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Lecture 1

Formulation and
approximation

Riemannian geometry has two fundamental theorems. One is about
the existence and uniqueness of the Levi-Civita connection, and the
other is a result of John Nash [10], which states that any Riemannian
manifold is isometric to a smooth submanifold of Euclidean space. In
other words, Riemannian manifolds can be defined as submanifolds of
Euclidean space.

We present a simplified proof discovered by Matthias Günther [3],
with minor improvements by Deane Yang, Terence Tao, and Ralph
Howard [5, 13, 16]. Günther’s approach has also been used in books
by Michael Taylor [14] and by Qing Han and Jia-Xing Hong [4], but
our presentation should be more accessible to students.

A Induced metric
Given a smooth n-dimensional manifold Ω, we denote by TΩ and TpΩ
its tangent bundle and the tangent space at a point p ∈ Ω, respectively.

Recall that a metric tensor , say g, on Ω is a smooth field of
symmetric bilinear forms on TΩ. Here and further, smooth means C∞.

Let Ω̄ be another smooth manifold, and let w : Ω → Ω̄ be a smooth
map. Recall that the derivative of w in the direction of a tangent
vector x ∈ TpΩ is denoted by xw, and

xw = dw(x);

that is, the derivative of w in the direction x is the differential
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6 LECTURE 1. FORMULATION AND APPROXIMATION

dw : TΩ → TΩ̄ of w, evaluated at x. Note that xw ∈ Tw(p)Ω̄.
Suppose that Ω̄ is equipped with a metric tensor ḡ. Then the

metric tensor g on Ω defined by

g(x,y) = ḡ(xw,yw)

is called the induced metric tensor, or the pullback of ḡ to Ω. This
relation can also be written as g = w∗ḡ. Equivalently, we may say
that w is an isometric map  from (Ω, g) to (Ω̄, ḡ).

A metric tensor g is called Riemannian if it is positive; that is,
g(x,x) > 0 for any nonzero tangent vector x. A smooth manifold
equipped with a Riemannian metric is called a Riemannian manifold
.

Note that if g = w∗ḡ is a Riemannian metric, then w must be
regular; that is, the differential dpw has rank n at every point p ∈ Ω.
In particular, w is an immersion.

We consider the space Rd equipped with the metric tensor defined
by the standard scalar product:

ḡ(x,y) := ⟨x, y⟩ = x1 ·y1 + · · ·+ xd ·yd,

where xi and yi denote the coordinates of vectors x, y ∈ Rd. Note that
ḡ is Riemannian.

1.1. Main theorem. Any n-dimensional Riemannian manifold (Ω, g)
admits an isometric embedding into a Euclidean space Rd for some d.
Moreover, d can be bounded in terms of n.

We will not make any effort to optimize the bound on d in terms of
n. Tracing the estimates in our argument yields d ⩽ 10·n3. The lower
bound given in the following exercise may be optimal; known upper
bounds are not much larger.

1.2. Exercise. Show that d in the main theorem must be at least
n·(n+ 1)/2.

1.3. Exercise. Construct a metric tensor g on the torus T2 = S1×S1
such that g(x,x) ⩾ 0 for all tangent vectors x, but no smooth map
w : T2 → R10 induces g.

1.4. Exercise. Let w be a smooth map from a smooth Riemannian
manifold (Ω, g) to Rd. Show that w is isometric if and only if it is
length-preserving; that is, if

length γ = length(w ◦ γ)

for every curve γ in Ω.

1.5. Exercise. Show that there is no length-preserving map R2 → R.
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B Q-form
Recall that Ω is a smooth n-dimensional manifold.

We define a symmetric bilinear form Q that takes two C1-smooth
maps v, w : Ω → Rd and returns the following metric tensor on Ω:

g(x,y) ≡ 1
2 ·[⟨xv,yw⟩+ ⟨xw,yv⟩].

Note that if the maps v and w are Ck-smooth, then g = Q(v, w) is
Ck−1-smooth.

1.6. Observation. A metric tensor g is induced by a smooth map
w : Ω → Rd if and only if g = Q(w,w).

The components of g = Q(w,w) in a local chart can be written as

gij = Qij(w,w) = ⟨∂iw, ∂jw⟩.

Let Ω be a smooth manifold. The direct sum of two maps v1 : Ω →
→ Rd1 and v2 : Ω → Rd2 will be denoted by w = v1 ⊕ v2; it is the
map

w : Ω → Rd1+d2 = Rd1 ⊕ Rd2

defined by w : p 7→ (v1(p), v2(p)).

1.7. Exercise. Show that

Q(v1 ⊕ v2, v1 ⊕ v2) = Q(v1, v1) +Q(v2, v2)

for any two smooth maps v1 : Ω → Rd1 and v2 : Ω → Rd2 .

Recall that the support of a map is the closure of the set where
it takes nonzero values.

1.8. Exercise. Let v1, v2 : Ω → Rd be smooth maps defined on a
smooth manifold Ω. Suppose that v1 and v2 have disjoint supports.
Show that

Q(v1 + v2, v1 + v2) = Q(v1, v1) +Q(v2, v2).

C Disc covering
Let Ω be a smooth n-dimensional manifold. A subset D ⊂ Ω is called a
smooth $n$-disc   if there exists a neighborhood N of D and a smooth
embedding N → Rn that sends D to the unit ball.

1.9. Claim. Let {Uα} be an open cover of a smooth n-dimensional
manifold Ω. Then there exists a countable collection of smooth n-discs
{Di} in Ω such that the following conditions hold:
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(a) The interiors D◦
i cover the entire manifold Ω.

(b) For each Di, there exists α such that Di ⊂ Uα.
(c) The collection {Di} can be colored with n + 1 colors such that

any two distinct n-discs of the same color are disjoint. More
precisely, the index set I of {Di} can be partitioned into n + 1
subsets I0, . . . ,In such that for any fixed k and any distinct i, j ∈
∈ Ik, we have Di ∩Dj = ∅.

Sketch of proof. Recall that the star of a vertex i in a simplicial
complex is the union of all open simplices that have i as a vertex.

Choose a triangulation τ of Ω such that the star of each vertex
of τ lies in some Uα. (To prove the existence, we may use that any
smooth manifold admits a triangulation and then apply [15, Theorem
35].) Let τ ′ be the barycentric subdivision of τ .

Colored discs in a
triangle of τ .

For each vertex i of τ ′, observe that its star
can be smoothly parametrized by an open n-disc.
By choosing a slightly smaller disc within this
parametrization, we obtain a smooth n-disc Di.
This construction can be done so that the inte-
riors D◦

i , for all vertices i of τ ′, cover Ω. Since
each Di lies within the star of i, condition (b) is
satisfied.

Recall that each vertex of τ ′ corresponds to a simplex in τ . We now
color the vertices of τ ′ with n+1 colors labeled 0, . . . , n, assigning color
k to each vertex corresponding to a k-simplex of τ . Observe that this
coloring induces a coloring of the n-discs that meets condition (c).

Our sketch relied on the existence of a triangulation of a smooth
manifold, which has a tedious proof. Alternatively, one can choose a
Riemannian metric on Ω, inscribe a covering of small, almost Euclidean
balls into {Uα}, and then argue as in the Besicovitch covering lemma.
This approach yields a version of the claim with q colors instead of
n + 1, where q depends only on n. It serves as a replacement for
Claim 1.9 in the remainder of our argument.

D Nash’s twist

ψ(x)
r

Θ(x)

r
·φ
(x
)

Let φ and ψ be smooth functions on a smooth
manifold Ω. Given r > 0, denote by S1r the circle
of radius r in R2. Nash's twist  Θ: Ω → R2 of
the triple (r, φ, ψ) is defined as the composition

Ω
ψ−→ R ℓr−→ S1r

×φ−−→ R2,
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where ℓr : R → S1r is a length-preserving covering map, say

ℓr(x) = (r· cos xr , r· sin
x
r ),

and ×φ denotes multiplication by φ; so

Θ(x) := φ(x)·(ℓr ◦ ψ(x)).

Let us denote by (dψ)2 the metric tensor induced by ψ : Ω → R;
that is,

(dψ)2(x,y) := dψ(x)·dψ(y) = (xψ)·(yψ).

1.10. Claim. Nash’s twist Θ for the triple (r, φ, ψ) induces the metric

g = φ2 ·(dψ)2 + r2 ·(dφ)2.

Computations. Suppose that x is a tangent vector on Ω. Then,

xΘ = x(φ·ℓr ◦ ψ) =
= (xφ)·(ℓr ◦ ψ) + φ·(ℓ′r ◦ ψ)·(xψ).

Observe that |ℓr| = r, |ℓ′r| = 1, and ℓr ⊥ ℓ′r. Therefore,

g(x,y) = ⟨xΘ,yΘ⟩ = r2 ·(xφ)·(yφ) + φ2 ·(xψ)·(yψ).

E Approximate version
The following statement can be regarded as an approximate version of
the main theorem (1.1).

1.11. Proposition. Let g be a Riemannian metric on a smooth n-
manifold Ω. Then there exists a metric tensor h on Ω and a one-
parameter family of smooth maps wt : Ω → Rd such that

Q(wt, wt) = g + t·h

for any t > 0.

Note that Q(wt, wt) converges to g as t→ 0. Therefore, one might
be tempted to take the limit of wt as t → 0. However, as we will see,
the maps wt constructed in the proof converge to a constant; thus, the
limit does not solve 1.1.

Let w : Ω → Rd be a smooth map. Suppose that w1, . . . , wd are
the coordinate functions of w. Then the induced metric tensor g can
be written as

➊ g = Q(v, w) = (dw1)
2 + · · ·+ (dwd)

2.
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In the main theorem, we need to find functions w1, . . . , wd : Ω → R
that satisfy equation ➊ for a given Riemannian metric g. The weaker
form ➋ of this equition will play a key role in the proof of 1.11.

1.12. Proposition. Let (Ω, g) be a compact n-dimensional Riemann-
ian manifold. Then there are smooth functions φ1, . . . , φd, ψ1, . . . , ψd
on Ω such that

➋ g = φ2
1 ·(dψ1)

2 + · · ·+ φ2
d ·(dψd)2.

Moreover, we can assume that d ⩽ 2·(n+ 1)·n2.

Proof. The metric tensor g can be written in local coordinates (x1, . . . , xn)
as

➌ g =
∑
i,j

gij ·dxi ·dxj ,

where gij = gji are smooth functions of (x1, . . . , xn).
Since g is Riemannian, at any point p ∈ Ω, we can choose a chart

so that the vectors ∂i are orthonormal at p; that is, gii = 1 and gij = 0
at p for all i ̸= j. Because the functions gij are smooth, for any ε > 0,
we can find a neighborhood U ∋ p such that

➍ gii ≶ 1± ε and gij ≶ ±ε

for all i ̸= j and any point in U .
Observe that

±dxi ·dxj = 1
2 ·(dxi ± dxj)

2 − 1
2 ·(dxi)

2 − 1
2 ·(dxj)

2.

Let us plug this formula in ➌ and take ➍ into account. Assuming
that ε is small, we will get that g is a linear combination with posi-
tive coefficents of the metric tensors (dxi)

2 and (dxi ± dxj)
2 for all i

and j. In other words, we can take the functions xi and xi±xj for all
i < j as our functions ψ1, . . . , ψd (these should be extended smoothly
to the whole manifold) and find φ1, . . . , φd such that ➋ holds in a
neighborhood of p.

Applying a partition-of-unity argument, we get the global state-
ment.

It suffices to take n2 functions in each chart. So, if Ω is covered
by m charts, then we may take d = n2 ·m. Moreover, the same bound
applies if the charts can be colored using m colors such that charts
of the same color are disjoint. Therefore, Claim 1.9 implies that d =
= n2 ·(n+ 1) suffices.
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Proof of 1.11. Suppose that φ1, . . . , φd, ψ1, . . . , ψd are provided by
1.12. Let r =

√
t; denote by Θi the Nash’s twist for the triple

(r, φi, ψi). By 1.10,
wt = Θ1 ⊕ · · · ⊕Θd

is the needed map with h = (dφ1)
2 + · · ·+ (dφd)

2.

F A pseudoeuclidean degression
Let us denote by Rr ⊖ Rs the pseudoeuclidean space with signature
(r, s); that is, the space Rr+s with the scalar product

⟨x, y⟩ = x1 ·y1 + · · ·+ xs ·ys − xs+1 ·ys+1 − · · · − xs+r ·ys+r,

where xi and yi denote the coordinates of vectors x and y in Rr+s.

1.13. Problem. Show that any metric g on a smooth manifold Ω is
induced by a smooth embedding Ω → Rr ⊖Rs for some large r and s.

Solution based on Nash’s theorem. Note that any metric g can be
written as the difference g = g1 − g2 of two Riemannian metrics g1
and g2 on Ω. By Nash’s theorem, we can find two smooth embeddings
w1, w2 : Ω → Rd whose induced metrics are g1 and g2, respectively. It
remains to observe that g is induced by

w1 ⊖ w2 : p 7→ (w1(p), w2(p)) ∈ Rd ⊖ Rd.

The above solution uses the main theorem, which we have not yet
proved. The following solution is more direct and relies only on Nash’s
twist.

Simpler solution. Assume g is Riemannian, and let φ1, . . . , φd, ψ1, . . .
. . . , ψd be provided by 1.12. Let Θi be Nash’s twist for the triple
(1, φi, ψi), and

h = (dφ1)
2 + · · ·+ (dφd)

2,

Θ = Θ1 ⊕ · · · ⊕Θd : Ω → R2·d,

φ = φ1 ⊕ · · · ⊕ φd : Ω → Rd.

According to 1.10, the map Θ induces g + h. Note that φ induces h.
Therefore w = Θ⊖ φ : Ω → R2·d ⊖ Rd induces g.

To handle the general case, express the metric as a difference of
two Riemannian metrics: g = g1 − g2. As shown above, there exist
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smooth embeddings w1 and w2 into pseudoeuclidean spaces inducing
g1 and g2, respectively. It follows that w1 ⊖ w2 induces g.

1.14. Exercise. Let ψ be a smooth isometric immersion of a Rie-
mannian manifold (Ω, g) into the sphere Sd−1 ⊂ Rd, and let φ : Ω → R
be a smooth function. Show that φ2 ·g is induced by the map φ·ψ⊖φ.



Lecture 2

Reductions

In this lecture, we reduce the main theorem (1.1) to its restricted
version (2.1), which is an immersion theorem for very special metrics
on tori. The reduction proceeds in the following steps:

Restricted theorem (2.1)ww� 2B
Immersion theorem for tori (2.2)ww� 2C
Embeding theorem for tori (2.3)ww� 2D

Embeding theorem for compact manifolds (2.4)ww� 2E
The main theorem (1.1)

A Restricted theorem

Let us denote by Tn = Rn/Zn the n-dimensional torus.
The torus is a smooth manifold; it comes with global periodic coor-

dinates, which can be used to define the partial derivatives ∂1, . . . , ∂n.
A metric tensor on Tn can be written in these coordinates; therefore,
we can (and will) regard a metric tensor as a smooth map g : Tn → RN ,
where N := n(n+1)

2 . These observations make it easier to work with
the torus than with a general manifold.

2.1. Restricted theorem. There exists a Riemannian metric g0 on
Tn such that, for any metric tensor h on Tn, the metric g0 + t·h is

13
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induced by a smooth map Tn → Rd for all sufficiently small t > 0.
Moreover, the dimension d can be bounded in terms of n.

This theorem will be proved in the next lecture; see Section 3C.

B General metric on the torus

2.2. Claim. Given a Riemannian metric g on Tn, there exists an
isometric immersion (Tn, g) ↬ Rd for some d depending only on n.

Reduction of 2.2 to 2.1. Let g0 be the metric from 2.1. After rescaling
if necessary, we may assume that g0 < g; that is, g0(x,x) < g(x,x) for
any nonzero tangent vector x. In particular, the difference g1 = g−g0
is a Riemannian metric.

By 1.11, there exists a metric tensor h such that for any t > 0,
there is a smooth map w1 : Tn → Rd1 that induces g1 + t·h.

By 2.1, for any small t > 0, there is a smooth map w0 : Tn → Rd0
that induces the metric g0 − t·h.

By 1.7, the metric tensor

g = g0 − t·h+ g1 + t·h

is induced by the map w0 ⊕ w1.

C From immersion to embedding

2.3. Claim. Given a Riemannian metric g on Tn, there is an iso-
metric embedding (Tn, g) ↪→ Rd for some d depending only on n.

Reduction of 2.3 to 2.2. Choose your favorite smooth embedding
w1 : Tn → Rn+1. Let g1 = Q(w1, w1); in other words, g1 is the metric
induced by w1. Since w1 is an embedding, g1 must be Riemannian.

We can assume that g > g1; in other words the metric g2 = g − g1
is Riemannian. If this is not the case, replace w1 with its rescaling
ε·w1 for sufficiently small ε > 0.

By 2.2, we have a smooth isometric immersion w2 : (Tn, g2) → Rd.
Note that

w = w1 ⊕ w2 : (Tn, g = g1 + g2) → Rd+2·n+1

is an isometric embedding. Indeed, w is isometric by 1.7, and it is an
embedding since w1 is.
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D From torus to compact

2.4. Claim. Any compact n-dimensional Riemannian manifold (Ω, g)
admits an isometric embedding into Rd for some d that depends only
on n.

This step in the reduction relies on the following exercise:

2.5. Exercise. Let Ω be a closed submanifold of the torus Tn. Show
that any Riemannian metric on Ω is the restriction of a Riemannian
metric on Tn.

Reduction of 2.4 to 2.3. Since Ω is compact, it can be smoothly em-
bedded into T2n+1.

Indeed, by the Whitney embedding theorem, there is a smooth
embedding ι : Ω → R2·n+1. Let g1 be the metric on Ω induced by ι.
Since Ω is compact, we can assume (after rescaling if necessary) that
g > g1; that is, g − g1 is Riemannian, and the image lies in a small
ball. Composing ι with the covering map R2·n+1 → T2·n+1, we obtain
the required embedding into the torus.

Thus, we may assume that Ω is a compact submanifold of T2·n+1.
By 2.5, any Riemannian metric g on Ω is the restriction of a Riemann-
ian metric, say ḡ, on T2·n+1.

Let w : (T2·n+1, ḡ) → Rd be an isometric smooth embedding pro-
vided by 2.3. Then the composition f = w ◦ ι : (Ω, g) → Rd is an
isometric embedding.

E From compact to noncompact
This step is known as Nash's reduction ; it appears in [10, Part D].
Let us begin with two exercises.

2.6. Exercise. Let Ω be a connected noncompact manifold. Show
that it admits a smooth, proper, bounded embedding into Rd \ {0}.
Moreover, given a Riemannian metric g on Ω, we can assume that the
induced metric of this embedding is smaller than g.

2.7. Exercise. Suppose {Di} is a collection of smooth n-discs in a
smooth n-dimensional manifold Ω provided by 1.9. Show that for any
Riemannian metric g on Ω, there exists a collection of Riemannian
metrics hi on Sn and smooth maps ri : Ω → Sn such that:
(a) The restriction ri|D◦

i
is a smooth embedding.

(b) ri maps Ω \D◦
i to the south pole of Sn.

(c) g =
∑

i r
∗
i hi.
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Reduction of 1.1 to 2.4. Let w : Ω → Rd be an embedding provided by
2.6 for the metric 1

2 ·g. Let g0 be the metric induced by w; note that
g1 = g − g0 is Riemannian.

Apply 2.7 to (Ω, g1); let ri, hi, and Di be the resulting maps,
metrics, and smooth n-discs. Since Sn is compact, there exists an
isometric embedding wi : (Sn, hi) → Rd; we may assume that wi ◦ ri
maps all points in Ω \ D◦

i to the origin in Rd. In particular, each
composition wi ◦ ri has compact support in D◦

i .
Let I0, . . . ,In be the coloring of the index set provided by 1.9. Set

si =
∑
i∈Ii

wi ◦ ri and s = s1 ⊕ · · · ⊕ sn+1.

By 1.8 and 1.7,

Q(w ⊕ s, w ⊕ s) = Q(w,w) +
∑
i

Q(si, si) =

= g0 +
∑
i

Q(wi ◦ ri, wi ◦ ri) =

= g0 +
∑
i

r∗i hj

= g0 + g1 = g.

Since w is an embedding, so is w ⊕ s, and the result follows.



Lecture 3

Perturbation

In this lecture, we formulate and prove three lemmas that imply the
restricted version of the main theorem (2.1), and therefore the main
theorem (1.1).

A Free Maps
As before, let Ω be a smooth n-dimensional manifold.

Recall that a C1-map f : Ω → Rd is called a regular map  if its
differential df has rank n at every point. In other words, for any point
p ∈ Ω and for some (and therefore any) choice of local coordinates at
p, the first-order partial derivatives ∂1f, . . . , ∂nf are linearly indepen-
dent.

A C2 map f : Ω → Rd is called a free map  (or two-regular map
) if an analogous property holds for both first- and second-order
partial derivatives: that is, for any point p ∈ Ω and for some (and
therefore any) local coordinates at p, the collection of n+n(n+1)

2 partial
derivatives ∂if , ∂ijf for i ⩽ j are linearly independent.

3.1. Exercise. Show that the freeness of a map f : Ω → Rd does not
depend on the choice of charts on Ω.

3.2. Exercise. Show that there is no free map S2 → R4.

3.3. Exercise. Let f : Ω → Rd1 and w : Ω → Rd2 be smooth maps
defined on a smooth manifold Ω. Show that if f is free, then so is the
map f ⊕ w.

Let ψ be a smooth function on Ω. Define the map Θψ : Ω → R2 by

Θψ(x) = (cos[ψ(x)], sin[ψ(x)]).

17



18 LECTURE 3. PERTURBATION

In other words, Θψ is the composition of two maps

Ω
ψ−→ R ℓ−→ S1 ⊂ R2,

where ℓ : R → S1 is the natural covering map y 7→ (cos y, sin y). Note
that Θψ is Nash’s twist for the triple (1, 1, ψ).

3.4. Exercise. Consider the (x, y)-plane R2. Show that the map

Θx ⊕Θy ⊕Θx+y : R2 → R6 = R2 ⊕ R2 ⊕ R2

is free.
Generalize this statement to maps Rn → Rn(n+1).

3.5. Exercise. Let w : Ω → Rs be a regular smooth map, and let
f : Rs → Rd be a free map. Show that the composition f ◦w : Ω → Rd
is free.

Apply the Whitney embedding theorem and 3.4 to conclude that any
smooth manifold admits a free embedding into a Euclidean space.

B Key lemmas

Recall that our torus Tn = Rn/Zn is equipped with periodic coordi-
nates and globally defined partial derivatives ∂1, . . . , ∂n. Furthermore,
a metric tensor on Tn can be described by a smooth map g : Tn → RN ,
where N := n·(n+1)

2 .
Fix α ∈ (0, 1), say α = 1

2 . Denote by |x − y|Tn the standard
distance between points x, y ∈ Tn. Let us recall the definition of the
Hölder norms of a function u : Tn → R

∥u∥0,α := sup
x∈Tn

{ |u(x)| }+ sup
x,y∈Tn

{
|u(x)− u(y)|
|x− y|αTn

}
,

∥u∥k,α := max
|I|⩽k

{ ∥∂Iu∥0,α } ,

where I = (i1, . . . , in) denotes multi-index; so, ∂I := ∂i11 . . . ∂inn and
|I| := i1 + · · · + in. The space of functions with finite ∥ ∥k,α-norm is
called the (k, α)-Hölder space and is denoted by Ck,α(Tn,R).

3.6. Exercise. Let v ∈ C∞(Tn,R). Show that there is a constant c
such that

∥u·v∥k,α ⩽ c·∥u∥k,α

for any u ∈ Ck,α(Tn,R).
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Now define Ck,α(Tn,Rd) as the space of functions u : Tn → Rd
whose coordinate functions u1, . . . , ud belong to Ck,α(Tn,R), and set

∥u∥k,α := max
i

{ ∥u1∥k,α, . . . , ∥ud∥k,α }.

From now on, fix a smooth free map f : Tn → Rd; it exists by 3.5.
Furthermore, define

L(w) := 2·Q(f, w).

3.7. Nash’s lemma. The linear operator

L : C∞(Tn,Rd) → C∞(Tn,RN )

admits a right inverse

M : C∞(Tn,RN ) → C∞(Tn,Rd)

such that
∥Mh∥2,α ⩽ a·∥h∥2,α

for some constant a.

3.8. Günther’s lemma. There exists a symmetric bilinear form

Q̃ : C∞(Tn,Rd)× C∞(Tn,Rd) → C∞(Tn,Rd)

such that

LQ̃ = Q,

∥Q̃(w,w)∥2,α ⩽ b2 ·∥w∥22,α,
∥Q̃(w,w)∥k,α ⩽ b2 ·∥w∥2,α ·∥w∥k,α + bk ·∥w∥2k−1,α

for any integer k ⩾ 3 and for some fixed constants b2, b3, . . .

C Perturbation
We now complete the proof of Nash’s theorem, modulo the two lemmas
stated in the previous section. Recall that f : Tn → Rd is a fixed
smooth free map and L(w) := 2·Q(f, w).

3.9. Perturbation lemma. There exists r > 0 such that the equa-
tion

➊ L(w) +Q(w,w) = h
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admits a smooth solution w : Tn → Rd for any smooth metric h with
∥h∥2,α < r. Moreover, we can assume that

∥w∥2,α ⩽ c·∥h∥2,α

for some constant c.

In the previous lecture, we showed that the restricted theorem
(2.1) implies the main theorem (1.1). Now we will show that the
perturbation lemma implies the restricted theorem (2.1), and therefore
the main theorem (1.1).

Proof of 2.1 modulo 3.9. Let g be the metric tensor induced by f .
Note that the equation

Q(f + w, f + w) = g + h

is equivalent to ➊. Indeed,

Q(f + w, f + w) = Q(f, f) + 2·Q(f, w) +Q(w,w)

= g + L(w) +Q(w,w).

Hence, the restricted theorem (2.1) follows.

In the proof of the perturbation lemma, we will follow the argument
of the classical inverse function theorem in Banach spaces; see, for
example, [8].

Proof of 3.9. Recall that M , Q̃, a, and b2 are provided by 3.7 and 3.8.
Set R = 1

10·b2 and r = R
10·a . Assume ∥h∥2,α ⩽ r. By 3.8,

Φ: w 7→Mh− Q̃(w,w)

is a contraction on the closed ball B[0, R] ⊂ C2,α(Tn,Rd).
Consider the sequence of maps w0, w1, . . . : Tn → Rd defined by

w0 = 0 and wn+1 = Φ(wn) for all n. Note that each wn is smooth.
Since Φ is a contraction, wn converges in C2,α(Tn,Rd) as n → ∞;
denote its limit by w. Then

∥w∥2,α ⩽ R and w =Mh− Q̃(w,w).

Since LM = id and LQ̃ = Q, applying L to both sides yields that
w solves ➊.

To finish the proof, it remains to show the following claim:

➋ The sequence ∥wn∥k,α is bounded for every integer k ⩾ 2.

Indeed, since
∥w∥k,α ⩽ lim

n→∞
∥wn∥k,α
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it follows that w ∈ Ck,α for every k; hence w ∈ C∞.
We prove ➋ by induction on k. The base case k = 2 is proved

already.
By the induction hypothesis, ∥wn∥k−1,α is bounded. In particular,

there is a constant c such that

∥Mh∥k−1,α + bk ·∥wn∥2k−1,α ⩽ c

for all n; here bk is the constant from 3.8.
Using the second estimate in 3.8, we get

∥wn+1∥k,α ⩽ ∥Mh∥ + b2 ·∥wn∥2,α ·∥wn∥k,α + bk ·∥wn∥2k−1,α ⩽

⩽ c+ b2 ·R·∥wn∥k,α ⩽

⩽ c+ 1
10 ·∥wn∥k,α.

In particular,

∥wn∥k,α ⩽ 2·c =⇒ ∥wn+1∥k,α ⩽ 2·c

for all n. Since w0 = 0, Claim ➋ follows.

3.10. Exercise. Show that any n-dimensional Riemannian manifold
admits an isometric embedding into an arbitrarily small ball in Rd for
some d depending only on n.

D Proof of Nash’s lemma
Recall that f : Tn → Rd is a fixed free map; in particular, f is regular
and smooth.

The tangent space Tp is the n-dimensional space spanned by the
first-order partial derivatives ∂1f, . . . , ∂nf at p. Let T⊥

p denote the
orthogonal complement of Tp in Rd. Further, define the osculating
space T2

p as the span of all first- and second-order partial derivatives
∂if and ∂ijf at p, and set Np := T2

p ∩ T⊥
p .

Since f is free, the dimensions of the spaces Tp, T⊥
p , T2

p, and Np

are n, d − n, n + n(n+1)
2 , and n(n+1)

2 , respectively. We will write T,
T⊥, T2, and N for the corresponding vector bundles over Tn.

Proof of 3.7. Recall that Tn has global periodic coordinates.
Choose a metric tensor h on Tn. Since all ∂if , ∂ijf are linearly

independent, the equations ⟨∂ijf, w⟩ = hij for all i and j uniquely
define a N-vector field w. Equivalently, w can be defined as a linear
combination of ∂if , ∂ijf such that

➊ ⟨∂if, w⟩ = 0, −2·⟨∂ijf, w⟩ = hij
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at each point.
Note that

Lij(w) = 2·Qij(f, w) =
= ⟨∂if, ∂jw⟩+ ⟨∂jf, ∂iw⟩ =
= ∂j⟨∂if, w⟩+ ∂i⟨∂jf, w⟩ − 2·⟨∂ijf, w⟩.

By ➊, the operator M : h 7→ w serves as the desired right inverse.

This proof implies the following.

3.11. Observation. The inverse M in Nash’s lemma (3.7) can be
chosen so that Mh is an $\N $-field  ; that is, Mh(p) ∈ Np for all p ∈ Tn.

The following exercise provides a key to proof of Günther’s lemma.

3.12. Exercise. Let f : Tn → Rd be a free map. Given a tangent
vector field v on Tn and a metric tensor h on Tn, show that there is
a unique N-field w such that

L(v + w) = h.

In other words, given v, there is a right inverse Mv : h 7→ v + w of L,
where w is an N-field.

E Proof of Günther’s lemma

There are many symmetric bilinear forms that solve the equation
LQ̃ = Q. In particular, one can take Q̃ = MQ, where M is provided
by Nash’s lemma (3.7). However, this choice of Q̃ does not satisfy
the inequalities required by Günther’s lemma. These inequalities are
essential; they enable the use of the contraction mapping theorem in
the proof of the perturbation lemma (3.9).

The actual construction of Q̃ relies on Exercise 3.12, which states
that, given a tangent vector field v, we can choose M such that w =
= Mh− v is an N-field. The choice of v provides additional freedom,
which might seem unnecessary at first.

Indeed, moving the map in a tangential direction does not affect the
Riemannian metric to first order; it only changes the parametrization.1
However, as we will see, v can be used to absorb high-frequency terms
(see ➋ and ➐ below), which desolves the loss-of-derivatives problem—
the main difficulty in Nash’s original proof.

1Compare this to the DeTurck trick used in the Ricci flow.
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The Laplacian is defined by

∆u =
∑
s

∂ssu,

where ∂1, . . . , ∂n are our standard partial derivatives on Tn.
Let k ⩾ 2 be an integer and let v ∈ Ck−2,α(Tn,R). Fourier analysis

guarantees the existence of a weak solution u to the equation ∆u−u =
v. By the Schauder estimate , it follows that u ∈ Ck,α(Tn,R), and
we obtain the following proposition.2

3.13. Proposition. Recall that α ∈ (0, 1) is a fixed constant, say
α = 1

2 . Let k ⩾ 2 be an integer. Then the operator

(∆− 1) : Ck,α(Tn,R) → Ck−2,α(Tn,R).

is bi-Lipschitz. In particular, the linear operator

(∆− 1) : u 7→ ∆u− u

has a Lipschitz inverse

➊ (∆− 1)−1 : Ck−2,α(Tn,R) → Ck,α(Tn,R)

Note that (∆−1)−1 is a smoothing operator; it swallows a Ck−2,α-
function and spits a Ck,α-function. Moreover, (∆ − 1)−1 commutes
with partial derivatives; that is,

(∆− 1)−1∂i = ∂i(∆− 1)−1.

These two properties of (∆−1)−1 will play a key role in the proof that
follows.

Proof of 3.8. Recall that Qij(w,w) = ⟨∂iw, ∂jw⟩. Let us show that

➋ (∆− 1)Qij(w,w) = Aij(w) + ∂iAj(w) + ∂jAi(w),

where each Aij , Ai and Aj is a linear combination of the following
quadratic forms

➌ w 7→ ⟨∂aw, ∂bw⟩, w 7→ ⟨∂abw, ∂cw⟩, w 7→ ⟨∂abw, ∂cdw⟩.

for all indices a, b, c, d.

2A proof of the Schauder estimates can be found in [7, Chapter 3]; some parts
can be omitted in our case.
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Indeed,

(∆− 1)Qij(w,w) = −⟨∂iw, ∂jw⟩+

+
∑
s

[2·⟨∂isw, ∂jsw⟩+ ⟨∂issw, ∂jw⟩+ ⟨∂iw, ∂jssw⟩] =

= −⟨∂iw, ∂jw⟩+ 2·
∑
s

⟨∂isw, ∂jsw⟩ − 2·⟨∆w, ∂ijw⟩+

+ ∂i⟨∆w, ∂jw⟩+ ∂j⟨∆w, ∂iw⟩.

This proves ➋.
Now choose A = Ai or A = Aij for some i and j. Note that

➍
∥A(w)∥0,α ⩽ c2 ·∥w∥22,α,

∥A(w)∥k−2,α ⩽ c2 ·∥w∥k,α ·∥w∥2,α + ck ·∥w∥2k−1,α.

for some fixed constants c2, c3, . . . These inequalities follow by checking
each form in ➌, which is straightforward.

Applying ➊, we get

➎
∥(1−∆)−1A(w)∥2,α ⩽ c2 ·∥w∥22,α,
∥(1−∆)−1A(w)∥k,α ⩽ c2 ·∥w∥k,α ·∥w∥2,α + ck ·∥w∥2k−1,α;

these constants c2, c3, . . . here may differ from those above, but each
depends only on the map f .

Recall also that

➏ Lij(w) = −2·⟨∂ijf, w⟩+ ∂i⟨∂jf, w⟩+ ∂j⟨∂if, w⟩;

see Section 3D. Let us define Q̃ as a linear combination of ∂if and
∂ijf for all i ⩽ j such that

➐
−2·⟨∂ijf, Q̃(w,w)⟩ = (∆− 1)−1Aij(w),

⟨∂if, Q̃(w,w)⟩ = (∆− 1)−1Ai(w)

for all i and j. Since f is free, Q̃ is well-defined. Combining ➏, ➐, and
➋, we get

LQ̃ = Q.

Let {ei, eij}i⩽j be the dual frame to {∂if, ∂ijf}i⩽j in osculating
bundle T2. Note that

Q̃(w,w) =
∑
i

(∆− 1)−1Ai(w)·ei − 1
2 ·

∑
i⩽j

(∆− 1)−1Aij(w)·eij .

Since the maps ei, eij : Tn → Rd are smooth, ➎ together with 3.6 imply
the final inequality in the lemma for all integers k ⩾ 3.
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1.2. Choose a point p ∈ Ω and a chart at p.
Assume that the main theorem holds for some dimension d. Then

the components gij = g(∂i, ∂j) of any Riemannian metric can be writ-
ten as

➑ ⟨∂iw, ∂jw⟩ = gij ,

for some smooth map w : Ω → Rd.
There are

(
n+1
2

)
= n·(n + 1)/2 components gij , each of which is

a smooth function on Ω. The equation ➑ has d unknowns; namely,
the coordinate functions of w. This suggests that d should be at least(
n+1
2

)
. The remaining proof is very standard, we reduce the problem

to an algebraic system between the jet spaces  of w and g at the point
p; the jet space corresponds to the space of Taylor polynomials of a
given degree at p.

Denote by Jm(g) the degree-m Taylor polynomial of g at p. This
polynomial has

(
m+n
n

)
coefficients in an n·(n+1)/2-dimensional space.

(Each coefficient corresponds to a certain partial derivative of g of
order at most m at p.) Such polynomials form an open subset of a(
n+1
2

)
·
(
m+n
n

)
-dimensional space.

Similarly, let Jm(w) be the degree-m Taylor polynomial of w at
p. This polynomial has

(
m+n
n

)
coefficients in a d-dimensional space;

hence these polynomials form a space of dimension d·
(
m+n
n

)
.

The equations ➑ define a smooth map Jm+1(w) 7→ Jm(g). In other
words, any partial derivative of g of degree at most m can be expressed
in terms of partial derivatives of w of degree at most m+1. Since the
system ➑ admits a solution for any metric g, there exists a Jm+1(w)
mapping to any given Jm(g). By Sard’s lemma,

d·
(
m+n+1

n

)
⩾

(
n+1
2

)
·
(
m+n
n

)
.

Since
(
m+n+1

n

)
/
(
m+n
n

)
→ 1 as m→ ∞, we conclude that d ⩾

(
n+1
2

)
.
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Remark. The proof is taken from [2, Appendix I] and it works for
general system of partial differential equations.

Equation ➑ makes perfect sense for C1-smooth maps w, but the
proof essentially uses that w is Cm-smooth for sufficiently large m.
Without this assumption, the statement does not hold.

Indeed, the Nash–Kuiper theorem [6, 9] states that equation ➑
admits a C1-smooth solution w if d = n + 1. This bound is optimal,
since if d = n, then the metric g must be flat, which is not the case in
general. Note that for d = n+ 1, the system ➑ is overdetermined, yet
still admits a C1-smooth solution.

It might happen that the optimal dimension for C2-embeddings is
smaller than

(
n+1
2

)
; at least the our argument gives a worse bound in

this case. This question mentioned by Mikhael Gromov and Vladimir
Rokhlin [2].3

1.3. Consider square of a parallel 1-form α on T2 with kernel in
irrational direction.

1.4. The only-if part is trivial.
Apply the length-preserving property to all arcs of curves in the

coordinate directions to show that the equality

gii = ⟨∂iw, ∂iw⟩

holds almost everywhere, and therefore everywhere.
Observe that

2·gij = g(∂i + ∂j , ∂i + ∂j)− g(∂i, ∂i)− g(∂j , ∂j).

Using this formula together with the argument above for curves in the
direction ∂i, ∂j and ∂i + ∂j , show that the equality

gij = ⟨∂iw, ∂jw⟩

holds almost everywhere, and therefore everywhere.

1.5. Assume the contrary; let w : R2 → R be a length-preserving map.
Note that w is Lipschitz. By Rademacher’s theorem [12], the dif-

ferential dxw is defined for almost all x. Argue as in 1.4 to show that
|∂1w| = |∂2w| = 1, but ∂1w·∂2w = 0 almost everywhere and arrive at
a contradiction.

3Counting degrees of freedom of curvature tesor one can get d ⩾ 1
6
·n·(n + 5).

Indeed the curvature nensor has 1
12

·n2 ·(n2 − 1) idependent components, and each
quadratic form has n(n+1) idependent components. Applying Gauss formula, we
get that the codimension of the embedding has to be at least 1

6
·n·(n+ 1).



27

Remark. This argument also shows that there is no length-preserving
map from an n-dimensional Riemannian manifold to Rn−1. On the
other hand, a theorem of Mikhael Gromov [1, Section 2.4.11] im-
plies that any n-dimensional Riemannian manifold admits a length-
preserving map into Rn. This is a close relative of the Nash–Kuiper
theorem [6, 9]. Another proof of Gromov’s theorem is outlined in the
previously mentioned lecture notes [11].

1.7+1.8. Spell out the definitions.

1.14. Straightforward calculations.

2.5. By the definition of a submanifold, we can cover Ω by rectangular
charts in which Ω is expressed as the coordinate subspace of the first
k = dimΩ coordinates. Note that in each such chart, the metric on Ω
can be written as the restriction of a Riemannian metric on the entire
chart.

Extend this collection of charts to an atlas of Tn such that the
images of the remaining charts do not intersect Ω. Equip these new
charts with constant Riemannian metrics.

Choose a partition of unity subordinate to the chart covering, and
use it to patch together the local metrics into a smooth Riemannian
metric on Tn.

2.6. Let ι : Ω → Rd be an embedding provided by Whitney’s theorem.
Think of Rd as the affine subspace {xd+1 = 1} in Rd+1. The desired
embedding can be found among maps of the form x 7→ φ·ι(x), where
φ : Ω → R is a smooth positive function.

Try writing down the necessary conditions and convince yourself
that such a function φ exists.

2.7. Let D ⊂ Rn be the unit n-disc, and let D◦ denote its interior.
Construct a smooth map r : Rn → Sn such that r|D◦ is a smooth
embedding, and the set Rn \ D◦ is mapped to the south pole.

Since each Di is a smooth n-disc, there exists a diffeomorphism
ιi : D → Di. Then the composition ri = r ◦ ι−1

i satisfies the first two
conditions.

Now, let us construct a metrics hi on Sn that meet the last condi-
tion. Start by choosing sufficiently small metrics ĥi on Sn such that

g > ĝ =
∑
i

r∗i ĥi,

and let g1 = g − ĝ.
Choose a partition of unity φi subordinate to the covering {D◦

i };
that is,

∑
φi = 1, each φi ⩾ 0, and the support of φi lies in D◦

i for
each i. Denote by si the inverse of the restriction ri|D◦

i
.
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Observe that s∗i (φi ·g1) is a nonnegative metric on Sn and φi ·g1 =
= r∗i s

∗
i (φi ·g1) for each i. Therefore, the metric

hi = ĥi + s∗i (φi ·g1)

is Riemannian. Verify that each hi satisfies the last condition.

3.1. Show and use that a smooth map f : Ω → Rd is free at p ∈ Ω if
there is no affine subspace A of dimension less than n·(n+3)

2 that has
second-order contact  with f at p; that is,

ρ ◦ f(x) = o(|p− x|2),

where ρ(z) denotes the distance from z to A.
Alternatively, express the partial derivatives in one chart in terms

of the partial derivatives in another chart and draw the conclusion.

3.2. The definition of a free map requires the linear independence of
certain partial derivatives. Count them.

3.3. Spell the definition.

3.4. This can be done by computing the partial derivatives. Alterna-
tively, one may use the observation about the order of contact with an
affine subspace from 3.1.

In the higher-dimensional case, one may take⊕
i⩽j

Θxi+xj ,

where xi are coordinate functions. The same argument should work.

3.5. Use the definition of free map and 3.1.

3.6. Apply the product rule for derivatives.

3.10. Check that all constructions in the proof of the main theorem
can be carried out in an arbitrarily small neighborhood of the origin.

Alternatively, construct an isometric em-
bedding of Rd into a small neighborhood of
the origin in R2·d (take product of embeddings
R ↪→ R2 shown on the picture) and compose
it with an isometric embedding (Ω, g) ↪→ Rd
provided by the main theorem.

3.12. Note that the equation can be written
as L(w) = ĥ, where ĥ = h− L(v). Then argue
as in Nash’s lemma.
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[12] H. Rademacher. „Über partielle und totale Differenzierbarkeit von Funktio-
nen mehrerer Variablen und über die Transformation der Doppelintegrale.
I, II.“ Math. Ann. 79 (1920), 340–359.

[13] T. Tao. Notes on the Nash embedding theorem. url: https://terrytao.
wordpress.com/2016/05/11/.

[14] M. Taylor. Partial differential equations III. Nonlinear equations. Vol. 117.
Applied Mathematical Sciences. 2011.

[15] J. H. C. Whitehead. “Simplicial Spaces, Nuclei and m-Groups”. Proc. London
Math. Soc. (2) 45.4 (1939), 243–327.

[16] Deane Yang. Gunther’s proof of Nash’s isometric embedding theorem. 1998.
arXiv: math/9807169 [math.DG].

31

https://people.math.sc.edu/howard/Notes/nash.pdf
https://people.math.sc.edu/howard/Notes/nash.pdf
https://terrytao.wordpress.com/2016/05/11/
https://terrytao.wordpress.com/2016/05/11/
https://arxiv.org/abs/math/9807169

	Formulation and approximation
	Induced metric
	Q-form
	Disc covering
	Nash's twist
	Approximate version
	A pseudoeuclidean degression

	Reductions
	Restricted theorem
	General metric on the torus
	From immersion to embedding
	From torus to compact
	From compact to noncompact

	Perturbation
	Free Maps
	Key lemmas
	Perturbation
	Proof of Nash's lemma
	Proof of Günther's lemma

	Semisolutions
	Bibliography

