n) = -x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_n^2.
$$

Set $h := f - f_0$, $f_t := f_0 + t \cdot h$, so $f = f_1$. We plan to find a vector field V_t such that for its flow φ^t the value $f_t \circ \varphi^t(x)$ does not depend on t (while it is defined) and $v_t(0) = 0$ for any t. Once it is done, we have

$$
f\circ\varphi^1=f_0
$$

in a neighborhood of $p = 0$. By Θ , $s \circ \varphi^1$ will define the needed chart.

Note that

$$
\frac{d}{dt}(f_t \circ \varphi^t) = \mathcal{V}_t f_t + \frac{d}{dt} f_t = \mathcal{V}_t f_0 + t \cdot \mathcal{V}_t h + h.
$$

Therefore, it is sufficient to find V_t such that

$$
\mathbf{Q} \qquad \qquad \mathbf{V}_t f_0 + t \cdot \mathbf{V}_t h + h = 0
$$

for any t .

Set

$$
B_{\mathbf{x}} := \int\limits_0^1 (A_{t\cdot\mathbf{x}} - A_0) \cdot dt \quad \text{and} \quad C_{\mathbf{x}} := \int\limits_0^1 B_{t\cdot\mathbf{x}} \cdot dt.
$$

Since A_x is symmetric, so are B_x and C_x . Observe that $B_0 = C_0 = 0$. Passing to a smaller subdomain of U, we can assume that B_x and C_x are sufficiently close to 0; in particular the matrix $t \cdot B_x + A_0$ is invertible for any $X \in U$ and $t \in [0, 1]$.

Since $(wh)(0) = 0$ for any $W \in \mathbb{R}^n$,

$$
(wh)(x) = \int_{0}^{1} (xw(f - f_0))(t \cdot x) \cdot dt = \langle B_x w, x \rangle.
$$

Applying this formula for $w = x$, we get

$$
h(\mathbf{x}) = \int_{0}^{1} (\mathbf{x}h)(t \cdot \mathbf{x}) \cdot dt = \langle C_{\mathbf{x}} \mathbf{x}, \mathbf{x} \rangle.
$$

Therefore, \bullet can be rewritten as $\langle (A_0 + t \cdot B_\mathbf{x}) \mathbf{v}_t, \mathbf{x} \rangle = \langle t \cdot C_\mathbf{x} \mathbf{x}, \mathbf{x} \rangle$, and $v_t(x) = (A_0 + t \cdot B_x)^{-1} (t \cdot C_x)$ x provides the required solution. \Box

D Darboux's theorem

A nondegenerate closed 2-form is called symplectic. In other words, a 2-form ω on a smooth manifold M is symplectic if $d\omega = 0$ and $X \mapsto i_X \omega$ defines an isomorphism $T_p \to T_p^*$ at each point $p \in M$. A manifold equipped with a symplectic form is called symplectic.

0.4. Exercise. Show that any 2-covector can be written as $\alpha_1 \wedge \beta_1 + \ldots$ $\ldots + \alpha_n \wedge \beta_n$ for linearly independent covectors $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$. Conclude that if a manifold admits a symplectic form, then it must have even dimension.

0.5. Exercise. Let ω be a closed 2-form on a smooth 2·n-dimensional manifold M. Show that ω is symplectic if and only if $\omega^{\wedge n}$ does not vanish.

0.6. Theorem. Let M be a smooth manifold with symplectic form ω . Then at any point $p \in M$ there are local coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ such that $\omega = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n$

Proof. Choose local coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ with the origin at p. By the exercise, we may assume that the equality

$$
\omega = dx_1 \wedge dy_1 + \dots + dx_n \wedge dy_n
$$

6

holds at the origin.

Consider the form $\omega_0 = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n$ in the chart. Observe that ω_0 is symplectic. Passing to a domain of the chart, we may assume that $\omega_t = (1-t) \cdot \omega_0 + t \cdot \omega$ is a symplectic form for each $t \in [0,1]$. We plan to find a time-dependent vector field V_t such that $V_t(0) = 0$ and for the flow φ^t of V_t we have

$$
\mathbf{\Theta} \qquad \qquad \omega_0 = \varphi^{t*} \omega_t
$$

for any $t \in [0,1]$. Once this is done, the diffeomorphism φ^1 gives the needed chart in a neighborhood of p.

Since $\omega_1 - \omega_0$ is closed, we can find a 1-form α such that $d\alpha = \omega_1 - \omega_0$. We can assume that $\alpha(0) = 0$.

By the magic formula,

$$
\frac{d}{dt}(\varphi^{t*}\omega_t) = \mathcal{L}_{\nu_t}\omega_t + \frac{d}{dt}\omega_t = di_{\nu_t}\omega_t + i_{\nu_t}d\omega_t^{-0} + d\alpha.
$$

Since ω_t is nondegenerate, there is a time-dependent vector field v_t such that $i_{v_t}\omega = -\alpha$. Since $\alpha(0) = 0$, we have $v_t(0) = 0$ for any t. □