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Lectures

1. Inverse function theorem, implicit function theorem.
Topological n-manifold = second countable locally Euclidean Haus-
dorff space.
Smooth manifolds = topological manifold + smooth structure.
Chart, gluing map, atlas, maximal atlas, smooth structure.
Tangent vectors as equivalence classes of smooth curves.

2. Sard’s lemma.
3. Degree modulo 2, orientation, degree. Transversal intersections,

Thom’s theorem. Intersection number, vector fields, Euler’s num-
ber.

4. Vector field as a differential operator. Lie bracket, Lie derivative,
the straightening lemma.

5. Tensor fields. Lie derivative. Einstein notation. Examples of tensor
fields (scalar product and cross product in polar coordinates).

6. Grassmann algebra, forms, forms as tensor fields, wedge product
convention.

7. Pullback, exterior differential, internal differential, Cartan calculus.
8. Moser’s trick. Hn

dR(M
n) = R for oriented closed connected M . De

Rham cohomology, degree. Calculations via symmetry for products
of Sn and maybe CPn.

9. Homotopy invariance of De Rham cohomology, Poincaré’s lemma,
Mayer–Vietoris sequence.

10. Morse theory.
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Moser’s trick

Observe that the flow for a vector field defines a diffeomorphism.
Indeed, let vt be a smooth time-dependent vector field on a smooth

manifold M . Recall that the flow φs of the vector field vt is defined as
φs : x(0) 7→ x(s), where x is a solution of the following ordinary differential
equation x′(t) = vt(x(t)). By the Picard theorem, the flow φs is smooth
in its domain of definition. Moreover, the same holds for its inverse ψs;
indeed, ψs is the flow of the vector field −vs−t. It follows that, φs is a
diffeomorphism from its domain of definition to its image.

Moser’s tr ick uses this source of diffeomorphism when it is needed
to construct a diffeomorphism with a certain property. Thus, to find a
diffeomorphism, we need to construct a vector field of a certain type. The
latter problem is typically simpler.

Now we will illustrate this idea with several examples.

A Moser’s theorem
Let M be an n-dimensional smooth manifold. An n-form ω on M is called
a volume form if it does not vanish at any point. Note that if a manifold
has a volume form, then it is orientable.

0.1. Theorem. Let ω0 and ω1 be volume forms on a closed connected
oriented smooth manifold M . Assume

➊

∫
M

ω0 =

∫
M

ω1.

Then there is a diffeomorphism φ : M →M such that ω0 = φ∗ω1. More-
over, we can assume that φ is isotopic to the identity map; that is, there
is a smooth map (x, t) 7→ φt(x) such that φ0 = id, φ1 = φ, and x 7→ φt(x)
is a diffeomorphism for each t.

Proof. Observe that ωt = (1 − t)·ω0 + t·ω1 is a one-parameter family of
volume forms on M . We plan to find a time-dependent vector field vt
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such that

➋ Lvt
ωt +

d
dtωt = 0.

If φt denotes the flow defined by vt, then
d
dt (φ

t∗ωt) = Lvt ωt +
d
dtωt.

Therefore, ➋ implies that φt∗ωt does not depend on t. In particular,

ω0 = φ0∗ω0 = φ1∗ω1.

That is, φ = φ1 does the trick; it only remains to prove ➋.
Suppose M is n-dimensional. Recall that [ω] 7→

∫
M
ω defines an iso-

morphism Hn
dR(M) → R. By ➊, [ω1 − ω0] = 0 ∈ Hn

dR(M). That is,
ω1 − ω0 is exact; so, there is an (n− 1)-form η on M such that

ω1 − ω0 = dη.

Note that d
dtωt + η = 0.

Since ωt does not vanish, there is a unique vector field vt such that
ivt
ωt = η. By the magic formula,

Lvt ωt = divtωt + ivt�
�* 0

dωt = dη = − d
dtωt;

hence ➋ follows.

B Open star-shaped domains

0.2. Exercise. Any open star-shaped domain in Ω ⊂ Rn is diffeomor-
phic to Rn.

Extended hint. We can assume that the closed unit ball B̄ lies in Ω. Let B
be the interior of B̄. It is sufficient to construct a diffeomorphism Ω → B

Construct a smooth function f : Rn → R such that f(x) = 0 if x ∈ Ω
and f(x) > 0 otherwise. Further, construct a smooth function φ : R →
[0, 1] such that φ(x) = 1 if ⩽ 0 and φ(x) = 0 if x ⩾ 1.

Consider the time-dependent vector field

vt(x) = −φ((1 + t)·(1− |x|))·f(x)·x.

Let φs be the flow of vt in the interval [0, s].
Prove that given x, the value φs(x) is constant for all sufficiently large

s. In particular, φs(x) converges as s→ ∞ for any x; denote its limit by
φ∞(x).

Show that φ∞ is a diffeomorphism Ω → B; that is, show that φ∞ is
smooth in Ω, it has a smooth inverse, and φ∞(Ω) = B.
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C Morse lemma

0.3. Lemma. Let p be a nondegenerate critical point of index k of a
smooth function f on a smooth n-dimensional manifold M . Then f can
be wrtten as

f(p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2n.

in some local coordinates (x1, . . . , xn) with the origin at p.

Proof. Without loss of generality we may assume that f(p) = 0. Choose
local coordinates with the origin at p; suppose they are given by a chart
s : U →M with domain U ⊂ Rn.

Let Ax be the Hessian matrix of f at x ∈ U ; that is,

(vwf)(x) = ⟨Axv,w⟩

for any x ∈ U and v,w ∈ Rn, where ⟨ , ⟩ denotes the standard scalar
product on Rn. (Here and further, we use the same letter (say v) for
a vector in Rn, its corresponding point, and the corresponding parallel
vector field.)

Since p is a nondegenerate critical point, the matrix A0 is invertible.
Applying a linear transformation to Rn, we can assume that A0 is a
diagonal matrix with the first k elements equal to −2 and the remaining
n − k elements equal to 2. Then the function f0(x) := 1

2 ·⟨A0x,x⟩ has a
constant Hessian matrix A0, and

➌ f0(x1, . . . , xn) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2n.

Set h := f − f0, ft := f0 + t·h, so f = f1. We plan to find a vector
field vt such that for its flow φt the value ft ◦ φt(x) does not depend on
t (while it is defined) and vt(0) = 0 for any t. Once it is done, we have

f ◦ φ1 = f0

in a neighborhood of p = 0. By ➌, s ◦ φ1 will define the needed chart.
Note that

d
dt (ft ◦ φ

t) = vtft +
d
dtft = vtf0 + t·vth+ h.

Therefore, it is sufficient to find vt such that

➍ vtf0 + t·vth+ h = 0

for any t.
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Set

Bx :=

1∫
0

(At·x −A0)·dt and Cx :=

1∫
0

Bt·x ·dt.

Since Ax is symmetric, so are Bx and Cx. Observe that B0 = C0 = 0.
Passing to a smaller subdomain of U , we can assume that Bx and Cx are
sufficiently close to 0; in particular the matrix t·Bx +A0 is invertible for
any x ∈ U and t ∈ [0, 1].

Since (wh)(0) = 0 for any w ∈ Rn,

(wh)(x) =

1∫
0

(xw(f − f0))(t·x)·dt = ⟨Bxw,x⟩.

Applying this formula for w = x, we get

h(x) =

1∫
0

(xh)(t·x)·dt = ⟨Cxx,x⟩.

Therefore, ➍ can be rewritten as ⟨(A0 + t·Bx)vt,x⟩ = ⟨t·Cxx,x⟩, and
vt(x) = (A0 + t·Bx)

−1(t·Cx)x provides the required solution.

D Darboux’s theorem
A nondegenerate closed 2-form is called symplectic. In other words, a
2-form ω on a smooth manifold M is symplectic if dω = 0 and x 7→ ixω
defines an isomorphism Tp → T∗

p at each point p ∈ M . A manifold
equipped with a symplectic form is called symplectic.

0.4. Exercise. Show that any 2-covector can be written as α1∧β1+ . . .
. . . + αn ∧ βn for linearly independent covectors α1, . . . , αn, β1, . . . , βn.
Conclude that if a manifold admits a symplectic form, then it must have
even dimension.

0.5. Exercise. Let ω be a closed 2-form on a smooth 2·n-dimensional
manifold M . Show that ω is symplectic if and only if ω∧n does not vanish.

0.6. Theorem. Let M be a smooth manifold with symplectic form ω.
Then at any point p ∈M there are local coordinates (x1, . . . , xn, y1, . . . , yn)
such that ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

Proof. Choose local coordinates (x1, . . . , xn, y1, . . . , yn) with the origin at
p. By the exercise, we may assume that the equality

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn
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holds at the origin.
Consider the form ω0 = dx1 ∧ dy1 + · · · + dxn ∧ dyn in the chart.

Observe that ω0 is symplectic. Passing to a domain of the chart, we may
assume that ωt = (1− t)·ω0 + t·ω is a symplectic form for each t ∈ [0, 1].
We plan to find a time-dependent vector field vt such that vt(0) = 0 and
for the flow φt of vt we have

➎ ω0 = φt∗ωt

for any t ∈ [0, 1]. Once this is done, the diffeomorphism φ1 gives the
needed chart in a neighborhood of p.

Since ω1−ω0 is closed, we can find a 1-form α such that dα = ω1−ω0.
We can assume that α(0) = 0.

By the magic formula,

d
dt (φ

t∗ωt) = Lvt ωt +
d
dtωt = divtωt + ivt�

�* 0
dωt + dα.

Since ωt is nondegenerate, there is a time-dependent vector field vt such
that ivtω = −α. Since α(0) = 0, we have vt(0) = 0 for any t.
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