
Lecture 1

Magic cloaks

Based on a lecture of Sergei Ivanov [13].

A Scattering data

Given a Riemannian manifold M denote by τ : SM → M its unit
tangent bundle

SM = {v ∈ TM : |v| = 1 } .

Recall that by Liouville’s theorem, the geodesic flow ϕt preserves
the natural volume on SM in its domain of definition. Denote by g
the vector field on SM that defines the geodesic flow ϕt.

Suppose M has nonempty boundary ∂M ; in other words, M is
a closed region of an ambient Riemannian manifold bounded by a
smooth hypersurface ∂M . Denote by ∂+SM the set of unit vectors at
points on ∂M that point inM ; ∂+SM is a bundle over ∂M with fibers
formed by closed half-spheres. The set ∂+SM is a subset of ∂SM that
can be also defined as the closure of the subset at which the geodesic
flow enters SM .

Consider a geodesic γu in the direction of a vector u ∈ ∂+SM . In
other words, γu(t) = τ ◦ ϕt(u). Suppose that γu hits the boundary
again. Denote by `(u) the first hitting time, so γu(`(u)) ∈ ∂M . Note
that in this case the vector v = −γ′(`) lies in ∂+SM . The map s : u 7→
v is defined if `(u) < ∞; it is a partially defined involution on SM
which we will call scattering map.

Suppose that M and M̄ be two compact connected Riemannian
manifolds with boundary such that a neighborhood of ∂M can be
isometrically identified with a neighborhood of ∂M̄ , and moreover,
the scattering maps in M and M̄ are identical. In this case we say
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2 LECTURE 1. MAGIC CLOAKS

that M and M̄ have identical scattering data. If in addition their
hitting time functions coincide (that is, if `(u) ≡ ¯̀(u)), then we say
that M and M̄ have the identical lens data.

Notice that if a manifold contains a copy of a round hemisphere,
then cutting it and gluing the opposite points of its boundary pro-
duces a manifold with identical scattering data. The lens data for the

constructed pair of manifolds are not identical. An example of noniso-
metric manifolds with identical lens data can be found among surfaces
of revolution which look like cylinders with bumps on them that are
shifted and otherwise look the same.

1.1. Exercise. Check that the described examples have identical lens
data.

Construct a pair of nonisometric Riemannian metrics on the disc
with identical lens data.

B Main theorem
The following theorem proved by Mikhael Gromov [10]; it is the main
subject of this lecture.
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1.2. Theorem. Any connected compact region M of Euclidean space
of dimension at least 2 cut by a smooth hypersurface is scattering rigid;
that is, any manifold with scattering data identical to M is isometric
to M .

1.3. Corollary. Suppose a Riemannian metric g on Rn coincides
with Euclidean metric g0 outside of a compact set K. Suppose that
the complement γ\K of any nontrivial g-geodesic γ coincides with the
complement of a line (as sets). Then (Rn, g) is isometric to the Eu-
clidean space.

Note that in the corollary we cannot claim that g = g0. Indeed
for any diffeomorphism ϕ : Rn → Rn that is identical outside K the
metric g = ϕ∗g0 satisfies the assumption in the corollary. Clearly one
can choose ϕ so that g 6= g0.

C Identical lens data

1.4. Lemma. Suppose that a manifold M̄ has identical scattering
data with a compact region M in Euclidean space of dimension at
least 2. Then M and M̄ have identical lens data.

The Euclidean space can be exchanged to any complete Riemann-
ian manifold with unique geodesic between any pair of points; the
proof is the same.

Proof. Denote by W the complement of the interior of M in the
Euclidean space E. Let us glue M̄ toW along the isometry in the def-
inition of scattering data. This way we obtain a complete Riemannian
manifold Ē that is Euclidean outside of a M̄ .

Suppose that a smooth hypersurface Σ in E surroundsM . Then Σ
cuts from E and Ē manifolds with identical scattering data. Moreover
if M̄ and M are not isometric, then the obtained pair is not isometric
as well.

It follows that we can assume that M is a ball.1 In this case any
geodesic γ̄ in Ē visits M̄ at most once. In other words, if γ̄ enters M̄ ,
then the complement γ̄\M̄ has two connected components which are
parts of a line γ in E.

Choose a unit-speed geodesic γ̄ that visits M̄ . Let us include it in a
smooth one-parameter family of unit-speed geodesics γ̄τ for τ ∈ [0, 1]
so that γ̄0 does not visit M̄ and γ̄1 = γ̄.

1This is true for the proof of the lemma and theorem as well.
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We can assume that the vector field ī = ∂
∂τ γ̄τ (t) is orthogonal to

t̄ = ∂
∂t γ̄τ (t) at every point γ̄τ (t0) for some fixed t0.

Observe that in this case 〈̄i, t̄〉 = 0 at all points γ̄τ (t). Indeed

∂
∂t 〈̄i, t̄〉 = t̄〈̄i, t̄〉 =

= 〈∇t̄ ī, t̄〉+ ����〈̄i,∇t̄t̄〉 =

= 〈∇īt̄, t̄〉 =

= 1
2 ·̄i〈t̄, t̄〉 =

= ∂
∂τ |γ̄

′
τ (t)|2 =

= 0.

That is, 〈̄i, t̄〉 does not depend on t. Since 〈̄i, t̄〉 = 0 at γ̄τ (t0), the
same holds for all points γ̄τ (t).

Consider a family of geodesics γτ in E that coincide with γ̄τ (as
sets) outside of M . The same argument shows that 〈i,t〉 = 0 for the
corresponding vector fields i = ∂

∂τ γτ (t) and t = ∂
∂tγτ (t) at all points

γτ (t).
By assumption, t̄ = t and ī− i is proprtional to t in W . It follows

that ī = i in W . Therefore γτ (t) = γ̄τ (t) for any t and τ , provided
that γ̄(t) ∈ W . Whence the γ spends exactly the same time in M as
γ̄ spends in M̄ and the lemma follows.

Comments. The identity 〈i,t〉 = 0 is proved the same way as the
Gauss lemma. The vector fields as i in the proof restricted to γτ
describe a variation of a geodesics. These fields are called Jacobi fields
along γτ ; we will see them again.

1.5. Exercise. Suppose M̄ and Ē be as in the proof. Show that there
is a universal upper bound on time that a unit-speed geodesic spends
in M̄ .

Hint: Show that the set of vectors u ∈ SĒ such that the arc γu|[0,T ] lies
in M̄ is open and closed; here T = 2· diamM and γu is the geodesic
defined by γ′u(0) = u.

D Volume equality

1.6. Lemma. Suppose that a manifold M̄ has identical scattering
data with a compact region M in Euclidean space of dimension at
least 2. Then

volM = vol M̄.
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Proof. We will denote by τ̄ : SM̄ → M̄ the unit tangent bundle over
M̄ and by ϕ̄t : SM̄ → SM̄ its the geodesic flow.

Set Ω̄ = τ̄−1(M̄). Since geodesic flow preserves the volume, we get

vol Sn−1 · vol(M̄, g) = vol Ω̄ =

= vol[ϕ̄t(Ω̄)].

By 1.5, we can choose t so that τ(v) /∈ M̄ for any v ∈ ϕt(Ω̄).
Repeat the same construction for M . By 1.4 and 1.5, ϕt(Ω) =

= ϕ̄t(Ω̄). In particular,

vol Ω = vol[ϕt(Ω)] = vol[ϕ̄t(Ω̄)] = vol Ω̄.

whence the result follows.

E Santaló formula

Santaló formula is a corollary of Liouville’s theorem — geodesic flow
preserves the volume. It gives an expression for a volume of a Riemann-
ian manifold with boundary in terms of hitting times of its geodesics.
It provides a more direct proof of 1.6.

Suppose M is a Reimannian manifold with nonempty boundary
∂M . Recall that
� SM denotes the unit tangent bundle over M .
� ϕt denotes geodesic flow. In particular, if γu is the geodesic in
M defined by γ′u(0) = u, then γ′u(t) = ϕt(u).
� Let ` : SM → [0,∞] denoted the hitting time of γu in the bound-

ary of M .
� ∂+SM denotes by the bundle of unit vectors at points on ∂M

that point in M . It can be defined as the closure of the subset
of ∂SM at which the geodesic flow enters SM .

1.7. Theorem. Let M be an n-dimensional Riemannian manifold
with nonempty boundary. Suppose that any unit-speed geodesic in
M hits its boundary in finite time. Then for any smooth function
f : SM → R the following identity holds:

w

w∈SM

f(w) =
w

u∈∂+SM

〈u,n〉·
`(u)w

0

f ◦ ϕt(u)·dt,

where n denotes the unit vector field normal to ∂M that points in-
side M .
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In particular, by taking f ≡ 1, we get

vol Sn−1 · volM =
w

u∈∂+SM

`(u)·〈u,n〉.

Proof. Note that any vector w ∈ SM can be uniquely described as
ϕt(u) for some u ∈ ∂+SM and 0 6 t 6 `(u). In other words SM can
be identified with the subgraph

Φ = { (u, t) ∈ (∂+SM)× R : 0 6 t 6 `(u) } .

The subgraph Φ has two volume forms: the first, say ω, is the pull
back of the volume form on SM ; the the second χ = dt ∧ α, where α
is the volume form on ∂SM .

Note that both forms are invariant with respect to shifts along
R. For ω it is true by Liouville’s theorem; for χ it follows from the
definition.

Set r(v) = dist∂M ◦ τ(v); note that r is a smooth function near
∂SM . Observe that dr = 〈u,n〉·dt on ∂SM . Note that the equality
ω = dr ∧ α holds on ∂SM . Whence

Ê ω = 〈u,n〉·χ

on ∂SM . Since both forms are invariant with respect to vertical shifts,
we get that Ê holds everywhere in Φ.

1.8. Exercise. Construct two Reimannian metrics g0 and g1 on the
disc D that coincide near the boundary and such that

area(D, g0) > area(D, g1),

but
`0(u) < `1(u),

where `i(u) denotes hitting time of gi-geodesic in the direction u; that
is, `i(u) is the length of gi-geodesic that starts at a point p ∈ ∂D in
the direction u ∈ ∂+SD.

Why does this example not contradict the Santaló formula?

1.9. Exercise. Denote by ω the volume form on SM and by g the
vector field on SM that describes the geodesic flow. Given a function
f : SM → R, consider the function F : SM → R defined by

F (u) = −
`(u)w

0

f ◦ ϕt(u)·dt.

Prove the Santaló formula applying Stokes’ theorem to form ιg(F ·ω).
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F Differentiability of distance function

1.10. Theorem. For any closed set A in a complete Riemannian
manifold M and any point x /∈ A the differential dxf of the distance
function f = distA is defined if and only if there is a unique minimizing
geodesic γ from x to A.

Moreover, if u ∈ Tx is the unit vector points in the direction of the
unique geodesic γ, then

dxf(w) = −〈u,w〉

for any w ∈ Tx; or, equivalently,

∇xf = −u.

Proof; only-if part. Choose
� a closed set A, a point x /∈ A, and ε > 0,
� a unit-speed minimizing geodesic γ from x to A,
� a smooth unit-speed curve α that such that α(0) = x, and set

w = α′(0).
Observe that

|γ( tε )− α(t)|M = t·
√

1
ε2 − 2·〈u,w〉· 1ε + 1 + o(t) =

= 1
ε ·t− 〈u,w〉·t+O(ε·t).

Since ε > 0 is arbitrary, the triangle inequality implies that

f ◦ α(t) 6 |p− x| + t·〈u,w〉+ o(t).

In particular,

Ê (f ◦ α)′(0) = −〈u,w〉

if the left hand side is defined.
Observe that if dxf is defined, then (f◦α)′(0) = dxf(w). Therefore

dxf(w) 6 −〈u,w〉

for any w ∈ Tx. Since both sides of the last inequality are linear, we
get that the equality

dxf(w) = −〈u,w〉

holds for any w ∈ Tx.
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Suppose that γ1 is another minimizing geodesic from x to A; set
u1 = γ′1(0). If dxf is defined, then we have

−〈u,w〉 = dxf(w) = −〈u1,w〉;

that is, u1 = u and therefore γ1 = γ.

If part. Suppose that γ is a unique geodesic from x to A. Choose α
as above. For each t choose a minimizing geodesic γt from α(t) to A;
Set u(t) = γ′t(0) and w(t) = α′(t).

Recall that f and α are Lipschitz. By Rademacher’s theorem and
Ê, we have that

(f ◦ α)′(t)
a.e.
== −〈u(t),w(t)〉;

moreover

f ◦ α(τ)− f ◦ α(0) = −
τw

0

〈u(t),w(t)〉·t.

It remains to show that 〈u(t),w(t)〉 → 〈u,w〉 as t→ 0.
The latter follows if u(t)→ u as t→ 0. Assume the contrary, then

there is a sequence tn → 0 such that u(tn) converges to a unit vector
v ∈ Tx that is distinct from u. The minimizing geodesics γtn converge
to a geodesic from x to A that runs in the direction v. Since v 6= u,
this geodesic is distinct from γ — a contradiction.

1.11. Exercise. Suppose that M is a compact Riemannian manifold
with convex boundary ∂M ; that is, any shortest path in M may only
have its endpoints on ∂M . Assume that for any p ∈ ∂M the function
distp is differentiable on ∂M\{p}.

Prove the following statements:
(a) Any geodesic in M is minimizing.
(b) For any p ∈ M the distance function distp is differentiable in

M\{p}.
(c) Show that M is homeomorphic to a ball.
(d) The restriction of the distance function to ∂M determines the

lens data of M .

G Besicovitch inequality
The following theorem was proved by Abram Besicovitch [1].

1.12. Theorem. Let g be a metric tensor on a unit n-dimensional
cube �. Suppose that the g-distances between the opposite facets of �
are at least 1; that is, any Lipschitz curve that connects opposite faces
has g-length at least 1. Then vol(�, g) > 1.
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The following statement is assumed to be known.

1.13. Coarea inequality. Let f : M→N be a locally Lipschitz map
between n-dimensional Riemannian manifolds. Suppose that |jacpf | 6
6 1 almost everywhere in A, then

volA > vol[f(A)].

Proof. We will consider the case n = 2; the other cases are proved the
same way.

A

B

A′

B′

Denote by A, A′, and B, B′ the opposite
facets of the square �. Consider two functions

fA(x) := min{distA(x)g, 1 },
fB(x) := min{ distB(x)g, 1 }.

Let f : �→ � be the map with coordinate func-
tions fA and fB ; that is, f(x) := (fA(x), fB(x)).

Observe that f maps each face to itself. In-
deed,

x ∈ A =⇒ distA(x)g = 0 =⇒ fA(x) = 0 =⇒ f(x) ∈ A.

Similarly, if x ∈ B, then f(x) ∈ B. Further,

x ∈ A′ =⇒ distA(x)g > 1 =⇒ fA(x) = 1 =⇒ f(x) ∈ A′.

Similarly, if x ∈ B′, then f(x) ∈ B′.
Therefore

ft(x) = t·x+ (1− t)·f(x)

defines a homotopy of maps of the pair of spaces (�, ∂�) from f to
the identity map. It follows that degree of f is 1; that is, f sends the
fundamental class of (�, ∂�) to itself. In particular f is onto.

Suppose that Jacobian matrix Jacpf of f is defined at p ∈ �.
Choose an orthonormal frame in Tp with respect to g and the standard
frame in the target �. Observe that the differentials dpfA and dpfB
written in these frames are the rows of Jacpf . Evidently |dpfA| 6 1
and |dpfB | 6 1. Since the determinant of a matrix is the volume of
the parallelepiped spanned on its rows, we get

|jacpf | 6 |dpfA|·|dpfB | 6 1.

Since f : � → � is a Lipschitz onto map, the area inequality (1.13)
implies that

vol(�, g) > vol� = 1.
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The following theorem can be proved along the same lines.

1.14. Theorem. Let (M, g) be an n-dimensional Riemannian man-
ifold. Suppose that there is a degree 1 map from its boundary ∂M
to the surface of n-dimensional cube �; denote by d1, . . . , dn the dis-
tances between the inverse images of pairs of opposite facets of � in
∂M . Then

vol(M, g) > d1 · · · dn.

1.15. Exercise. Suppose g is a metric tensor on a regular hexagon
7 such that g-distances between the opposite sides are at least 1. Is
there a positive lower bound on area(7, g)?

1.16. Exercise. Let V be a compact set in the n-dimensional Eu-
clidean space En bounded by a hypersurface Σ. Suppose g is a Rie-
mannian metric on V such that

|p− q|g > |p− q|En

for any two points p, q ∈ Σ. Show that

vol(V, g) > vol(V )En .

H Equality case

1.17. Theorem. Suppose that equality holds in 1.14, then vol(M, g)
is isometric to the product [0, d1]× · · · × [0, dn].

Proof. We will prove the 2-dimensional case, assuming that d1 = d2 =
1; the general case can be proved along the same lines. Let us use the
same notation as in the proof of 1.12.

Consider the map s : x 7→ (distA(x)g,distB(x)g). From the proof
of 1.12 we get that Im s ⊃ �. Observe that in the case of equality we
have that Im s = �. Indeed, the same argument shows that

vol(s−1(�), g) > vol� = 1.

The set s−1(R2\�) is an open subset of �. If it is nonempty, then it
has positive volume. In this case

vol(�, g) > vol(s−1(�), g) > 1
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— a contradiction.
Summarizing: there is a geodesic path of g-length 1 connecting any

point on one face of the cube to a point on the opposite face.
Moreover, for any pair of opposite facets and a point p ∈ �, there

is a unique geodesic path of g-length 1 from one face to the other that
passes thru p. The latter can be shown by cutting� into two rectangles
by a level set of distA thru p, applying the above statement to both
rectangles and taking the concatenation of the obtained geodesic paths
with end at p. If such a path is not unique, then one could make a
shortcut near p — a contradiction.

Let γ be such a geodesic path from A to A′. By 1.10, γ′(t) =
= ∇γ(t)distA. Therefore distA is differentiable at every point p ∈ �.
It follows that the map s is differentiable.

Further, checking the equality case in each inequality in the proof
of 1.12, we get that s is a bijection and the equalities

|dpdistA| = 1, |dpdistB | = 1, and 〈dpdistA, dpdistB〉 = 0

hold for almost all p ∈ �. Since dpdistA and dpdistB are well defined,
we get that the equalities hold everywhere. That is, s is an isometry.

I Proof assembling

Proof of 1.2. Suppose that M̄ and M have identical scattering data.
By 1.4 M̄ and M have identical lens data. Further, by 1.6 (or by
Santaló formula 1.7), we have

volM = vol M̄.

Without loss of generality we may assume that M lies in a unit
cube �. Cut from � the manifold M and glue in M̄ by the isome-
try provided by the definition of scattering data; denote the obtained
modified cube by �̄. Note that the distances between points on the
boundary of �̄ remain unchanged. The latter follows that distance is
the length of a minimizing geodesic between a pair of points and the
geodesics in � and �̄ behave exactly the same way and they spend
exactly the same time in M and M̄ respectively.

It follows that in the Besicovitch inequality, an equality holds for
�̄. By 1.17, �̄ is isometric to �; whence M̄ is isometric to M .
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J More exercises
Two Riemannian metrics g0 and g1 onM are called conformally equiv-
alent if there is a function λ such that g1 = λ2 ·g0. In this case the
function λ is called conformal factor. Note that for any g0-unit-speed
curve γ : [a, b]→M we have

lengthg1 γ =

bw

a

λ ◦ γ(t)·dt

1.18. Exercise. Let g0 be the canonical metric on the projective space
RPn; that is, (RPn, g0) is isometric to the quotient space of the unit
sphere Sn by central symmetry. Suppose that g1 is conformally equiv-
alent to g0. Denote by `0 and `1 the systoles — the lengths of shortest
noncontractible closed curves in (RPn, g0) and (RPn, g1) respectively
(so `0 = π). Show that

vol(RPn, g1)

`n1
>

vol(RPn, g0)

`n0
.

Hint: Use that geodesic flow preserves volume of the unit tangent
bundle to rewrite the integral of conformal factor over (RPn, g0) and
interpret the result.

1.19. Definition. A compact Riemannian manifoldM with nonempty
boundary ∂M is called simple if any geodesic in M is minimizing and
its boundary is convex; that is, any shortest path in M may only have
its endpoints on ∂M .

Note that 1.11 provides a condition on a manifold with boundary
that guarantees its simplicity.

1.20. Exercise. Let (M, g0) be a simple Riemannian manifold. Sup-
pose that a conformally equivalent metric g1 = λ2 ·g0 on M induce the
same distances on the boundary ∂M ; that is,

|x− y|g1 = |x− y|g0

for any x, y ∈ ∂M . Show that λ ≡ 1; that is, g1 = g0.

Hint: Apply 1.11 plus the Santaló formula 1.7 and argue similarly to
1.18.

1.21. Conjecture. Let (M, g0) be a simple Riemannian manifold
and g1 is another Reimannian metric on M . Suppose that the metric
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induced by g1 on ∂M is at least as large as the metric induced by g0;
that is,

|x− y|g1 > |x− y|g0
for any x, y ∈ ∂M . Then

vol(M, g1) > vol(M, g0).

Let (M, g) be a Riemannian manifold. The Sasaki metric is a
natural choice of Riemannian metric ĝ on the total space of the tangent
bundle τ : TM →M defined the following way:

Identify the tangent space Tu[TM ] for any u ∈ TpM with the
direct sum of vertical and horizontal subspaces TpM ⊕ TpM . The
projection of this splitting is defined by the differential dτ : T TM →
TM and we assume that the velocity of a curve in TM formed by
a parallel field along a curve in M is horizontal. Then Tu[TM ] is
equipped with the metric ĝ defined by

ĝ(X,Y ) = g(XV , Y V ) + g(XH , Y H),

where XV and XH ∈ TpM denote the vertical and horizontal com-
ponents of X ∈ Tu[TM ].

1.22. Exercise. Let g be the canonical Riemannian metric on the
sphere S2. Consider the tangent bundle TS2 equipped with the induced
Sasaki metric ĝ. Let SR be the hypersurface in T S2 of vectors with
norm R; we assume that SR is equipped with induced Riemannian
metric.

Show that volSR →∞ as R→∞, but diamSR stays bounded for
all R.

K Remarks
The fact that not all manifolds are scattering rigid was pointed out
by Christopher Croke [5]. More examples constructed by Christopher
Croke and Bruce Kleiner [6].

Theorem 1.2 has a number of variations and generalizations. In
particular an analog of this theorem holds in the following cases:
� For regions in 2-dimensional Riemannian manifolds with unique

geodesic between any two points; proved by Leonid Pestov and
Gunther Uhlmann [19].
� For regions in a round hemispheres; proved by René Michel [15].
� For regions in hyperbolic spaces; it follows from the result of

Gérard Besson, Gilles Courtois, and Sylvestre Gallot [2].
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� For regions in the product space R × M , where M is a Rie-
mannian manifold with unique geodesic between any two points;
proved by Christopher Croke and Bruce Kleiner [7].
� For small regions in any Riemannian manifold; proved by Dmitri

Burago and Sergei Ivanov [3].



Lecture 2

Fundamental theorem

This lecture is based on a tiny piece from the book by Mikhael Gro-
mov [11].

A Formulation

The name Fundamental theorem of Riemannian geometry can be used
for two results: the theorem on existence and uniqueness of Levi-Civita
connection on Riemannian manifold and the following theorem proved
by John Nash [18]:

2.1. Fundamental theorem. Any n-dimensional Riemannian man-
ifold (M, g) admits a smooth length-preserving embedding into a Eu-
clidean space of sufficiently large dimension q.

We will prove this result modulo the so-called Nash–Moser implicit
function theorem. We will assume that M is compact, but it is not all
a principle assumption.

The dimension q can be found explicitly in terms of n. For example,
any q = 100·n2 will do, but we will only show that there is q that
depends on M .

B Induced metric

Recall that a field g of bilinear forms on theM is called metric tensor.
A metric tenor g is called Riemannian if it is positive definite; that is,
g(v,v) > 0 for any v 6= 0.

Let f : M → Rq be a smooth map defined on a manifold M ; here
we consider Rq with standard Euclidean metric. We say that a metric

15
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tenor g is induced by f if

g(v,w) = 〈vf ,wf〉, or, equivalently g(v,w) = 〈(df)v, (df)w〉

Note that f : (M, g)→ Rq is length-preserving if and only if

g(v,v) = |vf |2

for any tangent vector v.
Recall that any bilinear form g completely determined by the cor-

responding quadratic form; that is, if we know g(v,v) for any vector
v, then we know g(v,w) for any pair of vectors v,w. The latter is
proved by the following identity:

g(v,w) = 1
2 · [g(v + w,v + w)− g(v,v)− g(w,w)] .

Therefore f : (M, g)→ Rq is length-preserving if and only if

g(v,w) = 〈vf ,wf〉.

Assume that f1, . . . , fq are coordinate functions of f . Then the
latter identity can be written as

g = (df1)2 + · · ·+ (dfq)
2,

where (dfi)
2 is a shortcut for the metric tenor bi defined by

bi(v,w) := dfi(v)·dfi(w) = (vfi)·(wfi).

g = (df1)2 + · · ·+ (dfq)
2.

Let us show that the fundamental theorem can be reduced to the
following statement (as always, in the compact case).

2.2. Reformulation. For any Riemannian metric g on a compact
smooth manifold M there are smooth functions f1, . . . , fq : M → R
such that

Ê g = (df1)2 + · · ·+ (dfq)
2.

Proof of equivalence in the compact case. If f : (M, g) → Rq is a
smooth length-preserving map, then, as it was shown above, g is in-
duced by f and Ê holds for the coordinate functions f1, . . . , fq of f .

Now, assume the reformulation (2.2) is proved. Consider a smooth
embedding h : M → R2·n+1 provided by the Whitney embedding the-
orem. Denote by g0 the Riemannian metric on M induced by h; that
is,

g0 = (dh1)2 + · · ·+ (dh2·n+1)2,
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where h1, . . . , h2·n+1 are coordinate functions of h. Passing to an
scaled embedding ε·h for some small ε > 0, we can assume that g > g0;
that is, ḡ = g − g0 is a Riemannian metric on M . (Here we used
compactness of M , but not in an essential way.)

Applying the reformulation (2.2) to (M, ḡ) we get a smooth length-
preserving immersion f : (M, ḡ)→ Rq. It remains to observe that the
smooth embeddingM → R2·n+1⊕Rq defined by x 7→ (h(x),f(x)) has
induced metric tensor g = g0 + ḡ; therefore it is length-preserving.

C Nash’s twist

The following exercise is a weaker form of 2.2; it will play a key role
in this section.

2.3. Exercise. Show that for any Riemannian metric g on a smooth
compact manifold M there are smooth functions

ϕ1, . . . , ϕq, f1, . . . , fq : M → R

such that
g = (ϕ1)2 ·(df1)2 + · · ·+ (ϕq)

2 ·(dfq)2.

Let ϕ and f be smooth functions on a smooth manifold M . Given
ε > 0, denote by S1

ε the circle of radius ε in R2; consider an length-
preserving map `ε : R→ S1

ε, say

`ε(x) = (ε· cos xε , ε· sin
x
ε ).

Then the map F : M → R2 defined by

F (x) = ϕ(x)·(`ε ◦ f(x))

is called Nash’s twist for the triple (ε, ϕ, f).
Suppose that v is a tangent vector on M , then

vF = v(ϕ·`ε ◦ f) =

= (vϕ)·(`ε ◦ f) + ϕ·(`′ε ◦ f)·(vf) =

= dϕ(v)·(`ε ◦ f) + ϕ·df(v)·(`′ε ◦ f).

Observe that |`ε| = ε, |`′ε| = 1, and `ε ⊥ `′ε.

〈vF,wF 〉 = ε2 ·dϕ(v)·dϕ(w) + ϕ2 ·df(v)·df(w).

Whence we get the following:
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2.4. Claim. The metric tensor ϕ2 ·(df)2 + ε2 ·(dϕ)2 is induced by a
Nash’s twist for (ε, ϕ, f).

2.5. Approximation theorem. Let (M, g) be a compact Riemann-
ian manifold. Then there are smooth functions ϕ1, . . . ϕq on M such
that for any ε > 0 the metric tensor

h = (dϕ1)2 + · · ·+ (dϕq)
2

the following condition holds:
For any ε > 0, the metric tensor g + ε2 ·h is induced by a smooth

map Fε : M → R2·q to a Euclidean space.

Proof. Let ϕ1, f1, . . . , ϕq, fq be the functions on M provided by 2.3.
Choose ε > 0. Consider the Nash’s twist Fi for each triple (ε, ϕi, fi).

Denote by Fε the map M → R2·q with pairs of coordinate functions
as in F1, . . . , Fq.

By 2.4, the metric tensor g + ε2 ·h is induced by Fε.

D Pseudoeuclidean case
Denote by Rr,s the pseudoeuclidean space with signature (r, s); that
is the space Rr+s with scalar product defined by

〈x,y〉 = x1 ·y1 + · · ·+ xs ·ys − xs+1 ·ys+1 − . . .− xs+r ·ys+r,

where xi and yi denote the coordinates of vectors x and y in Rr+s.
The induced metric tensor for a map to a pseudoeuclidean space

can be defined the same way.

2.6. Theorem. Any metric tensor g on a compact smooth manifold
M is induced by a smooth map f : M → Rr,s for some positive integers
r and s; in other words,

g = (df1)2 + · · ·+ (dfr)
2 − (dfr+1)2 + · · ·+ (dfr+s)

2

for some smooth functions f1, . . . , fr+s on M .

Proof. Note that any metric tensor on M can be expressed as a dif-
ference of two Riemannian tenors. Therefore we can assume that g is
Riemannian.

Suppose that Fε : M → R2·q and ϕ1, . . . , ϕq are provided by the
approximation theorem (2.5). Consider the map ϕ : M → Rq with
coordinate functions ϕ1, . . . , ϕq.
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Consider the map f : M → R2·q ⊕ Rq = R2·q,q defined by f : x 7→
7→ (Fε(x), ε·ϕ(x)). Its induced metric tensor is g = g+ ε·h− ε·h.

2.7. Exercise. Let f : (M, g) → Sq−1 be a smooth length-preserving
embedding. Construct a smooth length-preserving embedding of any
conformally equivalent manifold into Rq,1.

That is, given a smooth positive function ϕ on M , construct a
smooth map F : M → Rq,1 with induced metric tensor ϕ2 ·g.

E Free maps
Let f : M → Rq be a smooth map defined on a smooth n-dimensional
manifold M .

Recall that f is called regular if df has rank n at each point. In
other words, for any local coordinates (x1, . . . , xn) onM all first order
partial derivatives

∂
∂x1

f , . . . , ∂
∂xn

f

are linearly independent at each point p ∈M .
A map f : M → Rq is called free if an analogous property holds

for first and second partial derivatives; that is, if all n·(n+3)
2 vectors

∂
∂x1

f , . . . , ∂
∂xn

f , ∂
2

∂x2
1
f , ∂2

∂x1∂x2
f , . . . , ∂2

∂x2
n
f

are linearly independent at each point p ∈ M . Observe that any free
map is regular.

2.8. Exercise. Show that the definition of free map does not depend
on the choice of local coordinates.

2.9. Exercise. Consider the (x, y)-plane R2. Let Fx, Fy, and Fx+y

are Nash’s twists R2 → R2 for the triples (1, 1, x), (1, 1, y), and (1, 1, x+
+ y). Show that the map R2 → R6 = R2 ⊕ R2 ⊕ R2 defined by p 7→
7→ (Fx(p), Fy(p), Fx+y(p)) is free.

Generalize the statement to maps Rn → Rn·(n+1).

2.10. Exercise. Let f : M ↪→ Rq is a regular smooth embedding and
F : Rq ↪→ RQ is a free smooth embedding. Show that the composition
F ◦ f : M ↪→ RQ is free.

Use 2.9 to conclude that any smooth manifold admits a free em-
bedding into a Euclidean space.

If f : M → Rq is a smooth embedding, then the smooth manifold
M with its image f(M). If f is free, than we say that M is a free
submanifold.
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The space spanned by the first and second partial derivatives of f
at p will be denoted by T2

p = T2
pM . The ortogonal complement of the

tangent space Tp in T2
p will be called binormal space and denoted by

BNp = BNpM ; in other words,

BNp = T2
p ∩Np,

where Np denotes the normal space to M at p.
Recall that second fundamental form S is a field of symmetric

quadratic forms on TM with values in NM that defined by

S(v,w) = ∇vw− ∇̄vw,

where ∇ and ∇̄ denote the Levi-Civita connection on M and the am-
bient manifold; in this particular case, ∇̄ is defined by the parallel
translations on the Euclidean space. Observe that the values of S lie
in binormal bundle BNM .

2.11. Exercise. Suppose that M is a free submanifold of Rq. Show
that for any metric tensor h on M there is a unique binormal field n
such that

h(v,w) = 〈S(v,w),n〉

for any vector fields v,w on M .
Given h, consider the one-parameter family of maps ft : M → Rq

defined by
ft(p) = p+ t·n(p);

let g(t) be the metric tensor induced by ft. Show that g′(0) = 2·h.

The exercise says that a free embedding can be perturbed so that
the induced metric tensor moves in a given direction h. Note that
freeness of embedding is an open condition; namely, if M is a free
compact submanifold then any C2-close embedding ofM is free as well.
One may think that these two properties easily imply the following
statement, but that is not at all easy; it is a consequence of a deep
result — the so-called Nash–Moser theorem [16]. A simplified proof
was obtained by Matthias Günther [12].

2.12. Perturbation theorem. Let f : M ↪→ Rq be a free embedding,
g is the Riemannian metric induced by f and h is another metric
tensor on M . Then for any t sufficiently close to 0, there is a free
embedding of ft : M ↪→ Rq with induced metric tensor g + t·h.

Proof of 2.2 modulo the perturbation theorem. Choose a free embed-
ding f : M ↪→ Rs; it exists by 2.10. Denote by g0 its induced metric.
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Scaling down f if necessary, we can assume that g > g0; that is
the metric tensor ḡ = g − g0 is Riemannian.

Applying the approximation theorem (2.5) we get a one parameter
family of maps Fε : M → Rq with induced metrics ḡ+ ε2 ·h for a fixed
metric tensor h.

By the perturbation theorem (2.12) there is a one parameter family
of embedding ft : M → Rs with induced metric g0 + t·h.

Choose sufficiently small ε > 0 so that ft is defined for t = −ε2.
Consider the map M → Rs × Rq defined by x 7→ (ft(x),Fε(x)). Ob-
serve that the induced metric of this map is

g0 + t·h+ ḡ + ε2 ·h = g.

F Remarks
Let us state another closely related result that shows a huge difference
between C1 and C2 isometric embeddings. For example, it implies that
the unit sphere admits C1 length-preserving embedding into an arbi-
trarily small ball in Euclidean 3-space. There is no such C2-embedding
since Gauss curvature of the unit sphere is 1, but at an extremal point
it must be at least 1

r2 , where r is the radius of the ball.

2.13. Nash–Kuiper theorem. Let (M, g) be a n-dimensional Rie-
mannian manifold and f : (M, g)→ Rq be a short smooth regular map.
Suppose that q > n + 1. Then for any ε > 0 there is an C1-smooth
length-preserving maps fε : (M, g) → Rq that is ε close to f ; that is,
|fε(x)− f(x)| < ε for any x ∈M .

Moreover if f is an embedding then we can assume that so is fε.

It was originally proved by John Nash [17] with the condition q >
> n + 2 and improved to q > n + 1 by Nicolaas Kuiper [14]. The
original proof uses Nash’s twist in a different way. Both papers are
reader-friendly, it is better to start with the paper of Nash. One may
also start with lectures by Allan Yashinski and the author [20] where
related results were obtained using an alternative approach.

The discussed result formed a part of foundations of the so-called
homotopy principle, or h-principle; an excellent introduction is given
in the book by Yakov Eliashberg and Nikolai Mishachev [9].

Many related questions are open. For example, it is unknown if
a neighborhood of any point in 2-dimensional Riemannian manifold
admits a smooth length-preserving embedding into R3.
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Lecture 3

Algebra of curvature

The curvature of a Riemannian manifold is described by a tensor,
not just a number. This is one of the principle differences between
differential geometry of surfaces and higher-dimensional differential
geometry.

In this lecture we will give an outline of algebra related to curva-
ture tensor. Most of the statements come without proofs, but every-
thing can be proved by straightforward calculations (which are often
tedious).

Most proofs can be found in [8, Chapters 4+6] and [4, Chapter 3].

A Definition

Let x, y, v, and w be vector fields on a Riemannian manifold (M, g).
Recall that ∇ denotes the Levi-Civita connection on M .

The Riemannian curvature tensor R is defined by1

R(x,y)v = ∇x∇yv−∇y∇xv−∇[x,y]v.

It has valence 4 — it takes 3 vectors and spits another vector. We do
not need to specify covariance/contravariance type of the tensor since
the metric tensor identifies tangent and cotangent bundles.

By the definition, one sees that the curvature tensor depends lin-
early on vector fields. But it is indeed a tensor — that is, the vector
R(x,y)v depends only on the tangent vectors x, y, and v at the point.

1Many authors (for example do Carmo) define it with opposite sign. If you see
notation Rm then most likely the sign is opposite. This convention fits better with
an earlier convention that sphere has positive Gauss curvature.

23
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The latter follows from the following identities:

f ·R(x,y)(v) = R(f ·x,y)(v) =

= R(x, f ·y)(v) =

= R(x,y)(f ·v).

for any vector fields x, y, v and a function f . All of them can be
proved by straightforward computations.

B Curvatuere transformation
For given tangent vectors x and y at a point the linear map

R(x,y) : T→ T

is called curvature transformation; some authors prefer to denote it
by Rx,y. It has the following geometric meaning:

Let γ be the contour of small parallelogram spanned by vectors
x and y at a point p. Let us denote by ιγ : Tp → Tp the parallel
transport along γ. Denote by a the area of parallelogram. Then

ιγ = id +a·R(x,y) + o(a).

where id denotes the identity map on Tp.

3.1. Exercise. Suppose that parallel transport Tp → Tq in a Rie-
mannian manifold (M, g) does not depend on a path connecting p to
q. Show that (M, g) is flat; that is, its curvature tensor vanish at all
points.

C Symmetries
Set

R̂(x,y,v,w) := 〈R(x,y)v,w〉.

Note that R̂ remembers everything about the curvature tenor R (as-
suming that metric tensor is known). The R̂-form of R is more conve-
nient to describe the symmetries of curvature tensor:

Ê
R̂(x,y,v,w) = −R̂(y,x,v,w) = −R̂(x,y,w,v),

0 = R̂(x,y,v,w) + R̂(y,v,x,w) + R̂(v,x)y,w).

The last identity is called the algebraic Bianchi identity or first Bianchi
identity (and it was not discovered by Bianchi).
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These identities can be proved by straightforward computations.
Latter we will show that these symmetries provide a complete list; that
is, given a tensor that satisfies these identiries, thare is a Riemannian
manifold with such curvature tensor at some point.

The following equality follows from the main symmetries

Ë R̂(x,y,v,w) = R̂(v,w,x,y).

D Space of curvature tensors
Let us denote by A4 T the space of all algebraic curvature tensors on
T; that is, A4 T all valence 4 tenors with the symmetries Ê.

Given a Euclidean space E, we denote by SnE and ΛnE the space
of symmetric and antisymmetric tensors of valence n over E.

Note that Ë and the first line in Ê imply that

A4 T ⊂ S2Λ2 T .

In other words, a curvature tensor can be discribed as a symmetric bi-
linear form on the space of bivectors Λ2 T; or as the so-called curvature
operator — a linear operator R : Λ2 T→ Λ2 T defined by2

〈R(x ∧ y),v ∧w〉 = −〈R(x,y)v,w〉.

The symmetry Ë implies that R is self-adjoint; that is,

〈Rϕ,ψ〉 = 〈ϕ,Rψ〉

for any bivectors ϕ,ψ ∈ Λ2 T.
The algebraic Bianchi identity implies that complete antisymmet-

rization of R̂ vanish. More precisely, if α : S2Λ2 T→ Λ4 T denotes the
complete anysymmetrization then space of curvature tensors is the
kernel of α.3 The latter can be written as

A4 T = S2Λ2 T	Λ4 T or A4 T = S2Λ2 T∩(Λ4 T)⊥,

2If {ei} is an orthonormal basis of T, then the scalar product on Λ2 T is defined
by stating that it has an orthonormal basis {ei ∧ ej}i>j .

Alternatively, the scalar product in Λ2 T can be also defined on simple bivectros
x ∧ y and v ∧w by stating that

〈x ∧ y,v ∧w〉 = 〈x,v〉·〈y,w〉 − 〈x,w〉·〈y,v〉
and extended linearly to whole Λ2 T.

3As far as I see, the following property is absolutely useless, but it is funny.
Given a curvature tenor R consider the tensor

Я(x,v,y,w) := 〈R(x,y)v,w〉+ R(v,y)x,w〉.
Then the linear transformation R→ Я describes an isomorphism

S2Λ2 T	Λ4 T←→ S2S2 T	S4 T .
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where L⊥ stands for the orthogonal complement L in the Euclidean
metric on S2Λ2 T induced from T.

If n = dim T then the dimension of the space of curvature tensors
over T can be easily calculated:

dim(S2Λ2 T)− dim(Λ4 T) =

((n
2

)
+ 1

2

)
−
(
n

4

)
=
n2 ·(n2 − 1)

12
.

3.2. Exercise. Suppose Rϕ : Λ2 T→ Λ2 T is an othogonal projection
to a 1-dimnsional subspace spanned by a bivector ϕ ∈ Λ2 T. Show that
R is a curvature operator if and only if ϕ is a simple bivector; that is,
if ϕ = x ∧ y for some x,y ∈ T.

Show that in this case R is the curvature operator of S2 × Rn−2.
Use the results in Section 3H to show that any algebraic curvature

tensor can appear as a curvature tensor of a Riemannian manifold.

E Sectional curvature
Let p be a point in a Riemannian manifold (M, g). Choose a plane σ
in the tangent space Tp. Consider a surface Σ in M sweeped by short
geodesics from p in the directions on σ. The Gauss curvature of Σ
at p is called sectional curvature and denoted by secσ; the plane σ is
called sectional direction.

If the sectional direction σ is spanned by vectors x and y, then

secσ =
〈R(x,y)y,x〉

|x|2 ·|y|2 − 〈x,y〉2
=

=
K(x,y)

|x ∧ y|2
;

in the last expression we use shortcut

K(x,y) = 〈R(x,y)y,x〉 = −〈R(x,y)x,y〉 = 〈R(x ∧ y),x ∧ y〉;

note that K is quadratic in both arguments.
The formula above implies that sectional curvature can be recov-

ered from curvature tensor.
That is, curvature tensor can described as quadratic forms on quadratic forms that
lie in the kernal of complete symmetrization σ : S2S2 T → S4 T; in other words Я
satisfies the following symmetries:

Я(x,v,y,w) = Я(v,x,y,w) = Я(x,v,w,y) = Я(y,w,x,v),

0 = Я(x,x,x,x).
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The curvature tensor can be expressed using sectional curvature
as well. Indeed, once we know curvature in any sectional direction,
we can use the above formula to find K(x,y) for any tangent vectors
x,y ∈ Tp. After that one could apply the following formula:

6·R(x,y)v,w〉 = [K(x + v,y + w) +K(x,w) +K(y,v)−
−K(x + v,y)−K(x + v,w)−K(x,y + w)−K(v,y + w)]−

− [K(x + w,y + v) +K(y,w) +K(x,v)

−K(x + w,y)−K(x + w,v)−K(x,y + v)−K(w,y + v)].

The formula is scary, but it is very similar to recovery of a symmetric
bilinear form its quadratic form.

3.3. Exercise. Let dim T = 3. Suppose that a a curvature tenor
R ∈ A4 T has positive sectional curvature in all directions. Show that
the corresponding curvature operator is positive; that is 〈Rϕ,ϕ〉 > 0
is for any ϕ ∈ Λ2 T.

Show that if dim T = 4, then analogous statement does not hold.

F Ricci decomposition
Let ei be an orthonormal basis at a point p of Riemannian mani-
fold. The so called Ricci curvature tensor is a linerar transformation,
Ric: Tp → Tp defined as

〈Ric x,x〉 =
∑
i

K(x,ei).

Further, the scalar curvature Sc is defined by

Sc =
∑
i,j

K(ei,ej) =
∑
j

〈Ric ej ,ej〉 = 2· traceR .

If |x| = 1 then the value 〈Ric(x),x〉 is called Ricci curvature in
the direction x. For example n-dimensional unit sphere has sectional
curvature 1, Ricci curvature n−1 in all directions and scalar curvature
n·(n− 1).

The action of orthogonal group O(T) can be extended to A4 T.
Evidently the kernels of R → Ric and R → Sc and their orthogonal
complements are invariant with respect to this action. In other words,
Ricci tenor Ric and scalar curvature Sc do not depend on the choice
of the orthonormal basis ei.

It turns out that these are the only subspaces of A4 T that invariant
with respect to O(T). In other words, the decomposition

A4 T = U ⊕ V ⊕W
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with the subspaces U , V , and W described below is the maximal
O(T)-invarint decomposition of A4 T.
� W is the kernel of R → Ric; the orthogonal projection to W of

the curvature tensor is called its Weil tensor.
� V is the intersection of the kernel R → Sc and the orthogonal

complement ofW . The projection to V is completely determined
by the traceless Ricci tenor Ric0 = Ric− 1

n ·Sc·g.
� U is a one-dimensional subset of curvature tenors with constant

sectional curvatures; so the curvature operator is proportional
to the identity.

G Curvature bounds
The following theorem is a classical result in Riemannian geometry
with long history.

3.4. Quarter-pinched sphere theorem. Suppose that (M, g) is a
simply connected Riemannian manifold with sectional curvature strictly
between 1 and 4 at each point. Then M is diffeomorphic to a sphere.

It gives an example of the so called local-to-global theorems. Its
assumption is a local property that is given by a curvature bounds at
each point. The conclusion says something about global structure of
the manifold; in this example it says something about its topological
type.

Riemannian geometry has other types of theorems4, but nothing
else makes Riemannian geometer nearly as happy as the local-to-global
results.

Typically the local condition is given by restriction on curvature
tensor of Riemannian manifold; that is, we specify a subset Ω ⊂ A4 T
and assume that curvature tensor of a Riemannian manifold belongs
to Ω at each point. Most of the time the set Ω ⊂ A4 T is open or at
least has nonempty interior.5

It is reasonable to assume that Ω is convex (or at least connected).
If dim T = 2, then dim A4 T = 1; in this case we do not have much
choice — we might consider curvature bounded above, or below, or
from both sides. That what we did for surfaces.

Starting from dimension 3, things getting more complicated — it
is reasonable to assume in addition that Ω is invariant with respect to

4for example rigidity theorems say that a Riemannian manifold with given prop-
erty must be isometric to some known manifold (typically a round sphere).

5There are exceptions, for example Einstein manifolds defined by an equation
on curvature tensor. But this subject lies on a half way from differential geometry
to partial differential equations.
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rotations of the tangent space; in other words Ω has to be invariant
with respect to action of the orthonormal group O(T) of the space T
extended to A4 T. But still, we have huge family of curvature condi-
tions.

The Ricci flow technique deals with few families of curvature bounds
in the proofs. Couple of dozens of curvature bounds made it to a for-
mulation a meaningful theorem. The champions seem to be upper,
lower, and bilateral bounds on sectional curvature, lower bounds on
Ricci curvature, and lower bounds on scalar curvature.6

H Submanifolds
Suppose M is a submanifold in a Riemannian manifold (M̄, g). Recall
that restricting g to the tangent bundle overM produce a Riemannian
metric on M . Let us denote by ∇̄ and ∇ the Levi-Civita connction on
M̄ and M respectively.

Recall that second fundamental form S of M is defined by

S(x,y) = ∇xy− ∇̄xy;

it takes two tangent vectors on M and spits a normal vector; so is
a tensor in S2 TM ⊗ NM (here we identify tangent/cotangent nor-
mal/conormal bundles as usual).

Again straightforward computations show that that S is indeed a
tensor — one has to show that

f ·S(x,y) = S(f ·x,y) = S(x, f ·y)

for any tangent vector fields x, y, and a smooth function f on M .
The following formula gives a relation between curvature tensors

R and R̄ of M and M̄ respectively:

〈R(x,y)v,w〉 = 〈R̄(x,y),v,w〉+
+ 〈S(x,w), S(y,v)〉 − 〈S(x,v), S(y,w)〉.

In particular, using the shortcut K(x,y) = 〈R(x,y)y,x〉, we can write

K(x,y) = K̄(x,y) + 〈S(x,x), S(y,y)〉 − |S(x,y)|2.

This is a generalization of the formula for Gauss curvature of sur-
face in the Euclidean space:

K = `·n−m2,

6As far as I see, the following property is absolutely useless, but it is funny. The
cone of curvature tensors with nonnegative (or nonpositive) sectional curvature is
a maximal GL(T)-invariant subsets of A4(T).
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where `, m, and n are components of Hessian matrix at p in an oth-
onormal basis. Indeed, if x,y is an orthonormal frame at a point in a
surface, then K = K(x,y) is its Gauss curvature, and

S(x,x) = `·ν, S(x,y) = m·ν, S(y,y) = n·ν,

where ν is a unit normal vector at p.

3.5. Exercise. Show that there is a 4-dimensional Riemannian man-
fifold (M, g) such that no neighborhood of a point p in M admits a
smooth length-preserving embedding in R5.

Hint: Count dimensions of second fundamental form and curvature
tensor at p and apply the formula.

3.6. Exercise. Let M be a smooth submanifold of a Euclidean space.
Assume codimM = 2. Show that if sectional curvature of M is posi-
tive, then so is its curvature operator.

An analogues statement for submanifolds of codimension 3 does not
hold — try to guess why.

Hint: Show first that 〈S(x,x), S(y,y)〉 > 0 for any two nonvanishing
tangent vectors x, y at any point p ∈ M . Furhter, show and use
that if codimM = 2, then the normal space admits an orthonormal
basic u1,u2 such that both quadratic forms si(x,y) := 〈S(x,y),ui〉
are positive definite.

I Submersions
Let s : M̄ →M be a submersion between smooth manifolds. Suppose
that manifolds M̄ and M are equipped with Riemannian metrics.

Suppose that s(p̄) = p.
The kernel of the differential ds : Tp̄ M̄ → TpM will be called ver-

tical subspace; it will be denoted by Vp̄. The orthogonal complement
of Vp̄ in Tp̄ will be called horisontal subspace at p̄; it will be denoted
by Hp̄.

The submersion s is called Riemannian if the restriction of ds to
H is an isometry.

Note that Tp̄ = Hp̄ ⊕ Vp̄. In particular, any tangent vector x ∈
∈ T M̄ can be spitted into its vertical and horizontal part denoted by
xH and xV, so

x = xH + xV.

By the definition of Riemannian submersion, for any vector x ∈ Tp
there is a unique vector x̄ ∈ Hp̄ such that x = ds(x̄).
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The curvature of M can be found using the so called O’Neil for-
mula:

K(x,y) = K̄(x̄, ȳ) + 3
4 ·|[x̄, ȳ]V|2.

The notion of Riemannian submersion is a dual to submanifold (≈
lenght-preserving immersion). The tensor A defined by

A(x̄, ȳ) = [x̄, ȳ]V

is indeed a tensor in Λ2H⊗V (it is proved the usual way). This tensor
plays a role similar to the second fundamental form of a submanifold.

3.7. Exercise. Let M̄ → M be a Riemannian submersion. Suppose
that M̄ has nonnegative curvature operator at all points. Show that at
any point of M there is a 4-vector η such that

〈Rϕ,ϕ〉+ 〈η, ϕ ∧ ϕ〉 > 0

for any 2-vector ϕ.

Hint: Use Section 3D.

J Lie groups
Suppose G is a Lie group with biinvariant metric. By straightforward
comutations, one gets the following identities for left-invariant vector
fields on G:

∇xy = 1
2 ·[x,y]

〈R(x,y)v,w〉 = 1
4 ·(〈[x,w], [y,v]〉 − 〈[x,v], [y,w]〉)

K(x,y) = 1
4 ·|[x,y]|2

Note that the first identity implies that ∇xx = 0. Therefore ho-
momorphisms R→ G are geodesics.

K Cheeger’s trick
Suppose a Lie group G acts isometrically on a Riemannian manifold
M = (M, g). Suppose that a G admits a bi-invarinat metric (this is
alway the case if G is compact).

Consider the diagonal action of G on the product G×M ; that is,
a·(b, x) := (a·b, a·x) for any a, b ∈ G and x ∈M . Note that this action
is isometric and free. Therefore the quotient map (λ·G)×M → (M, gλ)
is a Riemannian sumersion for some metric gλ. This way we obtain
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a one parameter family gλ of Riemannian metrics on M . Note that
gλ → g as λ→∞.

This procedure is called Cheeger’s trick and the obtained family is
called Cheeger’s deformation. (Jeff Cheeger found number of applica-
tions of this trick, but it was invented earlier.)

By O’Nail formula, if (M, g) had a nonnegative (respectively posi-
tive) sectional curvature, then so does (M, gλ) for any λ > 0.

L Berger spheres
Applying the Cheegers to the isometric action of S1 on S3 by complex
multiplication one gets Berger spheres — a family of metrics gλ on S3

with positive sectional curvature.
The Berger spheres can be also described as certain left-invariant

metrics on on the Lie group S3 = Spin(4). There are explicit formulas
for connection and curvature in such metrics.

It is an important example in Riemannian geometry. (It could be
compared to the Cantor set in analysis.)

3.8. Exercise. Suppose (S3, gλ) denotes Berger spheres with param-
eter λ. Set ` = λ/

√
1 + λ2.

Show that
(a) (S3, gλ) are foliated by closed geodesics of length 2·π ·` and

vol(S3, gλ) = `· vol S3.

(b) Show that the curvature tensor of (S3, gλ) converges to the cur-
vature tensor of S2

1
2

× R as λ → 0, where S2
1
2

denotes a round

sphere of radius 1
2 . (One has to find right sense for term “con-

verge” here.)
(c) Try to visualize what happens with (S3, gλ) as λ→ 0.



Lecture 4

Second variation

A Exercises
Use the formulas from the next section to solve the following exercises:

4.1. Exercise. Let M be a closed n-dimensional Riemannian mani-
fold with injectivity radius at least π at each point.
(a) Choose two orthonormal vectors v,t ∈ TpM . Consider geodesic

γ : [0, π] in the direction of t. Denote by v(t),t(t) ∈ Tγ(t) the
parallel translations of v and t along γ, so t = γ′. Denote by
κ(v,t) the average value of sec(v(t)∧t(t))· sin2(t) for t ∈ [0, π].
Show that

κ(v,t) 6 1
2

for any p ∈M and any orthonormal pair v,t ∈ TpM .
(b) Apply Liouville’s theorem to show that the average of sectional

curvature on M is at most 1. Conclude that M has a point with
scalar curvature at most n·(n− 1).

4.2. Exercise (Syng’s theorem). Let γ be a closed simple geodesic
on Riemannian manifold M . Suppose that either a neighborhood of g
is orientable and dimension of M is even, or a neighborhood of g is
nonorientable and dimension of M is odd.
(a) Show that there is a parallel unit vector field w on γ that is

orthogonal to γ. Conclude that γ admits a length-decreasing ho-
motopy.

(b) Use part (a) to show that if M is oriented and has even dimen-
sion, then it is simply connected.

(c) Use part (a) to show that if M has odd dimension, then it is
oriented.

33
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A submanifold M of Riemannian menifold M̄ is called totally geo-
desic if for every point p ∈ M and any tangent vector v ∈ TpM , the
geodesic γ with initial value γ′(0) = v lies in M .

4.3. Exercise (Frankel’s theorem). Let M and N be two totally
geodesic submanifolds in a closed n-dimensional Riemannian manifold
with positive sectional curvature. Suppose that dimM + dimN > n.
Show that M meets N at some point.

B Equations

Jacobi equation. Suppose j is a Jacobi field along a geodesic γ and
t = γ′. Then

j′′ +R(j,t)t = 0;

here we use shortcut notation j′ = ∇t.

Riccati equation. Let γ be a unit-speed geodesic. Suppose a smooth
function f is defined in its neighborhood and satisfies the following
conditions:

f ◦ γ(t) ≡ t, |∇f | ≡ 1.

Set t = ∇f , note that this vector field extends γ′. Let S be the shape
operator of the level sets of f ; that is

S(v) = ∇vt.

Then the following identity holds:

S′ + S2 +R(·,t)t = 0;

as before we write S in a parallel frame on γ, so S′ is a shortcut for
∇tS. In other words, if v is a parallel vector field along γ, then

S′(v) + S2(v) +R(v,t)t = 0.

Second variation formula. Let w be a vector field normal to geo-
desic γ : [a, b]→M . As before t = γ′ and w′ is a shortcut for ∇tw.

Family of curves γt = expγ(t)(t·w), set L(t) = length γt. Then

L′′(0) =

bw

a

|w′|2 −K(w,t).
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