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Preface

This book is similar to our “Invitation to ALexandrov geometry” writ-
ten jointly with Stephanie Alexander [3]. We try to demonstrate the
beauty and power of Alexandrov geometry by reaching interesting ap-
plications and theorems with minimal preparation. This time we do
spaces with curvature bounded below in the sense of Alexandrov. We
have extensively used another book of us with Stephanie Alexander
[4].

This subject is more technical; it takes more preparation, and we
had to jump over some proofs. Namely, we skip the proof of existence
part in generalized Picard’s theorem (5.3) and Perelman’s theorem
about conic neighborhoods (9.1); the rest is nearly rigorous. Some
important statements stated as exercises, but they are nearly solved
in hints at the end of the book.

In Lecture 1, we discuss necessary preliminaries and fix notations.

Lecture 2 introduces the main object of our study — spaces with
curvature bounded below in the sense of Alexandrov.

In Lecture 3, we formulate and prove the globalization theorem —
local Alexandrov condition implies global. To simplify the presenta-
tion, we consider only the compact case, but this case is leading.

In Lecture 4, we do beginning of calculus — tangent space and
space of directions, differential, and gradient.

Lecture 5 introduces gradient flow, which will be further used as
the main technical tool.

Lecture 6 proves the line splitting theorem, providing the first ap-
plication of gradient flow. Furthermore, we introduce and study the
linear subspace of tangent space.

In Lecture 7, we introduce linear dimension and volume. Further,
we prove the Bishop—Gromov inequality and the right-inverse theorem,
introduce the distance chart, and show that all reasonable types of
dimension are the same for Alexandrov spaces.

Lecture 8 shows that a lower curvature bound survives in the
Gromov—Hausdorff limit and proves Gromov’s selection theorem. Fur-
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4 CONTENTS

ther, we present Perelman’s construction of strictly concave functions
and apply it with Gromov’s selection theorem to prove the homotopy
finiteness theorem. This proof illustrates the main source of applica-
tions of Alexandrov geometry.
In Lecture 9, we introduce the boundary of finite-dimensional Alex-
androv spaces and prove the doubling theorem.
In Lecture 10, we show that quotients of Alexandrov spaces by
isometric group action are Alexandrov spaces and give several appli-
cations of this statement. This is another source of applications of
Alexandrov geometry.
Lecture 11 brings us back to the original object of study of Alex-
androv. We show that the surface of a convex body in Euclidean
space is an Alexandrov space. This is historically the first source of
applications of Alexandrov geometry.
Finally, Appendix A sketches Alexandrov’s embedding theorem of
convex polyhedra. Historically, this theorem is the first remarkable
result in Alexandrov geometry, dating back to 1941. The proof is very
well written by Alexandrov, but we decided to include its sketch here
due to its beauty and importance. This appendix was written by Nina
Lebedeva and the second author for for a book about St. Petersburg
mathematicians and their discoveries [53].
Let us give a list of available texts on Alexandrov spaces with
curvature bounded below:
¢ The 2-dimensional theory is treated in the classical book of
Alexandr Alexandrov [7].

¢ The first introduction to Alexandrov geometry of all dimensions
is given in the original paper by Yuriy Burago, Michael Gro-
mov, and Grigory Perelman [16] and its extension [71] written
by Perelman.
o A brief and reader-friendly introduction was written by Kat-
suhiro Shiohama [90, Sections 1-8].

¢ Another reader-friendly introduction, written by Dmitri Burago,
Yuriy Burago, and Sergei Ivanov [15, Chapter 10].

o Survey by Conrad Plaut [86].

o Survey by the second author [78].
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in Yaroslavl, at SPbSU, and the University of Toronto. We want to
thank these institutions for hospitality and support.

We were partially supported by the following grants: Vitali Ka-
povitch — NSERC Discovery grants; Anton Petrunin — NSF grant
DMS-2005279.



Lecture 1

Preliminaries

A Prerequisites

We assume that the reader is familiar with the following topics in
metric geometry:

o Compactness and proper metric spaces; recall that a metric space
is proper if all its closed balls (with finite radius) are compact.

o Complete metric spaces and completion.

o Curves, semicontinuity of length and rectifiability.

o Hausdorff and Gromov-Hausdorff convergence. These are dis-
cussed briefly in 1I-1M. The definitions are there, but it would
be hard to follow without prior experience.

All these topics are treated in [15] and [83]. Occasionally, we use the
Baire category theorem and Rademacher’s theorem, but these could
be used as black boxes.

We use some topology. Most of the time, any introductory text
in algebraic topology should be sufficient. For some examples, we use
more advanced results, but these could also be used as black boxes.

Since most of the applications come from Riemannian geometry, it
is better to be familiar with the Toponogov comparison theorem and
related topics. The classical book by Jeff Cheeger and David Ebin [18]
contains more than one needs.

B Notations

The distance between two points x and y in a metric space X will be
denoted by |z —y| or |z — y|,. The latter notation is used if we need
to emphasize that the distance is taken in the space X.
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Given radius r € [0, 0] and center z € X, the sets

B(z,r)={yeX :|x—y|<r},
Blz,r={yeX :|z—y| <r}

are called, respectively, the open and the closed balls. The nota-
tions B(z,7)x and B[z, r]x might be used if we need to emphasize
that these balls are taken in the metric space X.

We will denote by S, E", and H" the n-dimensional sphere (with
angle metric), Euclidean space, and Lobachevsky space respectively.
More generally, M"(x) will denote the model n-space of curvature
k; that is,

o if kK > 0, then M"™(x) is the n-sphere of radius ﬁ, so S™ = M"(1)

o M™(0) = E",

o if k < 0, then M" (k) is the Lobachevsky n-space H" rescaled by

factor \/%; in particular M"(—1) = H".

C Length spaces

Let X be a metric space. If for any ¢ > 0 and any pair of points
xz,y € X, there is a path o connecting = to y such that

lengtha < |z —y| + &,

then X is called a length space and the metric on X is called a
length metric.

1.1. Exercise. Let X be a complete length space. Show that for
any compact subset K C X there is a compact path-connected subset
K' C X that contains K.

Induced length metric. Directly from the definition, it follows that
if a: [0,1] — X is a path from z to y (that is, «(0) = z and «(1) = y),
then

lengtha > |z — y].

Set
|z — y|| = inf{length o }

where the greatest lower bound is taken for all paths from x to y. It is
straightforward to check that (z,y) — ||z — y|| is an co-metric; that
is, (z,y) — ||z — y|| is a metric in the extended positive reals [0, 00].
The metric || — *|| is called the induced length metric.
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1.2. Exercise. Suppose (X, |x—x|) is a complete metric space. Show
that (X, ||x — *||) is complete; that is, any Cauchy sequence of points
in (X, % —*||) converges in (X, || — *||).

Let A be a subset of a metric space X'. Given two points z,y € A,
consider the value

|z — y| 4 = inf{length a },

where the greatest lower bound is taken for all paths a from z to y
in A. In other words, |* — %|, denotes the induced length metric on
the subspace A. (The notation |* — %| 4 conflicts with the previously
defined notation for distance |z — y|, in a metric space X'. However,
most of the time we will work with ambient length spaces where the
meaning will be unambiguous.)

D Geodesics

Let X be a metric space and I a real interval. A distance-preserving
map v: I — X is called a geodesic'; in other words, v: I — X is a
geodesic if

v(8) =v(@®)] = [s = |

for any pair s,t € 1.

If v: [a,b] — X is a geodesic such that p = y(a), ¢ = v(b), then
we say that v is a geodesic from p to ¢. In this case, the image of
~ is denoted by [pg], and, with abuse of notations, we also call it a
geodesic. We may write [pg]x to emphasize that the geodesic [pq] is
in the space X.

In general, a geodesic from p to g need not exist and if it exists, it
need not be unique; for example, any meridian is a geodesic between
poles on the sphere. However, once we write [pg] we assume that we
have chosen such a geodesic.

A geodesic path is a geodesic with constant-speed parameteri-
zation by the unit interval [0, 1].

A metric space is called geodesic if any pair of its points can be
joined by a geodesic.

Evidently, any geodesic space is a length space.

1.3. Exercise. Show that any proper length space is geodesic.

1Others call it differently: shortest path, minimizing geodesic. Our meaning of
the term geodesic is different from what is used in Riemannian geometry, altho
they are closely related.
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E Menger’s lemma

1.4. Lemma. Let X be a complete metric space. Assume that for any
pair of points x,y € X, there is a midpoint z. Then X is a geodesic
space.

This lemma is due to Karl Menger [63, Section 6].
Proof. Choose z,y € X; set v(0) = z, and v(1) = y.

Let y(3) be a midpoint between v(0) and ~(1). Further, let v(%)
and v(2) be midpoints between the pairs (v(0),~(3)) and (v(3),7(1))
respectively. Applying the above procedure recursively, on the n-th
step we define 7(2%), for every odd integer k such that 0 < 2% <1, as
a midpoint of the already defined v(£-1) and v(&EL).

This way we define (t) for all dyadic rationals ¢ in [0, 1]. Moreover,
~ has Lipschitz constant |z — y|. Since X is complete, the map v can

be extended continuously to [0, 1]. Moreover,

lengthy < |z — y|.

Therefore v is a geodesic path from x to y. O

1.5. Exercise. Let X be a complete metric space. Assume that for
any pair of points x,y € X, there is an almost midpoint; that is,
given € > 0, there is a point z such that

lz—z|<ile—yl+e and |y—z[ <3 |lz—y|l+e.

Show that X is a length space.

F Triangles and model triangles

Triangles. Given a triple of distinct points p, g, in a metric space
X, a choice of geodesics ([gr], [rp], [pg]) will be called a triangle; we
will use the short notation [pgr] = [pgr]x = ([g7], [rp], [pq])-

Given a triple p,q,r € X there may be no triangle [pgr| simply
because one of the pairs of these points cannot be joined by a geodesic.
Also, many different triangles with these vertices may exist, any of
which can be denoted by [pgr]. If we write [pgr], it means that we
have chosen such a triangle.
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Model triangles. Given three points p, g, r in a metric space X, let

us define its model triangle [pgr] (briefly, [pGF] = A(pgr)gz) to be
a triangle in the Euclidean plane E? such that

p—dlgz=p—dlx, |1Gd—Flge=1la—7lx, |[F—=Dlg2=1[r—plx-

In the same way, we can define the hyperbolic and the spherical
model triangles A(pqr)Hz, A(pqr)gz in the Lobachevsky plane H?
and the unit sphere S2. In the latter case, the model triangle is said
to be defined if in addition

lp—q|l +|qg—7|+|r—pl <27

In this case, the model triangle again exists and is unique up to an
isometry of S2.

Model angles. If [pG7] = A(pgr)gz and |p —q|, |p — r| > 0, the angle
measure of [pgr] at p will be called the model angle of the triple p,
q, r and will be denoted by Z(pg)Ez. B

For example, if |p —q| = [¢ — 7| = |[r — p|, then L(pD)g> = %
regardless of existence and relative position of geodesics [pq] and [pr].

The same way we define Z(p,‘Z)Mp(H); in particular, Z(pg)Hz and
4(p%)s>. We may use the notation £(p?) if it is evident which of the
model spaces is meant.

1.6. Exercise. Show that for any triple of point p, q, and r, the
function

K= Z@?)M?(H)

is mondecreasing in its domain of definition.

G Hinges and their angle measure

Hinges. Let p,z,y € X be a triple of points such that p is distinct
from x and y. A pair of geodesics ([px], [py]) will be called a hinge
and will be denoted by [py] = ([pz], [py])-

x

Angles. The angle measure of a hinge [p§

limit

] is defined as the following

where T € |pz] and § € |py].
If £[py] is defined, then
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1.7. Exercise. Suppose that in the above definition, one uses spher-
ical or hyperbolic model angles instead of Euclidean. Show that it does
not change the value £[py].

x

o] in a metric space

1.8. Exercise. Give an example of a hinge [p
with an undefined angle measure £[py].

H Triangle inequality for angles

1.9. Proposition. Let [pz1], [px2], and [pxs] be three geodesics in a
metric space. Suppose all the angle measures a;; = £[p fj] are defined.
Then

Q13 < Q12 + Qog.

Proof. Since a3 < 7w, we can assume that ajs + ass3 < 7. Denote
by 7; the unit-speed parametrization of [px;] from p to x;. Given any
e > 0, for all sufficiently small ¢,7,s € Ry( we have
[71(t) = 73(7)| < [71(t) = 72(8)| + [r2(s) —3(7)] <
< V12 + 52— 2-t-5-cos(aa + )+
+ /82 + 72 —2.5-7- cos(agz +¢) <

Below we define s(t, 7) so that for s = s(¢,7),
this chain of inequalities can be continued as fol-
lows:

< \/t2 + 72 —2-t-7- cos(aqg + oz + 2-€).

Thus for any ¢ > 0,

o13 < g + a3 + 2-€.

Hence the result follows.

To define s(t, 7), consider three half-lines 41, 42, 43 on a Euclidean
plane starting at one point, such that £(31,92) = a12 +¢&, £(F2,73) =
= a9z + ¢, and £L(F1,%3) = 12 + aos + 2-. We parametrize each
half-line by the distance from the starting point. Given two posi-
tive numbers ¢,7 € Rsp, let s = s(¢,7) be the number such that
2(s) € [1(t) A3(7)]. Clearly, s < max{t,7}, so t,7,s may be taken
sufficiently small. O

1.10. Exercise. Prove that the sum of adjacent angles is at least m.
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More precisely: suppose two hinges [pZ] and [pY] are adjacent;

that is, they share side [pz], and the union of two sides [px] and [py]
form a geodesic [xy]. Show that

Alpil+<Lpll =7

whenever each angle on the left-hand side is defined.
Give an example showing that the inequality can be strict.

1.11. Exercise. Assume that the angle measure of [q2] is defined.

Let v be the unit speed parametrization of [qx] from q to x. Show that

lp— (1) <lg—pl =t cos(£]gh]) + o(t).

I Hausdorff convergence

1.12. Definition. Let A;, Ay, ... be a sequence of closed sets in a
metric space X. We say that the sequence A, converges to a closed
set Ay in the sense of Hausdorff if, for any x € X, we have
dist 4, () — dista_ () as n — oo.

For example, suppose X is the Euclidean plane and A,, is the circle
with radius n and center at the point (0,n); it converges to the z-axis.

A Ay Az Ay As

Ao

Further, consider the sequence of one-point sets B,, = {(n,0)} in
the Euclidean plane. It converges to the empty set; indeed, for any
point x we have distp, () — oo as n — oo and distg(x) = oo for
any x.

The following exercise is an extension of the so-called Blaschke
selection theorem to our version of Hausdorff convergence.

1.13. Exercise. Show that any sequence of closed sets in a proper
metric space has a convergent subsequence in the sense of Hausdorff.
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J Hausdorff metric

1.14. Definition. Let A and B be two non-empty compact subsets
of a metric space X. Then the Hausdorff distance between A and
B is defined as

|A — Blgaus x := sug{ |dist 4 (x) — distg(z)| }.
€

The following observation gives a useful reformulation of the defi-
nition:

1.15. Observation. Suppose A and B be two compact subsets of a
metric space X. Then |A — Blaawsx < R if and only if and only if
B lies in an R-neighborhood of A, and A lies in an R-neighborhood
of B.

The following exercise implies that Hausdorff convergence of com-
pact subsets is the convergence in Hausdorff metric.

1.16. Exercise. Let A, As, ..., and Ay, be compact non-empty sets
in a metric space X. Show that |Ay, — Acolgaus v — 0 as n — o0 if
and only if A, — As in the sense of Hausdorff.

K Gromov—Hausdorff convergence

Let X1, Xs, ..., and X, be a sequence of complete metric spaces. Sup-
pose that there is a metric on the disjoint union

X = |_| X,

neNU{co}

that satisfies the following property:

1.17. Property. The restriction of the metric on each X, and X5
coincides with its original metric, and X, — X as subsets in X in
the sense of Hausdorff.

In this case we say that the metric on X defines a convergence
X, — X5 in the sense of Gromov-Hausdorff. The metric on
| | A, makes it possible to talk about limits of sequences z,, € X,, as
n — 00, as well as weak limits of a sequence of Borel measures p,, on
X,, and so on.

The limit space is not uniquely defined by the sequence. For ex-
ample, if each space X, in the sequence is isometric to the half-line,
then its limit might be isometric to the half-line or the whole line. The



L. GROMOV-HAUSDORFF METRIC 13

X1

Koo

first convergence is evident and the second could be guessed from the
diagram.

Any sequence of spaces has an empty space as its limit in some
Gromov—Hausdorff convergence. Exercise 1.23 states that if the limit
is non-empty and compact, then it is unique up to isometry.

1.18. Exercise. Let X1, X5,... be a sequence of geodesic metric
spaces. Suppose X,, — X s a convergence in the sense of Gromov—
Hausdorff. Assume X5 is proper, show that it is geodesic.

Pointed convergence. Often the isometry class of the limit can be
fixed by marking a point p, in each space X,,. We say that (X,,,pn)
converges t0 (Xso, Poo) if there is a metric on X as in 1.17 such that
Pn — Poo- This is called pointed Gromov-Hausdorff conver-
gence. For example, the sequence (X,,pn) = (R>0,0) converges to
(R>0,0), while (X, pn) = (Rx0,n) converges to (R,0) as n — cc.

L Gromov—Hausdorff metric

In this section we cook up a metric space out of all compact non-
empty metric spaces that defines Gromov—Hausdorff convergence. We
want to define the metric on the set of isometry classes of compact
metric spaces. Further, the term metric space might also stand for its
isometry class.

The obtained metric is called the Gromov—Hausdorff metric; the
corresponding metric space will be denoted by GH. This distance is
defined as the maximal metric such that the distance between subspaces
in a metric space is not greater than the Hausdorff distance between
them. Here is a formal definition.

1.19. Definition. The Gromov-Hausdorff distance |X — Y|au
between compact metric spaces X and Y is defined by the following
relation.

Given r > 0, we have |X — Y|agu < r if and only if there exists
a metric space W and subspaces X' and Y’ in W that are isometric
to X and Y, respectively, such that | X" — V'|gawsw < 1. (Here |X' —
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V' |Hausw denotes the Hausdorff distance between sets X' and Y’ in

For the proof of the following statement we refer to [15] and [83].
1.20. Proposition. GH is a complete metric space.

This means in particular that if X, Y are compact and |X —Y|gu =
0 then X and Y are isometric.

Gromov—Hausdorff convergence of compact spaces has particularly
nice properties. From the technical point of view, they follow from the
next statement, which we formulate as an exercise.

1.21. Exercise. Let f be a distance noncontracting map from a com-
pact metric space IC to itself. Show that f is an isometry; that is, it is
a distance-preserving bijection.

For two metric spaces X and ), we write X < Y + ¢ if there is a
map f: X — ) such that

[z — 2’|y < |f(2) = f(@)]y +e
for any z,z’ € X.

1.22. Exercise. Let X1, X, ..., and X are compact metric spaces.
Show that there is a Gromov—Hausdorff convergence X,, — X if and
only if for some sequence £, — 0, we have

Xoo <X, +e, and X, < X +€n.

1.23. Exercise. Let X1, Xs,... be a sequence of metric spaces. Sup-
pose Xy and X!, are non-empty limit spaces of X, for some Gromouv—
Hausdorff convergences. Assume Xy is compact, show that it is iso-
metric to X/ .

M Almost isometries

1.24. Definition. Let X and Y be metric spaces. A map f: X — Y
is called an e-isometry if the following two conditions hold:
(a) f(X) is an e-net in Y; that is, for any y € Y there is x € X
such that |f(x) —yly <e.

() |If (@) = f@")ly = |z — @' x| <€ for any z,2" € X.
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When dealing with Gromov—Hausdorff convergence the following
lemma is often useful as it allows to bypass constructing explicit met-
rics on the disjoint unions of Xy, A, ..., and X

1.25. Lemma. Let X1, X5,..., and X be complete metric spaces,
and let ,, — 0+ as n — oo. Suppose that either

(a) for each n there is an ep-isometry fn: Xn — Xoo, or

(b) for each n there is an en-isometry hy,: Xoo — Xp.

Then there is a Gromov—Hausdorff convergence X,, — Xoo.
Furthermore, a partial converse also holds.

(¢) Suppose we have a Gromov-Hausdorff convergence X, — Xoo
and X, is compact. Then there exist €, — 0+ as n — oo
and e, -isometries fn: X, = X (and hy: Xoo — X)) such that
T, € X converges to oo € Xoo with respect to the convergence
Xn = Xoo if and only if fr(xn) = oo (respectively, |hn(Too) —
— Znly, —0) asn — oco.

Proof. To prove part (a) let us construct a common space X for the
spaces X7, Xs, ..., and X, by taking the metric p on the disjoint union
Xoo UAX U A, L. .. that is defined the following way:

|Tn — Ynlx = |xn_yn‘/\,’n7
[Too = Yool x = |xoo_y00|X(x,a

|Zn — Too| x :inf{ |Tn — Yn x, tEén+ T o0 —f(yn)‘xm D Yn € Xn}a
[Tn — Tm|x = Inf { {2 — Yool x + [Tm — Yool x * Yoo € Xso },

where we assume that Too, Yoo € Xoo, and x,,y, € A, for each n.
It remains to observe that this indeed defines a metric on X, and
X,, — X in the sense of Hausdorff.

The proof of the second part is analogous; one only needs to change
one line in the definition of the metric to the following:

|[Zn—Too|x = inf{ |20 — h(Yoo)lx, + En + [Too = Yoola, * Yoo € X } .

We leave part (c) as an exercise. O

Lemma 1.25 has a natural analogue for pointed convergence. For
simplicity we only state part (a) of the lemma. Parts (b) and (¢) can
be rephrased similarly; in (¢) we have to assume that the space is
proper.

1.26. Lemma. Let (X1,p1),(Xa,p2),..., let (Xoo, Do) be pointed
metric spaces, and let e(n, R) — 0+ as n — oo for any fivzed R > 0.
Suppose that for each n there is a map f: X, — X such that
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(a) Jn(Pn) = Poo
() |Ifa(@) = fa(@)lx, — 2 = @|x,| < e(n,R) for any @,2" €
€ B(pn, R).
(¢) For any v € B(pso, R) there is x, € B(pn, R) such that |z —
— fa(zn)| < e(n, R)
Then there is a pointed Gromov—Hausdorff convergence (X,,, pn) —
— (Xooapoo)~

The proofs of 1.26 and 1.25 are analogous; we leave the former to
the reader.

N Remarks

In principle, our definition of Gromov—Hausdorff distance works for
complete metric spaces that are not necessarily compact. However,
according to the following exercise, it only defines a semimetric; that
is, zero Gromov—Hausdorff distance does not imply that the spaces are
isometric. For that reason it is not in use.

1.27. Exercise.
(a) Construct two nonisometric proper (noncompact) metric spaces
with vanishing Gromov—Hausdorff distance.
(b) Construct two nonisometric complete geodesic metric spaces of
bounded diameter with vanishing Gromov—Hausdorff distance.



Lecture 2

Definitions

In this lecture we discuss definitions of Alexandrov space. Alexan-
drov’s lemma works as the main tool.

A Four-point comparison

Recall that Z(pg) denotes the model angle at p; see page 9.
Let p,x,y,z be a quadruple of points in a metric space. If the
inequality

o £(p2)ee + L(pYg2 + L(pZ)re < 27

holds, then we say that the quadruple meets E?-comparison.
If instead of E2, we use S? or ]I:]I2, then we get the definition of S2-
or H2-comparisons. Recall that 4(py)ez and £(py)m> are defined if

p # x, p#y, but for Z(p;)y we require in addition that
p =z +lp -yl +lr—yl <2-m

if this does not hold for one of the angles, then we assume that S°-
comparison holds for this quadruple.

More generally, one may apply this definition to M?(x). This way
we define M?(k)-comparison for any real x. However, if you see M2 (k)-
comparison, it is safe to assume that K = —1, 0, or 1 (applying rescal-
ing, the M?(k)-comparison can be reduced to these three cases).

2.1. Definition. A metric space X has curvature > k in the sense
of Alezandrov if M?(k)-comparison holds for any quadruple of points
m X.

17
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While this definition can be applied to any metric space, we will
use it mostly for geodesic space that are complete (and often compact
or proper). If a complete geodesic space has curvature > & in the sense
of Alexandrov, then it will be called an ALEX (k) space; here ALEX (k)
is an adjective. An X is ALEX(k) for some k, then we say that X is
an Alexandrov space.

It is common practice in Alexandrov geometry to write proofs for
nonnegative curvature and leave the general curvature bound as an
exercise. Sometime theses exercises are nontrivial; in this case we add
a note. We often formulate statements of k = 0 despite that it admits
a straightforward generalization to arbitrary curvature bound.

2.2. Exercise. Show that E™ is ALEX(0).

2.3. Exercise. Show that a metric space X has nonnegative curvature
in the sense of Alexandrov if and only if for any quadruple of points
p, T, T9, T3 € X there is a quadruple of points q,y1,y2,ys € E3 such
that

Ip—wily 2 ¢ —yilge and |2 — 355 < |yi — yjlpe

for alli and j.

B Alexandrov’s lemma

Recall that [zy] denotes a geodesic from z to y; set
Jeyl = [zy]\ {=},  [wy[=ley]\{y}, Joyl=lzy]\ {z, 9}

2.4. Lemma. Letp,z,y,z be distinct points in a metric space such
that z € |yl Then the following expressions have the same sign:
(a) Z(x8) — Z(x®),
(b) £(28)+ £L(2h) — .
The same holds for the hyperbolic and spheri-
cal model angles, but in the latter case, one has to z
assume in addition that

p—zl+lp—yl+ |z -yl <2-m b
Proof. Consider the model triangle [£pZ] = A(zpz). Take a point § on

the extension of [ZZ] beyond Z so that |Z — g| = |z — y| (and therefore
|z — 2| = |z — z|).
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Since increasing the opposite side in a 7
plane triangle increases the corresponding an-
gle, the following expressions have the same

and

the statement follows.

The spherical and hyperbolic cases can be proved in the same way.
O

2.5. Exercise. Assumep,x,y,z are as in Alexandrov’s lemma. Show
that

Lpy) = Lp?) +4(p}),
with equality if and only if the expressions in (a) and (b) in 2.4 vanish.
Note that ~
pelryl = 4L(py)=m.

Applying it with Alexandrov’s lemma and E2-comparison, we get the
following.

2.6. Claim. If p,x,y,z are points in an ALEX(0) space. Suppose
p € |xy[, then

L(x¥) < L(x?).

2.7. Exercise. Let [p§] be a hinge in an ALEX(0)
space. Consider the function T

fr(p—zl,lp—gl) — £p3), _

where T € |pz] and § € |py]. Show that f is nonin-

e Py
creasing in each argument.
This exercise implies the following.

2.8. Claim. The angle measure of any hinge in an ALEX(0) space,
is at least as large as the corresponding model angle; that is,

Llpt > £L(p%)
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for any hinge [p7] in an ALEX(0).
2.9. Exercise. Let [py] be a hinge in an ALEX(0) space. Suppose
L[p3] = 0; show that [px] C [py] or [py] C [pz].

Conclude that geodesic in ALEX(0) space cannot bifurcate; that
is, if two geodesics [px] and [py] share a nontrivial arc with an end at

p, then [px] C [py] or [py] C [px].

2.10. Exercise. Let [zy] be a geodesic in an ALEX(0) space. Suppose
z € |zy| show that there is a unique geodesic [xz] and [zz] C [zy].

Recall that adjacent hinges are defined in 1.10.

2.11. Exercise. Let [p%] and [pY] be adjacent hinges in an ALEX(0)
space. Show that
L7l + Llpll =

2.12. Exercise. Let A be an ALEX(0) space. Show that
Lz¥) =4L(z}) <= L) =4L(z?)

p p

for any points p,z,y,v,w in A such that v,w € |zyl.

2.13. Exercise. Let A be an ALEX(0) space. Suppose hinges [, Y7 ]
in A converge to the hinge [T ¥°|; that is, geodesics [xnyn] and [z, 2,]
converge to the geodesics [ToolYoo] and [Toozeo] in the Hausdorff sense.
Show that

lim K[xn gZ] = K[xoc Z;‘Z]
n— oo

C Hinge comparison

Let [py] be a hinge in an ALEX(0) space A. By 2.7, the angle measure
£[p?] is defined and

’ 2] > 2(p2).

Further, according to 2.11, we have
Lpil+ 4Lpl]=n

for adjacent hinges [p?] and [p¥] in A.
The following theorem implies that a geodesic space has nonnega-
tive curvature in the sense of Alexandrov if the above conditions hold

for all its hinges.

2.14. Theorem. A complete geodesic space A is ALEX(0) if the fol-
lowing conditions hold.
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(a) For any hinge [x7] in A, the angle £[x}] is defined and
L[xP) > L(zD).
(b) For any two adjacent hinges [p%] and [p¥] in A, we have

LpTl+ £L[pY] < 7.

Proof. Consider a point w € |pz] close to p. From (b), it follows that
Lwi]+ Llwy] <7 and L[w?]+ L[wl] < 7.

Since L[wy] < L{wy] + L[w}] (see 1.9), we
get
LiwI]+ Lwl] + L[wy] < 2-7.
Applying (a),

Adw?) + L(w?) + L(w?) < 2-7.

Passing to the limits as w — p, we have

Lp?)+L(pY) + L(p3) < 2.

D Equivalent conditions

The following theorem summarizes 2.6, 2.8, 2.11, and 2.14.

2.15. Theorem. Let A be a complete geodesic space. Then the fol-
lowing conditions are equivalent.

(a) A is ALEX(0).

(b) (adjacent angle comparison)

for any geodesic [xy] and point z € lxy|, z # p in A.
(c) (point-on-side comparison)

L(zh) < £(a?)

for any geodesic [xy] and z € |xy[ in A.
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(d) (hinge comparison) the angle £[x 1] is defined for any hinge [z 1]
i A. Moreover,
Le?) > Z(a)

for any hinge [z 7], and
L2V + LA <7

for any adjacent hinges [2 7] and [z1].
Moreover, the implications (a)=(b)=(c)=(d) hold in any space,
not necessarily geodesic.

2.16. Advanced Exercise. Construct a complete geodesic space X
that is not ALEX(0), but satisfies the following weaker version of the
adjacent angle comparison 2.15b.

For any three points p,x,y € X there is a geodesic [zy] such that
for any z € |zy|

2.17. Exercise. Let W be R? with the metric induced by a norm.
Show that if W is ALEX(0), then W is isometric to the Euclidean
plane E2.

E Function comparison

Real-to-real functions. Choose A € R. Let s: I — R be a locally
Lipschitz function defined on an interval I. The following statement
are equivalent; if one (and therefore any) of them holds for s, then we
say that s is A-concave.

o We have inequality s’ < A, where the second derivative s” is

understood in the sense of distributions.
¢ The function ¢ — s(t) — )\'% is concave.
¢ The Jensen inequality

s(ato+(1—a)-t1) = a-s(to)+(1—a)-s(t))+5 a-(1—a)-(t; —to)?

holds for any tg,#; € I and a € [0,1].

o for any tg € I there is a quadratic polynomial £ = %-t2 +at+b
(it is called a barrier) that supports (locally) s at ¢y from above;
that is, £(to) = s(to) and £(t) > s(t) for any ¢ (in a neighborhood
of to)
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To prove equivalence, approximate f by smooth functions taking
a convolutions f, = f * k, for a suitable sequence of kernels k,. Note
that all the conditions are equivalent for f,; passing to the limit we
get the same for f.

We will also use that A-concave functions are one-sided differen-
tiable.

Functions on metric spaces. A function on a metric space A will
usually mean a locally Lipschitz real-valued function defined on an open
subset of A. The domain of a function f will be denoted by Dom f.

We say that f is A-concave (briefly f” < A) if for any unit-speed
geodesic v: T — Dom f the real-to-real function ¢ — f o y(t) is A-
concave.

The following proposition is simple but conceptual — it reformu-
lates a global geometric condition into an infinitesimal condition on
distance functions.

2.18. Proposition. A complete geodesic space A in ALEX(0) if and
only if " <1 for any function [ of the form

fraz—tp—af.

Proof. Choose a unit-speed geodesic 7y in A and two points x = y(tg),
y = ~(t1) for some to < t;. Consider the model triangle [pZy] =
= A(pry). Let 7: [to,t1] — E? be the unit-speed parametrization of
[Zg] from Z to §.

Set

()= p—A(®)], r(t) = lp— ()]
Clearly, 7(tg) = r(to) and 7(t1) = r(t1). Note that the point-on-side
comparison (2.15¢) is equivalent to

(1] to <t<ty — ’F(t)g?"(t)

for any v and tg < t;.
Observe that Jensen’s inequality for the function h is equivalent to
0. Hence the proposition follows. O

F Remarks

Our 4-point comparison in Section 2A is closely related to the so-called
CAT comparison, which defines upper curvature bound in the sense of
Alexandrov; this is the subject of our previous invitation [3].
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In both comparisons we check certain conditions on the 6 distances
between every pair of points in 4-point sets. Michael Gromov [33,
Section 1.19.] suggested considering other conditions of that type for
n-point subsets; see [27, 34, 54-59, 81, 96| for the development of this
idea.

We have chosen complete geodesic spaces with curvature at least
k as the main object of study (the ALEX(k) spaces). Instead of the
geodesic condition, we could assume that they are length spaces. This
option is more natural and general, but many statements can be re-
duced to the geodesic case. In particular, suppose A is a complete
length space with curvature > x, then A can be isometrically embed-
ded into an ALEX(k) space — the ultrapower of A; see [4, 4.11+8.4].
Also, by Plaut’s theorem, any point p in A can be connected by geo-
desics to most of points in A [4, 8.11]; compare to 6.18c.

All the discussed statements admit natural generalizations to spaces
with curvature > k in the sense of Alexandrov. The proof are nearly
the same, but the formulas are getting more complicated.

For example, the function comparison for ALEX(—1) spaces states
that f” < f for any function of the type f = coshodist,. (The in-
equality used here will be defined in Section 4C.)

Similarly, the function comparison for ALEX(1) states that for any
point p, we have f” < —f for the function f = — cosodist, defined
in B(p, 7). The geometric meaning of these inequalities remains the
same: distance functions are more concave than distance functions in
M2 (k).



Lecture 3

Globalization

The globalization theorem states that a locally Alexandrov space is
globally Alexandrov. We start with the simplest meaningful case of
this theorem and indicate a way to extend.

A Globalization

A complete geodesic metric space A is locally ALEX(0) if any point
p € A admits a neighborhood U > p such that the E?-comparison
holds for any quadruple of points in U.

3.1. Globalization theorem. Any compact locally ALEX(0) space
is ALEX(0).

Proof modulo the key lemma. Note that condition 2.14b holds in A
(the proof is the same). It remains to check 2.14a; that is,

o Llzh] > Z(xz)

for any hinge [z 5] in A.

Inequality @ holds for hinges in a small neighborhood of any point;
this can be proved the same way as 2.8 and 2.11, applying the local
version of the E?-comparison. Since A is compact, there is € > 0 such
that @ holds if |z — p| + |p — y| < e. Applying the key lemma several
times we get that @ holds for any given hinge. O

3.2. Key lemma. Let A be locally ALEX(0). Assume that the com-
parison

Lk > 4(x¥)

25



26 LECTURE 3. GLOBALIZATION

holds for any hinge [x?] with |x —y| + |z — q| < 5-£. Then the com-
parison ~
Lzl > £L(xh)

q
holds for any hinge [z 1] with |z — p| + |z —q| < .

Let [2?] be a hinge in A. Denote by Y[z?] its model side; this
is the opposite side in a flat triangle with the same angle and two
adjacent sides as in [z 1].

More precisely, consider the model

hinge [ 7] in E? that is defined by

L[z g2 = L[z F)a,
T = Ple2 = & = pla,

| = qlge = |2 — qla;

then
Y[zgla = 1P — dlg-
Note that
Yl >[p—q <= Lzh]> AL(zP).

We will use it in the following proof.

Proof. 1t is sufficient to prove the inequality
12 Y[z8] > [p—q

for any hinge [z 7] with |z — p| + [z —¢| < {.
Consider a hinge [z 7] such that

2U<|p—a|+|z—q <L

First, let us construct a new hinge [2'?] with

© lp—x[+|z—q| > |p—2'| +]2" —ql,
such that
o Y[zh] > Y[z'E].

Construction. Assume |z — q| > |z — p|; otherwise, switch the roles of
p and ¢q. Take 2’ € [zq] such that

(5] lp— x| + 3]z —2'| = 20
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Choose a geodesic [2'p] and consider the hinge [z?] formed by [z'p]
and [2'q] C [xq]. The triangle inequality implies ®. Furthermore,

p—al+lo—a/| <2 [p—a/|+]a' —a] < 2.

In particular,

(6) LxP] > L(x?) and L[2'P] > L(2'P).

x

Now, let [##'p] = A(zz'p). Take § on the
extension of [ZZ'] beyond ' such that |Z — ¢| =

q
= |z — q| (and therefore |2’ — ¢| = |2’ — ql).
By O,
LzP)=L[zP] > L(=h) = Y[z7>[p—ql i’ > L'
Hence
5 o i T K[xg]
LTt =m—4L(a"]) >
> — 't =
= L[z’ ",
and @ follows. P

Let us continue the proof. Set o = . Let us apply inductively the
above construction to get a sequence of hinges [z, 7] with ;11 = 7,
From @, we have that the sequence s,, = Y[z, g] is nonincreasing.

Lo

The sequence might terminate at some n only if |p—x, |+ |z, —¢| <
< %E. In this case, by the assumptions of the lemma, Y[z, P1= Ip—ql.
Since the sequence s, is nonincreasing, inequality @ follows.

Otherwise that the sequence 1, = |p—xy|+|z,—¢| is nonincreasing,
and r, > %6 for all n. By construction, the distances |z, — xp+1/,
|z, — p|, and |z, — ¢| are bounded away from zero for all large n.
Indeed, since on each step, we move z,, toward to the point p or g that
is further away, the distances |x,, — p| and |x,, — ¢| become about the
same. Namely, by @, we have that |p—x,| — |z, —q| < %-é for all large
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n. Since |p —p| 4 |xn — ¢l 2 3 -, we have |z,, — p| > 155 and |xn -

—ql = 100 Further, since r,, > K @ implies that |2, —x, 41| > 100
Since the sequence 7, is nonlncreasmg, it converges. In particular,

Tn—"Tnt1 — 0asn — oo. It follows that K(mn D +1) — 7, where p,, = p

if z,41 € [zng, and otherwise p, = ¢. Since L[z, 5 | > A(xy, B
we have L[z, L ] — masn — oo.
It follows that

T =80 = |p— @n| + |20 — q] = Y[z, F] = 0.
Together with the triangle inequality

Ip— xn| + |2, —q| = |p—q|

this yields
lim Y[z, q] Ip — ql.

n—oo

Finally, the monotonicity of the sequence s, = Y[z, g] implies @. [

B General case

The globalization theorem can be generalized to any curvature bound
k. The case k < 0 is proved in the same way, but the case kK > 0
requires modifications.

The compactness condition in our version of the theorem can be
traded for completeness. The proof uses the following statement where
r(z) measures the size of a neighborhood of x where the comparison
holds.

3.3. Exercise. Let X be a complete metric space. Supposer: X — R
is a positive continuous function. Show that for any e > 0 there is a
point p € X such that

r(z) > (1—¢)r(p)

for any = € Blp, ér(p)]

This implies the following general version of the globalization the-
orem.

3.4. Theorem. Any locally ALEX(k) length space is ALEX(K).
By 1.6, we have

L) r) < L(TY)m2(k)
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if kK < K and the right-hand side is defined. It follows that a ALEX(K)
space is locally ALEX (k). Therefore, the globalization theorem implies
the following.

3.5. Claim. IfK > &, then any ALEX(K) space is ALEX(k).

In other words the expression curvature bounded below by x makes
sense for geodesic spaces. However, by the following exercise, it does
not make much sense in general.

3.6. Exercise. Let X be the set {p,x1,x2, x5} with the metric defined
by

lp—ail =7, |zi—xl =27
for all i # j. Show that X has curvature > 1, but does not have
curvature > 0.

3.7. Exercise. Letp and q be points in an ALEX(1) space A. Suppose
|[p—q| > m. Denote by m the midpoint of [pq]. Show that for any hinge
[m ] we have either £[my] =0 or L[mj] =m.

Conclude that A is isometric to a line interval or a circle.

3.8. Exercise. Suppose A is an ALEX(1) and diam A < 7. Show
that
[z =yl +ly =z +|z 2] <27

for any triple of points x,y,z € A.

C Remarks

The following question about 2.14a was stated in [15, footnote in 4.1.5]
but this is a long-standing open problem (possibly dating back to
Alexandrov).

3.9. Open question. Let A be a complete geodesic space (you can
also assume that A is homeomorphic to S* or R?) such that for any
hinge [z V] in A, the angle £[x V] is defined and

L[xP] > L(x?).

Is it true that A is an Alexandrov space?

The globalization theorem is also known as the generalized Topono-
gov theorem. Its two-dimensional case was proved by Paolo Pizzetti
[84]; later it was reproved independently by Alexandr Alexandrov [§].
Victor Toponogov [95] proved it for Riemannian manifolds of all di-
mensions. For Alexandrov spaces of all dimensions, the theorem first
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appears in the paper of Michael Gromov, Yuriy Burago, and Grigory
Perelman [16]. Their statement is slightly more general than 3.4; it
is for complete length spaces. Another version for noncomplete, but
geodesic spaces was proved by the second author [76].

We took the proof from our book [4], but reduced generality to
compact nonnegatively curved spaces. This proof is based on sim-
plifications obtained by Conrad Plaut [85] and Dmitry Burago, Yuriy
Burago, and Sergei Ivanov [15]. The same proof was rediscovered inde-
pendently by Urs Lang and Viktor Schroeder [51]. Another simplified
argument was found by Katsuhiro Shiohama [90].
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Calculus

This lecture defines several notions related to the first-order derivatives
in Alexandrov spaces; it includes space of directions, tangent space,
differential, and gradient.

A Space of directions

Let A be an Alexandrov space. By 2.7, the angle measure of any
hinge in is defined. Given p € A, consider the set &, of all nontrivial
geodesics starting at p. By 1.9, the triangle inequality holds for £ on
S,, that is, (6,,£) forms a semimetric space; that is, £ behaves
like a metric, but might vanish for distinct directions.

The metric space corresponding to (&, £) is called the space of
geodesic directions at p, denoted by E; or E;,A. The elements
of E;, are called geodesic directions at p. Each geodesic direction
is formed by an equivalence class of geodesics starting from p for the
equivalence relation

pz] ~[pyl = Lpy]=0;
the direction of [pz] is denoted by 1y,,. By 2.9,
pz] ~[pyl = [pz] C[pyl or [pz] > [py].

The completion of Z; is called the space of directions at p and
is denoted by 3, or ¥,A. The elements of ¥, are called directions
at p.

4.1. Exercise. Let A be an Alexandrov space. Assume that a se-
quence of geodesics [pry] converge to a geodesic [proo] in the sense of
Hausdorff, and xoc # p. Suppose ¥, is compact. Show that Tpza] =
= Tpea] @S N — 0.

31
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B Tangent space

The Euclidean cone V = Cone X over a metric space X is defined as
the metric space whose underlying set consists of equivalence classes
in [0,00) x X with the equivalence relation “~” given by (0, p) ~ (0, q)
for any points p,q € X', and whose metric is given by the cosine rule

(s,p) — (L, @)]y = \/52 + 12 —2-s-t- cos,

where 8 = min{r, [p — q|, }
The leading example is

ConeS" == E"+1

(150 35

here “==" stands for “isometric to”. Now let us extend several notions
from Euclidean space to Euclidean cones.

The point in V that corresponds (¢, x) € [0, 00) x X will be denoted
by t-x. The point in V formed by the equivalence class of {0} x X is
called the origin of the cone and is denoted by 0 or 0y. For v € V the
distance |0 — v|,, is called the norm of v and is denoted by |v| or |v|y.
The scalar product (v,w) of v = s-p and w = t-q is defined by

(v, w) := |v|-|w]|- cos O

where § = min{7, |p—q|»}. The value 6 is undefined if v = 0 or w = 0;
in these cases we assume that (v, w) := 0.

4.2. Exercise. Show that Cone X is geodesic if and only if X is -
geodesic; that is, any two points x,y € X such that |x —y|, < T can
be joined by a geodesic in X.

Tangent space. The Euclidean cone Cone Y, over the space of di-
rections ¥, is called the tangent space at p and is denoted by T,
or T, A. The elements of T, A will be called tangent vectors at
p (despite that T, is only a cone — not a vector space). The space
of directions X, can be (and will be) identified with the unit sphere
in T); that is, with the set {v € T}, : [v| =1}.

4.3. Proposition. A tangent space to an Alexandrov space has non-
negative curvature in the sense of Alexandrov.

Halbeisen’s example [4] shows that the tangent space T, at some
point of Alexandrov space might fail to be geodesic; in this case T, is
not ALEX(0).

Proof. Consider the tangent space T, = ConeX, of an Alexandrov
space A at a point p. We need to show that the E2-comparison holds
for a given quadruple vg, v1, va, v3 € T).
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Recall that the space of geodesic directions E; is dense in ¥,. It

follows that the subcone T), = Cone ¥, is dense in T,. Therefore, it
is sufficient to consider the case vg, v1, V9, V3 € T;.

For each i, choose a geodesic -y; from p in the direction of v;; assume
~i has speed |v;| for each 4. Since the angles are defined, we have

o [7i(e) = 7(e)la = &:[vi = vjlr, +o(e)

for € > 0. The quadruple (), 71(€), 72(¢), v3(¢) meets the M?(k)-
comparison. After rescaling all the distances by %, it becomes the
M? (&2 k)-comparison. Passing to the limit as ¢ — 0 and applying @,
we get the E2-comparison for vg, v1, v2, U3. O

4.4. Exercise. Let p be a point in an Alexandrov space A, and
let A, — o00. Suppose ¥, is compact. Show that there is a pointed
Gromov-Hausdorff convergence (A,-A,p) — (Tp,0) . Moreover, for
any geodesic 7y that starts at p, we have

ln © V(t/)‘n) - t"YjL (O)’

where v, sends a point in A to the corresponding point in A, -A.

C Semiconcave functions

Recall that A-concave functions were defined in Section 2E, and when
we say function we usually mean a locally Lipschitz function defined
on an open domain.

Let f be a locally Lipschitz real-valued function defined in an open
subset Dom f of an Alexandrov space A. Suppose ¢ is a continuous
function defined in Dom f. We will write f” < ¢ if for any point
z € Dom f and any € > 0 there is a neighborhood U > z such that
the restriction f|y is (¢(x) + €)-concave.

If f” < ¢ for some continuous function ¢, then f is called semi-
concave.

4.5. Exercise. Let f be a distance function on an ALEX(0) space
A; that is, f(z) = |p — z| for some p € A. Show that " < . In
particular, f is semiconcave in A\ {p}.

<l

D Differential

Let A be an Alexandrov space. Let f be a semiconcave function on A
and p € Dom f. Choose a unit-speed geodesic v that starts at p; let
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& € ¥, be its direction. Define

(dpf) (&) = (f 27)7(0),

here (f o)™ denotes the right derivative of (f o«); it is defined
since f is semiconcave.

By the following exercise, the value (d,f)(§) is defined; that is,
it does not depend on the choice of v. Moreover, d, f is a Lipschitz
function on Y. It follows that the function d,f: ¥, — R can be
extended to a Lipschitz function d, f: 3, — R. Further, we can extend
it to the tangent space by setting

(dpf)(r-€) = 7-(dpf)(&)

for any » > 0 and £ € X,. The obtained function d,f: T, — R is
Lipschitz; it is called the differential of f at p.

4.6. Exercise. Let f be a semiconcave function on an Alexandrov
space. Suppose 1 and 2 are geodesics that start at p € Dom f; denote
by 0 the angle between v, and 7o at p. Show that

|(f o71)*(0) = (foy2)T(0)] < L0,

where L is the Lipschitz constant of f in a neighborhood of p.

4.7. Exercise. Letp and q be distinct points in an Alexandrov space A.
Show the following.
(a) dydisty(v) < —(Tppq),v) for any v € T).
(b) Suppose A is proper. Let 1 be the set of all direction of geodesics
from p to q. Then

d,dist,(v) = — max(£, v
P q(v) Seﬂ)?f@ )

for any v € T.

E Gradient

The following definition generalizes the gradient to semiconcave func-
tions on Alexandrov space. This generalization is not trivial even for
concave functions on Euclidean space; we suggest keeping this case in
mind.

4.8. Definition. Let f be a semiconcave function on an Alexandrov
space. A tangent vector g € T), is called a gradient of f at p (briefly,

g:fo) if
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(a) (dpf)(w) < {g,w) for any w € T, and
() (d,f)(9) = (9,9)-

The following exercise provides a key property of gradients that
will be important latter; see the first distance estimate (5.6).

4.9. Exercise. Let f be a A-concave function on an Alexandrov space.
Suppose that gradients V. f and Vy f are defined. Show that

4.10. Proposition. Suppose that a semiconcave function f is defined
i a neighborhood of a point p in an Alexandrov space. Then the
gradient V, f is uniquely defined.

Moreover, if d,f < 0, then we have V,f = 0; otherwise, V,f =
= s-&, where s = dpf(§) and £ € X, is the direction that mazimize
the value d, f(§) for & € £,.

4.11. Key lemma. Let f be a semiconcave function that is defined
i a neighborhood of a point p in an Alexandrov space A. Then for
any u,v € Tp, we have

s/ ul? +2-(u,v) + o2 > (dyf)(u) + (dpf)(v),

where

s=sup{(d,f)(§) : £€X, }.
T, =2 E™ and d,f is a concave function, then

2:(dp f)(*5%) = (dpf) () + (dp ) (v).

The latter implies the statement since [u-+v| = /[ul? + 2-(u, v) + [v]2.
In general, T}, is not geodesic (and not even a length space), so con-
cavity of d,, f does not make sense. The key lemma however says that
in a certain sense d, f behaves as a concave function.

Solving the following exercise should help to find an approach to
the key lemma.
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4.12. Exercise. Letp and q be distinct points in an Alexandrov space
A. Suppose the geodesic [pq] can be extended beyond q.
Show that

d,dist,(v) = —(T[pq],v>
for any v € T).
Proof of 4.11. We will assume that 4 is ALEX(0) and f is concave; the

general case requires only minor modifications. We can assume that
v#0,w#0, and a = £(u,v) > 0; otherwise, the statement is trivial.

Consider a model configuration of five i
points: p, 4, 9, ¢, w € E? such that R
~ w
S AN
o |p—al = ul,

o |p—0] =,
© @ lies on an extension of [p?] so that ¥ is the midpoint of [pg],
o w is the midpoint between @ and v.

Note that

o 9 — | = 4-y/uPP + 2-(u, v) + o2,

Since the geodesic space of directions Z; is dense in ¥,, we can
assume that there are geodesics in the directions of v and v. Choose
such geodesics v, and 7, and assume that they are parametrized with
speed |u| and |v| respectively. For all small ¢ > 0, consider points
Ug, Vg, s, W € A such that

S vy = ’Yv(t)a qr = 7v(2't)

o up = Yy (t).
© wy is the midpoint of [usvy].
Clearly
Ip — ue| = t-]ul, Ip — ve| = t-[v], Ip—qt| =2-t-|v].

Since £ (u,v) is defined, we have
[ug —ve| = t-|a — 9| + o(t), lug — qi| =t-|a — g + ot).

From the point-on-side and hinge comparisons (2.15¢42.15d), we
have
L(vh,) > L(wh) > Lph] + 2

u

and

Llvglr) > £ (v @) > L[5+ o(tt).
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7. From the adjacent angle comparison
wr) < m. Hence L(vy %, ) — £L[0%] as t — 0+

w

and thus
lp —wi| =t[p — 0| + o(?).

Without loss of generality, we can assume that f(p) = 0. Since f
is concave, we have

2 f(we) = flue) + flve) =
=t-[(dpf)(u) + (dpf) ()] + o(t).
Applying concavity of f, we have

/
() i) > 10>

S, Uldpf)(w) + (dpf)(v)] + oft)
- 2-t|p — 0| + o(t) '

By ©, the key lemma follows. O

Proof of 4.10; uniqueness. If g,¢g' € T, are two gradients of f, then

(9,9) = (dpf)(9) < (9,9, (9'.9") = (dpf)(d') < {g,9")-

Therefore,

99> ={(g.9) —2-(9,9") +(¢',¢) <O
It follows that g = ¢'.

FEzistence. If d,f < 0, then one can take V,f = 0.
Suppose s = sup { (d,f)(§) : £ € X, } > 0, it is sufficient to show
that there is £ € ¥, such that

(2] (dpf) (&) = s.

Indeed, suppose £ exists. Applying 4.11 for v = &, v = e-w with
€ — 04, we get
(dpf)(w) < (w,s-€)
for any w € T); that is, s5-€ is the gradient at p.
Take a sequence of directions &, € ¥, such that (d,f)(&,) — s.
Applying 4.11 for u = &, and v = §,,,, we get

o5 (@of)(&n) + (dpf)(Em)
- V2+ 2 cosd(Enrbm)
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Therefore £(&,,&mn) — 0 as n,m — oo; that is, &1, &, ... is a Cauchy

sequence. Clearly, ¢ = lim,, , meets @. O

4.13. Exercise. Let f and g be locally Lipschitz semiconcave func-
tions defined in a neighborhood of a point p in an Alexandrov space.
Show that

IV f = vpglgfp < s (IVpfl+[Vpgl),

where
s =sup{|(dyf)(§) — (dpg)(§)| : £ € Xy }.

Conclude that if the sequence of restrictions dy, fy|s, converges uni-
formly, then V,f, converges as n — oo. Here we assume that all
functions f1, fo,... are semiconcave and locally Lipschitz.

4.14. Exercise. Let f be a locally Lipschitz \-concave function on
an Alexandrov space A.
(a) Suppose s = 0. Show that |V.f| > s if and only if for some
point y we have

fly) = f(@) > s-L+ 15,

were £ = |z —yl.
(b) Show that x — |V, f| is lower semicontinuous; that is, if x, —
— Too, then
Ve fI < lim Vg, f].

n—oo



Lecture 5

Gradient flow

Here we define the gradient flow of a semiconcave function and discuss
its properties, most importantly the distance estimates.

A Velocity of curve

Let a be a curve in an Alexandrov space A. If for any choice of
geodesics [pa(ty + €)] the vectors

é|p — a(to + 5)| 'T[pa(toJra)]

converge as € — 0+, then their limit in T}, is called the right deriva-
tive of a at tp; it will be denoted by a™(#p). In addition, o™ (tg) := 0
if L-lp—a(to+¢)| = 0ase— 0+.

The tangent vector v = |p — x| “Tpa) can be called the logarithm
of z at p (briefly, log, z); note that 4 (0) = log, = for a geodesic path
~ from p to x.

5.1. Claim. Let « be a curve in an Alexandrov space A. Suppose f a
semiconcave Lipschitz function defined in a neighborhood of p = «(0),
and ot (0) is defined. Then

(f 0 @)™(0) = (dpf)(a™(0)).

Proof. Without loss of generality, we can assume that f(p) = 0. Sup-
pose f and therefore d, f are L-Lipschitz.

Choose a constant-speed geodesic v that starts from p, such that
the distance s = |a™(0) — 7"‘(0)|TP is small. By the definition of
differential,

(f 2)™(0) = dp f(y7(0)).

39
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By comparison and the definition of o™,
) —(e)|a < s+ o)
for ¢ > 0. Therefore,
|foale)— fory(e)] < L-s-e+ oe).
Suppose (f o a)T(0) is defined. Then

(foa)(0) = (o) T(0)] < L-s.

Since d,, f is L-Lipschitz, we also get

|dp f(a7(0)) = dp f(v7(0))] < L-s.

It follows that the needed identity holds up to error 2-L-s. The state-
ment follows since s > 0 can be chosen arbitrarily.

The same argument is applicable if in the place of (f o a)*(0) we
use any limit of ?1" [foa(en)— f(p)] for a sequence &,, — 0+. It proves
that all such limits coincide; in particular, (f o «)™(0) is defined and
equals to (d,f)(at(0)). O

B Gradient curves

5.2. Definition. Let f: A — R be a locally Lipschitz and semicon-
cave function on an Alexandrov space A.

A locally Lipschitz curve «: [tmin, tmax) — Dom f will be called an
f-gradient curve if

a+ = Vozf;
that is, for any t € [tmin, tmax), @t (t) is defined and ot (t) = Vaw f-

A complete proof of the following theorem is given in [4]; it mimics
the proof of the standard Picard theorem on the existence and unique-
ness of solutions of ordinary differential equations. The uniqueness will
follow from the first distance estimate (5.6) proved in the next section.
We omit the proof of existence as it is rather lengthy.

5.3. Picard theorem. Let f: A — R be a locally Lipschitz and \-
concave function on an Alexandrov space A. Then for any p € Dom f,
there are unique tmax € (0,00] and f-gradient curve a: [0,tmax) = A
with «(0) = p such that any sequence t, — tmax—, the sequence a(ty)
does not have a limit point in Dom f.

This theorem says that the future of a gradient curve is determined
by its present, but it says nothing about its past.
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Here is an example showing that the past is not determined by the
present. Consider the function f: z — —|z| on the real line R. The
tangent space TR can be identified with R, and

1 if <0,
-1 if z>0.

So, the f-gradient curves go to the origin with unit speed and then
stand there forever. In particular, if « is an f-gradient curve that
starts at x, then «(t) = 0 for any ¢t > |z|.

Here is a slightly more interesting example; it shows that gradient
curves can merge even in the region where |V f| # 0.

5.4. Example. Consider the function

fi(x,y) = —|z| — |y| on the (z,y)-plane. It

is concave, and its gradient field is sketched

on the figure. \ /
Let « be an f-gradient curve that starts at

(z,y) forx >y >0. Then
PP SN

(x—t,y—1t) for 0<t<z—
a(t) =4 (z —t,0) for x—y<t<,
(0,0) for x <t

C Distance estimates

5.5. Observation. Let a be a gradient curve of a A-concave function
f defined on an Alexandrov space. Choose a point p; let £(t) := dist, o
a(t) and ¢ = alty). Then

C(to) < — (f(p) — f(q) — 5-£%(t0)) /L(to)

Proof. Let v be the unit-speed parametrization of [¢p] from ¢ to p, so
g =7(0). Then

¥ (to) = (dqdist,) (Vg f) < (by 5.1)
< —(Mgpp» Vaf) < (by 4.7a)
<~y i) - by 49

=—(fo7)"(0) <
— (f(p) = fla) — 5-£%(t0)) /(t0)

N
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The last two lines follow by the definition of differential, and the con-
cavity of t — fory(t) — 5t O

The following estimate implies uniqueness in the Picard theorem
(5.3).

5.6. First distance estimate. Let f be a A-concave locally Lipschitz
function on an Alexandrov space A. Then

la(t) = B(t)] < eX-[a(0) — B(0)]

for any t > 0 and any two f-gradient curves o and f.

Moreover, the statement holds for a locally Lipschitz \-concave
function defined in an open domain if there is a geodesic [a(t) 5(¢)]
in Dom f for any t.

Proof. Fix a choice of geodesic [a(t) 8(t)] for each ¢t. Let £(t) = |a(t) —
— B(t)]. Note that

(1) < =Mawpw)s Vaor ) = Tawawys Vo F) < A-L(D).

Here one has to apply 5.5 for distance to the midpoint m of [a(t) 3(¢)],
then apply the triangle inequality and 4.9. Integrating, we get the
result. O

The following exercise describes a global geometric property of a
gradient curve without direct reference to its function. It is based
on the notion of self-contracting curves introduced by Aris Dani-
ilidis, Olivier Ley, and Stéphane Sabourau [22].

5.7. Exercise. Let f: A — R be a locally Lipschitz and concave
function on an Alexandrov space A. Then

la(ts) — alts)| 4 = la(ta) — a(ts)] 4

for any f-gradient curve a and t1 < to < t3.

5.8. Exercise. Let f be a locally Lipschitz concave function defined
on an Alexandrov space A. Suppose &: [0,£] — A is an arc-length
reparametrization of an f-gradient curve. Show that fod& is concave.

The following exercise implies that gradient curves for a uniformly
converging sequence of A-concave functions converge to the gradient
curves of the limit function.

5.9. Exercise. Let f and g be A-concave locally Lipschitz functions
on an Alezandrov space A. Suppose a, f: [0, tmax) — A are respec-
tively f- and g-gradient curves. Assume |f —g| <e; let £: ¢t — |a(t) —
— B(t)]. Show that

F <N+ 25
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Conclude that if a(0) = B(0) and tmax < 00, then
a(t) = B(H)] < Vet

for some constant ¢ = c(tmax, \)-

D Gradient flow

Let A be an Alexandrov space and f be a locally Lipschitz semiconcave
function defined on an open subset of A. If there is an f-gradient curve
a such that «(0) = 2 and «a(t) = y, then we will write

Flowtf(x) =y.

The partially defined map Flowﬁc from A to itself is called the f-gra-
dient flow for time ¢. Note that

Flow;1+t2 = Flowj& o Flowjf .

In other words, one may of that gradient flow as a partial action of
the semigroup (Rxo,+) on the space.

From the first distance estimate 5.6, it follows that for any ¢ > 0,
the domain of definition of Flowﬁc is an open subset of A. In some
cases, it is globally defined. For example, if f is a A-concave function
defined on the whole space A, then Flowjf (2) is defined for all z € A
and t > 0; see [4, 16.19].

Now let us reformulate the statements about gradient curves ob-
tained earlier using this new terminology. From the first distance
estimate, we have the following.

5.10. Proposition. Let A be an Alexandrov space and f: A — R
be a semiconcave function. Then the map T +— Flow;(x) is locally
Lipschitz.

Moreover, if f is A-concave, then Flow'} is e*'t-Lipschitz.

The next proposition follows from 5.9.

5.11. Proposition. Let A be an Alexandrov space. Suppose fr,: A —
— R is a sequence of \-concave functions that converges to foo: A —
— R. Then for any x € A and t > 0, we have

Flochn (x) = Flow;oo (x)

as n — Q.

There is a more general version of this proposition for a converging
sequence A,, — Ay, of spaces and a converging sequence of functions
fn: An — R; see [4, 16.21].
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E Gradient exponent

One of the technical difficulties in Alexandrov geometry comes from
nonextendability of geodesics. In particular, the exponential map,
exp,: T, — A, if defined in the usual way, can be undefined in an
arbitrarily small neighborhood of the origin.

Next we construct the gradient exponential map

gexp,: Tp — A,

which essentially solves this problem. It shares many properties with
the ordinary exponential map and is even better in certain respects,
even in the Riemannian universe.

Let A be an Alexandrov space and p € A, consider the function
f= distf, /2. Recall that ®% denotes the gradient flow. Let us define
the gradient exponential map as the limit

gexp,(v) = lim @Y (),

where the sequences x, € A and t,, > 0 are chosen so that ¢, — oo
and e’ - log, x, — v as n — oc.

More intuitively, suppose iy : A- A — A sends a point in the rescaled
copy A-A to the corresponding point in A. By the first distance esti-
mate (5.6), the map

o Pl oice: e A— A

is short for any ¢t > 0. If we have a pointed Gromov—Hausdorff con-
vergence (e'"-A,p) — (Tp,0,), then gexp,: T, — A is the limit of
fIJ’}” 0 ietn. This way we get that gexp, is short as a limit of short
maps. This observation is generalized in the following proposition.

5.12. Proposition. Let A be a proper ALEX(0) space. Then for
any p € A the gradient ezponent gexp,: T — A is uniquely defined.
Moreover, gexp,, is a short map and

gexp, (v7(0)) = (1)
for any geodesic path ~y that starts at p.
The last statement implies that
gexp, o log,, = id,
so it is appropriate to use term ezponent for gexp.

Proof. Note that f” < 1. Since the space is proper we can choose a
limit in @.
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Let v be a geodesic that stats at p. Observe that v oln is an f-
gradient curve. By the first distance estimate, we have that <I>§t is an
e!-Lipschitz. This implies any limit in @ has the same value; that is
gexp,, is uniquely defined.

Again, since q)'} is an e’-Lipschitz, we get that gexp,, is a short
map O

F Remarks

The idea to use gradient flow in Alexandrov geometry was inspired
by the success of Sharafutdinov’s retraction in comparison ge-
ometry [89]. Originaly, the gradient flow was developed to construct
quasigeodesics with given initial data [70, 77, 78|, but it turned out
that gradient flow and gradient exponent are better tools. Very soon
these tools found applications in other types of singular spaces [9, 45,
61, 62, 67, 88].

For a general curvature bound &k, the construction of gradient ex-
ponent has to be modified; it is denoted by gexpy; [4, 16.36].

For = —1 we have and gexp,(y*(0)) = ~(1) for any geodesic
path ~ that starts at p and

|gexp];1 v — gexp];1 w4 < Y[07 ).

Similarly, for k = 1 we have gexp, (7 (0)) = ~(1) for any geodesic
path v that starts at p and

|gexp11)v — gexpzl,wu < Y[07]sz2,

but this time all this holds only if |v[, jw| < § and lengthy < 7.

The gradient exponential map in a Riemannian manifold (M, g)
coincides with the Riemannian exponential map before the cut locus
of but is different from the Riemannian exponential after that. The
following statement shows that this technique can prove something

nontrivial even for Riemannian manifolds.

5.13. Problem. Let (M,g) be a complete m-dimensional Riemann-
ian with sectional curvature at least 1. Assume M is not homeomor-
phic to S™. Show that there is a short onto map S™ — (M, g).
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Lecture 6

Line splitting

In this lecture, we prove the line splitting theorem and apply it to
study tangent spaces of an Alexandrov space.

A  Busemann function

A half-line is a distance-preserving map from Rx¢ = [0,00) to a
metric space. In other words, a half-line is a geodesic defined on the
real half-line R>g.

If v: [0,00) — X is a half-line, then the limit

o bus, (z) = tli>Holo [v() — x| —t
is called the Busemann function of ~.

The Busemann function bus, mimics behavior of the distance func-
tion from the ideal point of ~.

6.1. Proposition. For any half-line v in a metric space X, its Buse-
mann function bus,: X — R is defined. Moreover, bus, is 1-Lipschitz
and busy(y(t)) = —t for any t.

Proof. Since t = |y(0) —~(¢)|, the triangle inequality implies that, the
function
t|y(t) — x| —t

is nonincreasing, and
[v(t) — x| =t = —[7(0) — =

for any x € X. Therefore, the limit in @ is defined, and it is 1-Lipschitz
as a limit of 1-Lipschitz functions. The last statement follows since
|v(t) —v(to)| =t — to for all large . O

47
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6.2. Exercise. Any Busemann function on an ALEX(0) space is con-
cave.

B Splitting theorem

A line is a distance-preserving map from R to a metric space. In other
words, a line is a geodesic defined on the real line R.

6.3. Exercise. Let v be a line in a metric space X. Show that for
any point x we have

bus; (z) + bus_(x) > 0

where, busy and bus_, are the Busemann functions asociated with
half-lines v : [0,00) = A and 7 : (—o0,0] — A respectively.

Let X be a metric space and A, B C X. A metric space X is a
direct sum of its two A and B, or briefly,

X=AeDB
if there are projections proj,: X — A and projz: X — B such that

[z — y|* = |proj(z) — proj4(y)|* + |projp(x) — projp(y)[*

for any two points z,y € X.
If ¥ = A® B, then
¢ A intersects B at a single point,
¢ both sets A and B are convex sets in X'; the latter means that
any geodesic with the ends in A (or B) lies in A (or B).

6.4. Line splitting theorem. Let~y be a line in a ALEX(0) space A.
Then

A=A d~(R)
for some subset A’ C A.

6.5. Corollary. Any ALEX(0) space A splits isometrically as
A=A ®eH

where H C A is a subset isometric to a Hilbert space, and A’ C A s
a convex subset that contains no lines.

The following lemma is closely related to the first distance estimate
(5.6); it is also a limit case of 5.12. The proof follows similar lines.
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6.6. Lemma. Suppose f: A — R be a concave 1-Lipschitz function
on an ALEX(0) space A. Consider two f-gradient curves o and .
Then for any t,s > 0 we have

la(s) = BOP < Ip—al* +2:(f(p) = £(a)-(s = 1) + (s — 1),
where p = «(0) and g = 5(0).

Proof. Since f is 1-Lipschitz, |V f| < 1. Therefore
fopt) < flg)+t

for any t > 0.
Set £(t) = |p — B(t)|. Applying 5.5, we get

()H(t) <2 (foB(t)— fp) <
<2-(f(g) +t—f(p)-

Therefore

() = £2(0) < 2- (f(q) — f(p)) -t + 12
It proves the needed inequality in case s = 0. Combining it with the
first distance estimate (5.6), we get the result in case s < t. The case
s >t follows by switching the roles of s and t. O

Proof of 6.4. Consider two Busemann functions, bus and bus_, asso-
ciated with half-lines ~y : [0, 00) — A and 7 : (—00, 0] — A respectively;
that is,

busy (z) := tliglo [v(£t) — x| —t.

According to 6.2, both bus; and bus_ are concave.

By 6.3, bus; (z) + bus_(x) > 0 for any = € A. On the other hand,
by 2.18, f(t) = dist? o(t) is 2-concave. In particular, f(t) < t>+at+b
for some constants a,b € R. Therefore, for all large ¢

[y@t) —z| —t+|y(=t) —z| —t <V +at+b—t+Vt2—at+b—t

Passing to the limit as ¢t — oo, we get that busy (z)+bus_(z) < 0.
Hence
bus (x) + bus_(z) =0

for any x € A. In particular, the functions bus; and bus_ are affine;
that is, they are convex and concave at the same time.
For any «,

|[Vybusy | =sup{d,buss(§) : £€2,} =

=supq{—d,bus(§) : £€ X, } =
=1
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Observe that « is a busy-gradient curve if and only if « is a geo-
desic such that (busyoa)™ = 1. Indeed, if o is a geodesic, then
(bust o)™ < 1 and the equality holds only if V, busy = a™. Now
suppose V,, bust = a™. Then |a™| < 1 and (bust oa)™ = 1; therefore

[to — t1] = |a(to) — a(t1)] >
> | busy oa(ty) — busy oa(ty) =
= [to — t1].

It follows that for any ¢ > 0, the busy-gradient flows commute;
that is,

Flowy,,, oFlowy,, =ida.

Setting
Flowy,,, ift>0

t _
Flow™ = powt " it <0

defines an R-action on A.

Consider the level set A’ = bus;'(0) = busZ'(0); it is a closed
convex subset of A, and therefore forms an Alexandrov space. Con-
sider the map h: A’ x R — A defined by h: (z,t) — Flow’(z). Note
that R is onto. Applying 6.6 for Flow’fOus+ and Flow},,, shows that h
is distance non-expanding and non-contracting at the same time; that
is, h is an isometry. O

Recall that according our definition the real line R is ALEX(1).
However, most of ALEX(1) spaces have diameter at most m; see 3.7.

6.7. Exercise. Suppose X is a complete geodesic space. Show that
Cone X is ALEX(0) if and only if X is ALEX(1) and diam X < 7.

C Anti-sum

Here we give a corollary of 4.13. It will be used to prove basic prop-
erties of the tangent space.

6.8. Anti-sum lemma. Let A be an Alexandrov space and p € A.
Given two vectors u,v € T, there is a unique vector w € T), such
that

(u, ) + (v, z) + (w,x) =0

for any x € T,, and

(u, wy + (v, w) + (w,w) = 0.
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6.9. Exercise. Suppose u,v,w € T, are as in 6.8. Show that

wl* < Jul® + [0 + 2+ (u, v).

If T, were geodesic, then the lemma would follow from the ex-
istence of the gradient, applied to the function T, — R defined by
x — —({u,x) + (v, z)) which is concave. However, the tangent space
T, might fail to be geodesic; see Halbeisen’s example [4].

Applying the above lemma for © = v, we have the following state-
ment.

6.10. Existence of polar vector. Let A be an Alexandrov space
and p € A. Given a vector v € T, there is a unique vector u* € T,
such that {(u*,u*) + (u,u*) = 0 and u* is polar to u; that is,

(u”,z) + (u,z) > 0
for any x € T,,.

Proof of 6.8. By 4.12, we can choose two sequences of points a,, b,
such that

dydista, (W) = —(Tjpa, > W)
dpdisty,, () = —(Tp,), w)

for any w € T and 1y, 1 — u/|ul, Tppp,) — v/[v] as n — o0
Consider a sequence of functions

frn = |u|-dist,, + |v|-disty,, .
Note that
(dpfn)(@) = —[ul-Tpa, ) — 0] b,y > @)
Thus we have the following uniform convergence for z € X,:
(dpfn)(x) - —<’U,,LU> - <’U,$>
as n — 0o, According to 4.13, the sequence V,, f,, converges. Let

w = nl;rréo Vpfn-

By the definition of gradient,

(w,w) = i (Vyfo, Vofn) = (w,2) = lim (Vyfn,7) >
= lim (d,fo)(Vpfn) = > lim (d, fn) () =

= —(u,w) — (v, w), —(u,z) — (v, ).



52 LECTURE 6. LINE SPLITTING
D Linear subspace

6.11. Definition. Let A be an Alexandrov space, p € A and u,v €
€ T,. We say that vectors u and v are opposite to each other,
(briefly, u+v=0) if |u| = |v]| =0 or L(u,v) =7 and |u| = |v].

The subcone

Lin,={veT,: 3weT, suchthat w+v=0}

will be called the linear subspace of T).
Soon we will introduce a natural linear structure on Lin,,.

6.12. Proposition. Let A be an Alezandrov space andp € A. Given
two vectors u,v € T,, the following statements are equivalent:

(a) v+ v =0;

(b) (u,z) + (v,z) =0 for any z € T)p;

(¢) (u,€) + (v,€) = 0 for any € € 5,

Proof. The equivalence (b)< (c) is trivial.
The condition u + v = 0 is equivalent to (u,u) = —(u,v) = (v,v);
thus, (b)=(a).

Recall that T, has nonnegative curvature. The hinges [0%] and

[07] are adjacent. By 2.11, £[0%] 4+ £][0?] = m; hence (a)=(b). O

6.13. Exercise. Let A be an Alexandrov space and p € A. Then for
any three vectors u,v,w € Tp, ifu+v =0 and u+w =0 then v = w.

Let u € Lin,; that is, u +v = 0 for some v € T),. Given s < 0, let
s = (—s)-v.

So we can multiply any vector in Lin, by any real number (positive
and negative). By 6.13, this multiplication is uniquely defined. By
6.12, we have identity

(—v,z) = —(v,x).
6.14. Exercise. Suppose u,v,w € T}, are as in 6.8. Show that
(u,z) + (v, z) + (w,z) =0
for any x € Lin,,.

6.15. Exercise. Let A be an Alexandrov space, p € A and u € T),.
Suppose u* € Ty, is provided by 6.10; that is,

(W u™y + (u,u*) =0 and (u*,z)+ (u,x) >0
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for any x € T,,. Show that

u=—-u" <= |u]=u|

6.16. Theorem. Let p be a point in an Alexandrov space. Then Lin,,
is isometric to a Hilbert space.

Proof. Lin, is a closed subset of T),; in particular, it is complete.

If any two vectors in Lin, can be connected by a geodesic in
Lin,, then the statement follows from the splitting theorem (6.4). By
Menger’s lemma (1.4), it is sufficient to show that for any two vectors
x,y € Lin, there is a midpoint w € Lin,,.

Choose w € T, to be the anti-sum of u = — -z and v = —3-y; see
6.8. By 6.9 and 6.14,

lwl* < 312>+ §-1y1* + 5-(z,v),
<w,x> = %|ZL’|2+ %<xay>a
(w,y) = 5-y1* + 3 (. v),

It follows that
2 —wl® = z* + Jw]* = 2-(w,z) <
Qo+ oyl = 5, y) =

Jo —yl*.

N
NN

That is, |z — w| < 3-|z — y|. Similarly, we get |y — w| < %[z — yl.
Therefore w is a midpoint of = and y. In addition, we get the equality
wf? = 3|2 + -1yl + 5-(z,y).

It remains to show that w € Lin,. Let w* be the polar vector
provided by 6.10. Note that
W' < [wl, (W 2) + (w,z) =0, (w",y)+ (w,y) =0.

The same calculation as above shows that w* is a midpoint of —x and
—y and

jw*|* = 3|2 + 3 lylP + 5 (@) = |w]*.
By 6.15, w = —w*; hence w € Lin,,. O
6.17. Lemma. Given a point p in an Alexandrov space A, let f =

= dist,, and let S be the subset of points x € A such that |V, f| = 1.
Then S is a dense G-delta set.
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Proof. Let S, C A be defined by inequality |V, f| >1— % By 4.14a,
S, is open.

Choose a point ¢ # p. Observe that |V, f| = 1 for any point
x € |pq[. It follows that S, is dense in A.

Since S = (1,, Sn, the lemma follows. O

6.18. Exercise. Letp, f, and S be as in 6.17.
(a) Show that
Vaf + Ty =0
for any x € S; in particular, T(,, € Lin,.
(b) Show that if [V, f| = 1, then dy, f (w) = (V. f,w) for anyw € Ty.
(c) Show that for any x € S there is a unique geodesic [pzx].

This exercise implies the following.

6.19. Corollary. Given a countable set of points X in an Alexandrov
space A there is a G-delta dense set S C A such that 1., € Ling for
any s €S andx € X.

E Remarks

The splitting theorem has an interesting history that starts with Stefan
Cohn-Vossen [20]; who proved its 2-dimensional case. For Riemannian
manifolds of higher dimensions it was proved by Victor Toponogov
[95]. Then it was generalized by Anatoliy Milka [64] to Alexandrov
spaces; historically, it was the first result about Alexandrov spaces of
dimension higher than 2. Nearly the same proof is used in [15, 1.5].

Further generalizations of the splitting theorem for Riemannian
manifolds with nonnegative Ricci curvature were obtained by Jeff
Cheeger and Detlef Gromoll [19]. This was further generalized by Jeff
Cheeger and Toby Colding for limits of Riemannian manifolds with
almost nonnegative Ricci curvature [17] and to their synthetic general-
izations, so-called RCD spaces, by Nicola Gigli [29, 30]. Jost-Hinrich
Eschenburg obtained an analogous result for Lorentzian manifolds [26],
that is, pseudo-Riemannian manifolds of signature (1, n).

The presented proof is close in spirit to the proof given by Cheeger
and Gromoll [19]; it is taken from our book [4].

6.20. Open question. Let p be a point in an Alexandrov space A.
Suppose that 0 # v € Lin,. Is it true that the tangent space T, splits
in the direction of v?

Halbeisen’s example [4, 39] shows that compactness of space of
directions is essential in the proof that space of directions is m-geodesic
(see 7.5).
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6.21. Open question. Let A be a proper Alexandrov space. Is it
true that for any p € A, the tangent space T, is a length space?
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Lecture 7

Dimension and volume

This lecture shows that several different notions of dimension are the
same for Alexandrov spaces. Also, we introduce volume and prove the
Bishop—Gromov inequality, the right-inverse theorem and introduce
the distance chart in finite-dimensional Alexandrov space.

A Linear dimension

Let A be an Alexandrov space. We define its linear dimension
LinDim A as the least upper bound on integers m such that the Eu-
clidean space E™ is isometric to a subspace of the tangent space T,.A
at some point p € A. If not stated otherwise, dimension of an Alex-
androv space is its linear dimension.

If not stated otherwise, dimension will mean linear dimension. In
Section TF, we will show that linear dimension of Alexandrov space
coincides with all reasonable dimensions; after that, we will use dim A
for LinDim A.

7.1. (n+1)-comparison. Let A be an ALEX(0) space. Then for any
finite set of points p,x1,...,x, € A, there exists a model configuration
Dy T1y .-, Ty € E™ such that

‘]37 i‘z Em = |p* $i|.A and |£Z'z — i’j E™ 2 |£E1 — I’j|_,4

for any i and j. Moreover, we can assume that m < LinDim A.

Proof. By 6.19, we can choose a point p’ arbitrarily close to p so that
Liny 3 Ty, for any i. Let us identify E™ with a subspace of Lin,,
spanned by T -+ Tz, - Note that m < LinDim A.

pl-tl] PIC]

o7
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Set p' =0 € E™ and &; = [p’ — x| Ty, € E™ for every i. Note
that
7" — Zilgm = p — xila

for every i. Applying the comparison £[p’ {:] > A(p' %), we get

T
|"f2 — Zi'jhgm Z ‘(El — SC]‘I_A

for any 7 and j. Passing to a limit configuration as p’ — p we get the
result. O

7.2. Exercise. Let A be an ALEX(0) space. Suppose LinDim A =

=m < 0o. Show that T, A = E" for a G-delta dense set of points
pe A

7.3. Exercise. Show that a 1-dimensional Alezandrov space is home-
omorphic to a 1-dimensional manifold, possibly with non-empty bound-
ary.

7.4. Exercise. Let A be an ALEX(0) space.
Show that LinDim A > m if and only if for some m + 2 points p,
ag, - - -, @y € A we have

for any pair i # j.

B Space of directions

A metric space X will be called ¢-geodesic if any two points z,y € X
such that |x — y| < £ can be connected by a geodesic. For instance,
any geodesic space is oo-geodesic.

7.5. Theorem. Let A be a finite-dimensional Alexandrov space. Then
for any point p € A, its space of directions ¥, is a compact w-geodesic
space.

By 4.4 this immediately gives

7.6. Corollary. Let p be a point in a finite dimensional Alexandrov
space A, and let \,, — oco. Then there is a pointed Gromov—Hausdorff
convergence (Ap-A,p) — (Tp,0).

7.7. Exercise. Let p be a point in a finite-dimensional Alexandrov
space A. Prove the following.

(a) The tangent space T, is a proper ALEX(0) space.

(b) LinDim ¥, = LinDim A — 1.
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(c¢) If LinDim A > 1, then X, is geodesic.

Using 7.7b, one can prove results for all finite-dimensional Alexan-
drov spaces via induction on dimension. Such proofs will be indicated
below.

Proof of 7.5. Choose € > 0; suppose A is m-dimensional. Assume we
can choose n directions &1, ...,&, € ¥, such that £(&;,§;) > ¢ for any
i # j. Without loss of generality, we may assume that each direction
is geodesic; that is, there is a point z; € A such that & = 1y,

Choose y; € [px;] such that |p — y;| = r for each i and small
fixed 7 > 0. Since r is small, we can assume that £(p vi) > e for
any i # j. By 6.19, we can choose p’ arbitrarily close to p such that
Ty, € Liny for any . Since [p’ — p| is small, Z(p’ Z]) > ¢ for any
i # j. By comparison,

L'yl > e

Therefore, n < pack. S™~ !, where pack, X is the exact upper bound
on the number of points z1, ...,z € X such that |z; —z;| > e if i # j.
Since S™~1 is compact, pack. S™ ! < co. By the definition, the
space of directions X, is complete. Applying 8.5, we get that 3, is
compact.
It remains to prove the following claim.

O IfX, is compact, then it is w-geodesic

Choose two geodesic directions § = 17, and ¢ = 1y, let

a=34pyl=51€—Cls,

Suppose a < /2. Let us show that it is sufficient to construct an
almost midpoint pu = Ty, of £ and ¢ in X,; that is, we need to
show that for any € > 0 there is a geodesic [pz] such that

Apfl<a+e and LPpY<a+e.

z

Indeed, once this is done, the compactness of X, can be used to get
an actual midpoint for any two directions in ¥,. After that, Menger’s
lemma (1.4) will finish the proof.

Choose a sequence of small positive numbers r, — 0 Consider
sequences z,, € [pz] and y,, € [py] such that |p — z,| = |p — yn| = ru-
Let m,, be a midpoint of 2, Yn].

Since ¥, is compact, we can pass to a sequence of r, such that
Tipm,) converges; denote its limit by p. Choose a geodesic [pz] that
runs at a small angle from p. Let us show that 1y, is the needed
almost midpoint.
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Evidently, £(p o) = Z(p}/,;ln). By 2.5, we have
Lp,) +4oh,) < Lpyr)-

Let z, € [pz] be the point such that |[p — z,| = |p — my|. By
construction, for all large n, we have £[p7, | ~ 0 with arbitrary small

[2n =1 |

given error. By comparison, the value =z can be assumed to be

arbitrarily small for all large n. Applying this observation and the
definition of angle measure, we also have the following approximations

Llpym) =~ Llpyr,
Alpir )~ L(pir) =~ L[pi],

Lpym) ~Lpin) ~ Ly,

again, with arbitrary given error for all large n. It follows that 1y, is
an almost midpoint of Tipa) and Ty, as required.

xT

In the above proof, the angles £[p?] and £[p¥Y] have lower bounds
by the comparison, but we needed upper bounds that were extracted
from the definition of angle measure and the compactness of space of
directions.

C Right-inverse theorem

7.8. Theorem. Suppose p,aq,...,a, be points in an Alexandrov
space A such

Lpg) >3
for any i # j. Then the map f: A — R™ defined by

fram(Jar —x|,...,|am — |)

has a right inverse defined in a neighborhood of f(p).

In the proof we construct a local right inverse ® of f around f(p).
The construction uses gradient flow for a suitably chosen family of
functions. The structure of the proof can be seen in the following
exercise; more details are given in the hints.

7.9. Exercise. Suppose p,ag,...,a, € A and f: A — R are as in
7.8. Assume e > 0 is sufficiently small. Giveny = (y1,...,ym) € R™,
consider the function on A defined by

fy(z) =min{0,|a1 —z| —y1,...,|am — | —ym } +&-|ag — z|.
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(a) Show that for some fized r > 0 and X\, the function fy is A-
concave in B(p,r),

(i) (dydisty,)(Vafy) < —€2 if |a; — 2| > y; and
(ii) (dydisty,)(Vafy) > €2 if

la; — x| —y; = mjin{laj — x| —y;} <0.

at any x© € B(p,r).
(b) Let ay be fy-gradient curve that starts at p. Use (a) to show
that

dista[oy(to)] =y
if %-|distap —y| < to < 5.
(¢) Let to(y) = %-|la — p| —y|. Use 5.9 to show that the map
@: y > ay 0 to(y)

continuous in Q@ = B(la — p|, %7’) CR™ and fo ®(y) =y for
any y € (.
This finishes the proof of 7.8.

D Distance chart

7.10. Theorem. Suppose p,ag,...,an be points in an m-dimensional
Alezandrov space A such

Lpg) >3
for any i # j. Then the map f: A — R™ defined by
fram (Jar —x|,...,|am — |)

gives a bi-Lipschitz embedding of a neighborhood Q of p; the restriction
fla is called distance chart at p.

The following exercise guides you to prove the theorem.

7.11. Exercise. Suppose p,ag,...,a;m € A and f: A — R are as
in 7.8. Show that there is ¢ > 0 such that one of the following m
inequalities hold

Llx¥ ] <
Llya,l<

=& .., Lzl 1< —¢
=6 .., Llyg 1< 5 —¢

for any two points x,y in a sufficiently small neighborhood of p.
Use this together with the right-inverse theorem (7.8) to prove
7.10.
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E Volume

Fix a positive integer m. The m-dimensional Hausdorff measure of
a Borel set B in a metric space will be called its m-volume; it will
be denoted by vol,, B. We assume that the Hausdorff measure is
calibrated so that the unit cube in E™ has unit volume.

This definition will be applied mostly to subsets in m-dimensional
Alexandrov spaces. In this case, we may write vol B instead of vol,, B.

7.12. Bishop—Gromov inequality. Let A be an ALEX(0) space.
Suppose dim A = m < co. Then

vol B(p, ) < wp-r™,
where w,, denotes the volume of the unit ball in E™. Moreover, the

function
vol B(p, )

rm

T

1S NONINCreasing.

Proof. Given x € A choose a geodesic path v, from p to x. Recall that
log,: A — T, can be defined by log,,: 2 — 7,7 (0). By comparison, log,
is distance-noncontracting. Note that log, maps B(p,7).4 to B(0,7)r,.

If T, = E™, then volB(0,r)r, =
= Wy, -r"™, and the first statement fol-
lows.

If T, is not isometric to E™, then by
7.2, we can find a point p’ arbitrarily
close to p such that T, == E™. If
e > [p—p'|, then B(p,r) C B(p/,r+¢).
Therefore,

volB(p, ) S wp-(r+¢)™

for any € > 0. Hence the first state-
ment follows.

Now, suppose 0 < 11 < r9. Consider the map w: A — A defined
by w: x — 75(72). (The map w mimics the dilation with center at p
and coefficient %) By comparison,

[w(z) —w(y)] = 7%z —yl.
Observe that B(p,r1) D w[B(p,r2)]. Therefore,

VOIB(pv Tl) 2 (%)m VOIB(p7 TQ)'
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O

The following exercise generalizes the Bishop—Gromov inequality
to ALEX(—1) case. It is sufficient for most applications, but a more
exact statement will be given in 7.17 which also includes the case of
ALEX(1) spaces.

7.13. Exercise. Show that any finite-dimensional Alexandrov space
1S proper.

7.14. Exercise. Let A be an ALEX(—1) space. Suppose A =m < 0.
Show that
vol B(p,7) € wy, - (sinhr)™,

where w,, denotes the volume of the unit ball in E™. Moreover, the

function
vol B(p, )

(sinh 7)™

1S NONINCreasing.

F Other dimensions

Next we want to show that all reasonable definitions of dimension
give the same result for Alexandrov spaces. More precisely, we have
the following theorem; compare to [4, 15.16]. We refer to [44] for
definitions of Lebesgue covering dimension TopDim and Haus-
dorff dimension HausDim.

7.15. Theorem. For any Alexandrov space A, we have

LinDim A = TopDim A = HausDim A.

Proof. Suppose LinDim A = oo. By the right-inverse theorem (7.8),
A contains a compact subset K with an arbitrarily large TopDim K.
In particular,

TopDim A = 0.

By Szpilrajn’s theorem, HausDim K > TopDim K. Thus we also have
HausDim A = oo.

Now suppose LinDim. A = m < oo. By the Bishop—Gromov in-
equality (7.12 and 7.14),

HausDim A < m.
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Since A is proper (7.13), Szpilrajn’s theorem, implies that
TopDim A < HausDim A < m.

Finally, the right-inverse theorem (7.8) implies that m < TopDim A.
O

7.16. Exercise. Let Q be an open subset of Alexandrov space A.
Show that

LinDim A = LinDim © = TopDim ©2 = HausDim Q.

G Remarks

Let us state a version of the Bishop—Gromov inequality for ALEX(k)
spaces. Its proof requires additionally the so-called coarea formula for
Alexandrov spaces. The weaker inequality from 7.14 is sufficient for
the sequel.

7.17. Bishop—Gromov inequality. Given a point p in an m-dimensional
ALEX(K) space, consider the function v(r) = vol,, B(p,r); denote by
0(r) the volume of r ball in M™ (k). Then

v(r) < o(r)

for r >0 and the function

is nonincreasing. If k > 0, then one has to assume that r < %

This inequality was originally proved for Riemannian manifolds
with lower Ricci curvature. The first part is also called Bishop’s in-
equality. It is due to Richard Bishop; see [13] and [12, Corollary 4,
p. 256]. The second part is due to Michael Gromov [32].

Theorem 7.15, was essentially proved by Conrad Plaut [85]. At
that time, it was not known whether

LinDimA =00 = TopDimA = co

for any Alexandrov space A. The latter implication was proved by
Grigory Perelman and the second author [70].



Lecture 8

Limit spaces

In this lecture we show that lower curvature bound in the sense of Alex-
androv survives under Gromov—-Hausdorff limit and prove the Gromov
selection theorem. This theorem is the main source of applications of
Alexandrov geometry, as an illustration we prove the homotopy stabil-
ity theorem (8.12) and deduce the homotopy finiteness theorem (8.13)
from it.

A Survival of curvature bounds

8.1. Theorem. Let X, — X, be a convergence in the sense of
Gromov-Hausdorff. Suppose that each for each n, the space X, has
curvature > K in the sense of Alexandrov. Then the same holds

for X

Proof. Choose a quadruple of points peo, Too, Yoos Zoo € Xoo-

By the definition of Gromov—Hausdorff convergence, we can choose
points pn, Tn, Yn, 2n € X, for each n that converge to poo, Too,
Yoo, Zoo € Xoo, respectively. In particular, each of the 6 distances
between pairs of p,, Ty, yYn, 2, converge to the distance between the
corresponding pairs of Peo, Too, Yoo s Zoo-

Since M?(k)-comparison holds for p,, Ty, Yn, 2n € X, passing to
the limit, we get the M?(k)-comparison for peo, Too, Yoo, Zoo- O

8.2. Exercise. Suppose that a sequence Ay, As, ... of ALEX(k) spaces
that converges to As in the sense of Gromov—Hausdorff. Show that
Ao is ALEX(k) and

dim Ay < lim dim A,.

n—oo

65
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B Gromov’s selection theorem

8.3. Theorem. Let D,k € R, and m be a positive integer. Then any
sequence of m-dimensional ALEX(k) spaces with diameters at most D
has a converging subsequence in the sense of Gromov—Hausdorff.

Let X be a subset of a metric space W. Recall that a set Z C W
is called e-net of X if for any point z € X, there is a point z € Z
such that |z — z] <e.

We will use the following characterization of compact sets.

8.4. Exercise. A closed subset X of a complete metric space.
(a) Show that X is compact if and only if it admits a finite e-net for

any € > 0.
(b) Show that X is compact if and only if it admits a compact e-net
for any e > 0.
Recall that pack, X' is the exact upper bound on the number of
points z1,...,z, € X such that |z; —x;| > e if i # j.
If n = pack, X < oo, then the collection of points xi,...,z, is

called a maximal e-packing.

8.5. Exercise. Show that any mazximal e-packing x1,...,T, is an e-
net. Conclude that a complete metric space X is compact if and only
if pack, X < oo for any e > 0.

Proof of 8.3. Denote by K the set of isometry classes of ALEX(0)
spaces with dimension < m and diameter < D. By 8.2, K is a closed
subset of GH.

Choose a space A € K; suppose z1,...,2, € A is a collection
of points such that |z; — ;| > € for all i # j. Note that the balls
B; = B(x;, §) do not overlap.

By 7.8, vol A > 0. By Bishop—Gromov inequality, vol A < oo, and
if e < D, then

vol B; = (555)™ - vol A

for any 4. It follows that n < (Q‘ED)T”; that is,

pack, A < N(e) := (%)m
for all small € > 0.
Choose a maximal e-packing z1, ..., 2, € A. By 85, F. := {z1,...
. ,xyp} is an e-net of A. Observe that |F. — Alq < €. Further, note
that the set F. of finite metric spaces with diameter < D and at most
N (e) points forms a compact subset in GH.
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Summarizing, for any € > 0 we can find a compact e-net F, C GH
of K. Since GH is complete (1.20), it remains to apply 8.4b.

Rescaling reduces ALEX (k) case to the ALEX(—1) case. The latter
can be proved the same way, using 7.14 instead of 7.12. O

8.6. Exercise.
(a) Let A be an m-dimensional ALEX(0) space with diameter < D.
Suppose vol A > vy > 0. Show that

c
pack, A > o

for some constant ¢ = ¢(m, D,vg) > 0.

(b) Conclude that if Ay, is a sequence of m-dimensional ALEX(0)
spaces with diameter < D, and volume > vy, then its Gromov—
Hausdorff limit Ao (if it exists) has dimension m.

8.7. Exercise. Let (A1, p1), (Az2,p2),... be a sequence of m-dimensional
ALEX(k) spcaes with marked points. Show that it contains a subse-
quence pointed-converging in the sense of Gromov—Hausdorff.

C Controlled concavity

Alexandrov spaces have plenty of semiconcave functions; for instance,
squared distance functions. The following theorem provides a source of
strictly concave functions defined on small open sets of finite-dimensional
Alexandrov spaces.

8.8. Theorem. Let A be a complete finite-dimensional Alexandrov
space. Then for any point p € A, there is a strictly concave function
f defined in an open neighborhood of p.

Moreover, given 0 # v € T),, the differential, d,f, can be chosen
arbitrarily close to x — —(v,x).

Proof. Fix small r > 0 and large c;
consider the real-to-real function A(t)

SOT,C('I) = (37 - T) - C'(x - T)Q/T7

so we have ¢, .(r) = 0, @;,C(T) =1,
and ¢y (1) = —2¢/r.

Let v be a unit-speed geodesic, fix q
a point ¢ and let

a(t) = £(v7 (1), Ty yg))-
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Recall that r is small. If | — v(t)] is sufficiently close to r, then direct
calculations show that

3 — ¢ cos?[a(t)] .

(pre o disty 07)"(t) < =

(Since c is large, this inequality implies that ¢, . o dist, o 7 is strictly
concave at ¢ unless a(t) =~ 7.)

Now, assume {q1,...,qn} is a finite set of points such that [p —
—¢qi| = r for any i. For a geodesic v, set a;(t) = £(v" (1), T, (1)q])-
Assume we have a collection {g;} such that

maxc{]ay(t) — 5} > & > 0

for any geodesic v in B(p, ). We can assume that ¢ > 3N/ cos? ¢; then
the inequality above implies that the function

f= Z ©r,c © distg,
i

is strictly concave in B(p,e’) for some positive £’ < ¢.

The same argument as in 8.6 shows that for small » > 0, one can
choose N > ¢/6™" points {¢;} such that |p —¢;| =7 and £L(p &) > &
(here ¢ = ¢(X,) > 0). On the other hand, suppose vy runs from z to y.
If |oai(t) — 5| < € < 4, then applying the (n+1)-point comparison
to v(t), =, y and all {¢;} we get that N < ¢(m)/6™ 2. Therefore,
for small 6 > 0 and yet smaller € > 0, the set {g;} forms the needed
collection.

If r is small, then points ¢; can be chosen so that all directions
Tipg,] Will be e-close to a given direction § and therefore the second
property follows. O

The function f in 8.8 can be chosen to have maximum value 0
at p, f(p) = 0 and with d,f(z) ~ —|z|. It can be constructed by
taking the minimum of the functions in the theorem. Then the set
K={zxeA: f(x) > —e} forms a closed convex neighborhood of p
for any small € > 0, so we get the following.

8.9. Corollary. Any point p of a finite-dimensional Alexandrov space
admits an arbitrarily small convex closed neighborhood K and a strictly
concave function f defined in a neighborhood of K such that p is the
mazimum point of f and flox = 0.

8.10. Exercise. Construct an Alexandrov space A such that there is
no strictly concave function with an open domain of definition in A.
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D Liftings

Suppose that the Gromov-Haudorff distance |A— A’| 5 is sufficiently
small, so we may think that both spaces A and A’ lie at a small
Hausdorff distance in an ambient metric space W. In particular, we
may choose a small € > 0, so that for any point p € A, there is a point
p’ € A’ such that |p —p'|,,, < €; the point p’ will be called a lifting
(or e-lifting) of p in A’. We may choose a lifting p’ € A’ for every
point p € A, in this case the map p — p’ is called a (e-)lifting map.

The lifting is not uniquely defined. The lifting map is not assumed
to be continuous. When we talk about liftings, we assume that ¢ > 0,
the inclusions A, A" — W, as well as W are chosen.

Let A be a compact m-dimensional Alexandrov space. Suppose A’
is another compact m-dimensional Alexandrov space such that |A —
— A'| oy is sufficiently small — smaller than some ¢ = ¢(A) > 0. Then
the construction in A from the previous section can be repeated in A’
for the liftings of all points and the same function ¢. It produces a
strictly concave function defined in a controlled neighborhood of the
lifting p’ of p.

The result of this and related constructions will be called liftings,
say we can talk about a lifting from A to A’ of a function provided by
8.8 (if the Gromov-Hausdorff distance | A — A’|y; is small, then these
liftings are stricly concave) and a lifting of a convex neighborhood
from 8.9. Here one cannot use 8.8 and 8.9 as black boxes — one has
to understand the construction, but it is straightforward.

E Nerves

Let {Q4,...,Q} be a finite open cover of a compact metric space X.
Consider an abstract simplicial complex A/, with one vertex v; for each
set §2; such that a simplex with vertices v;,, ..., v;, is included in N if
the intersection €2;, N---N€; is non-empty. The obtained simplicial

covering nerve

complex N is called the nerve of the covering {Q;}. Evidently, N
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is a finite simplicial complex — it is a subcomplex of a simplex with
the vertices {v1,...,v;x}. Recall that Star,, denotes the union of all
simplices in A/ that shares vertex v;.

The next statement follows from [41, 4G.3].

8.11. Nerve theorem. Let {Qq,...,Qk} be an open cover of a com-
pact metric space X and let N be the corresponding nerve with vertices
{v1,...,vi}. Suppose that every non-empty finite intersection Qq, N. ..

... NQy, is contractible. Then X is homotopy equivalent to the nerve
N of the cover.

Moreover homotopy equivalences a: X — N and b: N'— X can be
chosen so that if x € Q;, then a(x) € Star,,, and if y € N lies in the
simplex with vertices v ,...,v; , then b(y) € Q;, U---UQ

F Homotopy stability

8.12. Theorem. Let Ay, As,..., and Ay, be compact m-dimensional
ALEX(k) spaces, and m < oco. Suppose A, = A as n — 00 in the
sense of Gromov—Hausdorff. Then A is homotopically equivalent to
A, for all large n.

Moreover, given € > 0 there are maps hy: Ase — A, that are
homotopy equivalences and e-liftings for all large n.

Applying this theorem with Gromov’s selection theorem (8.3) and
Exercise 8.6, we get the following.

8.13. Theorem. There are only finitely many homotopy types of m-
dimensional ALEX(k) spaces with diameter < D, and volume = wvy;
here we assume that an integer m, and vy > 0 and D > 0 are given.

Proof of 8.13 modulo 8.12. Assume the contrary, then we can choose
a sequence of spaces Aj, As,... that have different homotopy types
and satisfy the assumptions of the theorem. By Gromov’s selection
theorem, we can assume that A,, converges to say A, in the sense of
Gromov—Hausdorff.

By 8.6, dim A, = m. It remains to apply 8.12. O

Proof of 8.12. Since A, is compact, applying 8.9, we can find a finite
open cover of A, by convex open sets (11, ..., Q) such that for each ;
there is a strictly concave function f; that is defined in a neighborhood
of Q; and such that fi|sq, = 0.

Subtracting from functions f; some small value ¢ > 0, we can
ensure that (;cq Qs # @ if and only if (,cq QU # 2.
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Suppose that W = (,.¢ % # @. Then W is contractible. Indeed,

the function

€S
fs :=min f;
€S

is strictly concave and it vanishes on the boundary of W. The fg-
gradient flow (¢,z) — Flowtfs () defines a homotopy [0,00) x W —
W. By the first distance estimate (5.6), Flochs (z) converges to the
(necessarily unique) maximum point of fg as ¢ — co. Therefore, in the
obtained homotopy we can parametrize [0, 00) by [0, 1) and extend the
homotopy continuously to [0, 1]; thus we get that W is contractible.
In other words, the cover {Qq,...,;} meets the assumptions of the
nerve theorem (8.11).

The functions f; and sets €; can be lifted to A, keeping their
properties for all large n. More precisely, there are liftings f;, of
all f; to A, which are strictly concave for all large n and such that
Qin={z€ A, : fin(x) >0} is a compact convex set and Q;,, =
={z €A, : fin(xr) >0} is an open convex set for each i.

Notice that {1 ,...,Qkn} is an open cover of A, for all large n.
Indeed suppose we have p, € A, \ (1, U---U Q) for arbitrary
large n. Since Ay is compact, there is a limit point p,, € A, for a
subsequnce of p,. But po € €); for some ¢ and therefore p,, € Q; ,, for
arbitrary large n — a contradiction.

In a similar fashion, we can show that if n is large, then any collec-
tion {€2; , }ies has a common point in A, if and only if {€2;};cs has a
common point in As. Here we have to use that (), .o Q; # @ if and
only if ;.4 U # @.

It follows that for any large n the covers

o {Q1,...,Q} of Ay and

o {1y, Qi) of Ay
have the same nerve. By the nerve theorem (8.11), A, and A, are
homotopically equivalent for all large n — a contradiction. O

i€S

The proof above proof implies the following.

8.14. Theorem. Any compact finite-dimensional Alexandrov space
is homotopy equivalent to a finite simplicial complex.

G Remarks

Originally, Gromov’s selection theorem was proved for Riemannian
manifolds with a lower bound on Ricci curvature [32]. It motivates
the study of limits of manifolds with lower Ricci curvature bounds
and their synthetic generalizations, the so-called CD(K,m) spaces;
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CD stands for curvature-dimension condition. This theory has signifi-
cant applications in Alexandrov geometry; in particular, it provides a
version of the Liouville theorem about phase-space volume of geodesic
flow in Alexandrov space [14].

The construction of a strictly concave function (8.8) is due to Grig-
ory Perelman [69, 72].

The homotopy-type finiteness theorem (8.13) illustrates applica-
tions of the main source of applications of Alexandrov spaces: we
choose a sequence of m-dimensional manifolds with lower sectional
curvature bound that violates the assumption, then pass to the limit
— the limit must be an Alexandrov space and this can be used to
arrive at a contradiction.

In principle, the same strategy might work for a sequence of Rie-
mannian manifolds with dimension approaching infinity, but so far
no applications of this kind are known. The following close relative of
Gromov’s theorem about almost flat manifolds can be attacked by this
type of argument. Is it true that no simply connected closed manifold
(of arbitrary large dimension) admits a Riemannian manifold with sec-
tional curvature and diameter bounded by a fized positive sufficiently
small value? (Riemannian manifolds with these conditions may not
be covered by compact nil-manifolds [38].)

Let us finish with a list of results that can be proved by applying
Gromov’s selection theorem in the same fashion as in the proof of
homotopy-type finiteness theorem (8.13).

8.15. Betti-number theorem. There is a constant ¢ = c(m, D, k)
such that

Bo(M) + -+ fm(M) < ¢

for any closed m-dimensional Riemannian manifold M with sectional
curvature > x and diameter < D. Here 3;(M) denotes i Betti num-
ber of M.

Gromov’s original proof [31] of the Betti-number theorem did not
use Alexandrov geometry directly; but it is quite natural to prove it
via Gromov’s selection theorem. The following result was proved by
the second author [80], and it uses the same technique.

8.16. Scalar curvature bound. There is a constant c = c(m, D, k)

such that
ISC <c
M

for any closed m-dimensional Riemannian manifold M with sectional
curvature > k and diameter < D. Here Sc denotes the scalar curva-
ture.
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The following theorem is a more exact version of 8.12. Its close
relative (9.1) will play an important role in the following lecture.

8.17. Stability theorem. Let Ay, As,..., and A be compact m-
dimensional ALEX(k) spaces, and m < oo. Suppose A, — A as
n — 00 in the sense of Gromov—Hausdorff. Then Ay, is homeomorphic
to A, for all large n.

Moreover, given € > 0 there are maps hy: Ass — A, that are
homeomorphisms and e-liftings for all large n.

This theorem was proved by Grigory Perelman [71]; the proof was
rewritten with more details by the first author [46]. Perelman infor-
mally claimed in private conversations that the homeomorphisms in
the theorem can be assumed to be bi-Lipschitz with constants that
depend on A,; however no written proof has been presented.

Theorem 8.13 was originally proved by Karsten Grove and Peter
Petersen [35]. Perelman’s stability theorem (8.17) implies the following
stronger statement.

8.18. Homeomorphism-type finiteness. There are only finitely
many homeomorphism types of closed m-dimensional manifolds that
admit a Riemannian metric with sectional curvature > k, and diame-
ter < D.

Applying several results in differential topology, this statement can
be improved to diffeomorphism-type finiteness in all dimensions m
except m = 4 because it is known that except for m = 4 a closed
topological m-manifold admits only finitely many smooth structures;
see [48] and [66, 94] for cases m > 5 and m < 3, respectively.
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Lecture 9

Boundary

This lecture defines the boundary of a finite-dimensional Alexandrov
space. After discussing its properties, we prove the doubling theorem
(9.9d).

A Definition

Let us give an inductive definition of the boundary of finite-dimensional
Alexandrov spaces.

Suppose A is a 1-dimensional Alexandrov space. By Exercise 7.3,
A is homeomorphic to a 1-dimensional manifold (possibly with non-
empty boundary). This allows us to define the boundary 9.4 C A as
the boundary of the manifold.

Now assume that the notion of boundary is defined in dimensions
1,...,m — 1. Suppose A is m-dimensional Alexandrov space. We say
that p € A belongs to the boundary (briefly p € 0 A) if 0%, # @. By
7.5 and 7.7b, ¥, is an (m—1)-dimensional Alexandrov space; therefore
its boundary is already defined and hence this inductive definition
makes sense.

It is instructive to check the following statements.

¢ For a closed convex set K C E™ with non-empty interior, the

topological boundary of K as a subset of E™ coincides with the
boundary K described above.

o If A== Ay x As is a finite-dimensional Alexandrov space, then

0A = (8A1 X Az) U (.Al X a.AQ)

o If Cone X is an ALEX(0) space of dimensions > 2 (this necessarily
implies that Cone X is ALEX(1) then

0 Cone Y. = Cone 0%,

75
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where Coned% = {s-£ € ConeX : £ € 0¥ }.

B Conic neighborhoods

The following statement [72] is a close relative of Perelman’s stability
theorem 8.17. We are going to use this result without proof.
Recall that the logarithm log, z: A — T}, is defined on page 39.

9.1. Theorem. For any point p in a finite-dimensional Alexandrov
space A and all sufficiently small € > 0 there is a homeomorphism
he: B(p,e)a — B(0,e)r, such that 0 = h.(p).

Moreover, we may assume that

sup {1-llog,z—h(z)lp, } -0 as e—0.
z€B(p;e) !

This statement is often used together with the uniqueness of conic
neighborhoods stated below.

Suppose that an open neighborhood U of a point x in a metric
space X admits a homeomorphism to Cone X such that x is mapped
to the origin of the cone. In this case, we say that U has a conic
neighborhood of z.

9.2. Uniqueness of conic neighborhoods. Any two conic neigh-
borhoods of a given point in a metric space are pointed homeomor-
phic; that is, there is a homeomorphism between neighborhoods that
maps the origin of one cone to the origin of the other.

9.3. Advanced exercise. Prove 9.2 or read the proof in [50].

9.4. Exercise. Suppose x +— x’ is a homeomorphism between finite-
dimensional Alexandrov spaces A and A’. Show that

(a) Tm = TI/,

(b) SuspX, = SuspX,.

(c¢) but in general ¥, 2 3.

C Topology

The following theorem states that boundary is an object of topology,
despite our definition have used geometry.

9.5. Theorem. Let A and A" be homeomorphic finite-dimensional
Alexandrov spaces. Then dim A = dim A’ and

A£D = OAN+40o
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While working on the proof, keep in mind that there are pairs
of spaces K1 and Ko such that K; Z Ko, but R x 1 &£ R x K.
Suspension over the Poincaré homology sphere with S* is one of the
examples; compare to 9.4c.

Let A be an m-dimensional Alexandrov space and m < co. Define
rank of A (briefly, rank A) as the minimal value k such that A splits
isometrically as R™ % x IC; here K is a k-dimensional Alexandrov space.

In the following proof we will apply induction on the rank of A.

Proof. The first statement follows from 7.15.

Suppose we have a counterexample, say 0A # &, but A" = @.
Let k := rankA and k' := rank.A’. We can assume that the pair
(k, k') is minimal in lexicographic order; in particular, k is minimal.
Let z — 2’ be a homeomorphism from A to A’.

Choose = € 0A. Since 0A" = &, we have 2’ ¢ 0.A’. Note that

rankT, <k and rankT, <k

)

By 9.4a, T, 2 T,/. Note that 0T, # @ and 0T,, = &. Therefore, we
may assume that A and A’ are Euclidean cones and the homeomor-
phism sends the origin to the origin. The remaining part of the proof
is divided into three cases.

Case 1. Suppose k > 1. Let A == R™* x C, where C a k-dimensional
ALEX(0) cone. Observe that rank T, < rank.A for any y € A and the
equality holds only if y projects to the origin of C.

Since £ > 1 we can find z € 9C such that z # 0. Choose y that
projects to z; in particular, rank T, < rank. A. By 9.4a, T, = T,
0T, # @ and 0T, = @. The latter contradicts the minimality of k.
Case 2. Suppose k < 1 and k¥’ > 1. Since A # &, we get that k = 1;
therefore, A = R™™1 x Rx.

Let A/ == R™ % x ¢, where C' a k'-dimensional ALEX(0) cone.
Since d.A = R™ 1, the image of A in A’ does not lie in R™*" x {0}.
In other words, we can choose y € A such that its image ¢y’ € A’ has
a nonzero projection in C’. Observe that T, = T/,

rankT, < k=1, rankT, <k, 0T,=@, and 9T, #O
— a contradiction.

Case 3. Suppose k < 1 and k¥’ < 1. Since A # &, k = 1. By 7.3,
A= R™ I xR5. Therefore, A’ 2 R™, and A 2 A’ — a contradiction.
O

9.6. Exercise. Let v — %’ be a homeomorphism  — Q' between
open subsets in finite-dimensional Alezandrov spaces A and A’. Show
that x € OA if and only if x' € OA'.
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9.7. Exercise. Show that boundary of a finite-dimensional Alexan-
drov space is a closed subset.

D Tangent space

Let X be a subset in a finite-dimensional Alexandrov space A. Choose
p € Aand { € ¥). Suppose £ is a limit of directions T, ; for a
sequence T, Ts2,... € X that converges to p. Then we say that £ is in
the space of directions from p to X; briefly £ € £,X.

Further, Cone(X,X) will be called tangent space to X at p; it
will be denoted by T, X.

9.8. Theorem. For any finite-dimensional Alexandrov space A, we
have

(S, A) = ,(0A) and O(T,A) = T,(dA).

Proof. Choose a sequence z;, € A such that z, — p and T, | = &.

Let €, = 2-|p — 2y, and let h., : B(p,en)a — B(0,e,)r, be the
homeomorphisms provided by 9.1; in particular, %-hgn (zn) — & as
n — oo. By 9.6, h., (z,) € 0T,. By 9.7, £ € 9T,,. Therefore,

A(SpA) O 2,(0A) and  I(T,A) O T,(DA).

Similarly, choose £ € 9%,,. Let h., : B(p,en)a — B(0,6,)r, be the
homeomorphisms provided by 9.1 for a sequence ¢, — 0 as n — oo.
By 9.6, z,, = h;'(%-€) € DA. By 9.1, Mpan) — € Hence

A(S,A) C 5,(0A) and O(T,A) C T,(0A).

E Doubling

Let A be a closed subset in a metric space X. The doubling W
of X across A is two copies of X glued along A; more precisely, the
underlying set of W is the quotient X x {0,1}/ ~, where (a,0) ~ (a,1)
for any a € A and W is equipped with the minimal metric such that
both maps X — W defined by = — (z,0) and = — (x,1) are distance-
preserving.

Alternatively, one may say that WV is equipped with the maximal
metric such that the projection proj: W — A defined by (x,7) — x is
a short map. The metric on W can also be defined explicitly as

. . |z —yly it i=J
z,1) — (Y, =9. if 4 ]
[(z,4) — (v,5)lw {1nf{x—a;(+|y_a|X:a€A} if ©# 7.
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9.9. Theorem. Let A be a finite-dimensional Alezandrov space with
non-empty boundary. Suppose f = %-distf7 for some p € A. Then
(a) If dim A > 2, then distox, (§) < 5 for any x € 0A and § € ¥,.
Moreover, if distos, (§) = 5, then £(§,¢) < § for any ¢ € ;.
(b) Vof € 0T, for any x € OA.
(c) If o is an f-gradient curve that starts at © € A, then a(t) € 0A
for any t. Moreover, if p € 0A, then gexp,(v) € OA for any
v e 0T,
(d) The doubling W of A across A is an Alexandrov space with the
same curvature bound.

Part (d) is called the doubling theorem.

Proof. We will denote by (a),,...,(d), the corresponding statement
assuming m = dim A.

The proof goes by induction on m. Statement (d); follows from
7.3 — this is the base. The step is a combination of the implications
below.

(d)m—1 =(a)m. Suppose m = 2, then dimX, = 1; see 7.7b. By 7.3,
¥, isometric to a line segment [0, £]; we need to show that ¢ < 7.

Assume ¢ > 7, then the tangent space T, = Cone X, has several
different lines thru the origin. Recall that T, is an Alexandrov space;
see 7.7. By 6.5, T, is isometric to the Euclidean plane; the latter
contradicts that X, is a line segment.

Now suppose m > 2, so dim ¥, > 1. Assume distpx, (§) > § for
some &. By (d)m-1, the doubling = of ¥, is ALEX(1). Denote by
& and &; the points in = that correspond to £. Observe that |y —
—&i|z > . The latter contradicts 3.7.

Finally, if distas, (§) = 5, then |§y — &1 |z = 7. Therefore, Cone =
contains a line in the directions of &, and &;; in other words, = is a
spherical suspension with poles &, and &;. In particular, every point
of = lies on distance at most 7 from &, or £;. The natural projection
= — X, does not increase distances and sends both &, and & to &.
Therefore, the second statement follows.

(d)m—1+(a)m—1+(a)m = (b)m. We can assume that s = V. f # 0. By
4.10, V. f = s-&, where s = d,f(§) > 0 and £ € X, is the direction
that maximize d f(€).

Let ¢ € 0%, be a direction that minimize the angle £(£,¢). It is
sufficient to show that ¢ = €.

Assume ¢ # &; let n = T[CE]ZI' By (a)m, £(§,¢) < 5 and (a)m—1
implies that

o L(n,v) <5
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for any v € XX, (if m = 2, then the last statement is evident).
Let ¢: X, — R be restriction of d, f to ¥,. Applying 4.7a and ©,
we get that dep(n) < 0. Since d, f is convex, we have that ¢” +¢ < 0.

If ©(¢) < 0, then it implies that ¢(§) < 0 — a contradiction. If

©(¢) > 0, then (&) < ¢({) — a contradiction again.

(b)m = (¢)m. Let @ be an f-gradient curve and ¢(t) = distg 4 (?).

Choose t; let = = a(t) and y € 0A be a closest point to z. By
(b)m, we have that V, f € 9T,. Since the distance |x — y| is minimal,
we get (41, v) < 0 for any v € 9Ty. In particular,

Applying Exercise 4.9 to « and y, we get
U(t) <L)

if the left-hand side is defined. Since £ is Lipschitz, ¢’ is defined almost
everywhere. Integrating the inequality, we get

0(t) < e'-£(0)
for any ¢t > 0. In particular, if £(0) = 0, then £(¢t) = 0 for any t > 0.
Since 0A is closed (9.7), the statement follows.

(¢)m~+(d)m—1 = (d)m. We will consider the case x = 0; other cases
can be done in the same way, but formulas get more complicated.

Denote by Ag and A; the two copies of A in W; let us keep the
notation d.A for the common boundary of A4y and A;.

@O Let vy be a geodesic in W. Then either v has at most one interior
point in OA or v C 0A.

Indeed, assume ~ shares at least

two points with 0.4, say = v(t;) and oL = Y
y = ¥(t2) and these are not endpoints ~—____ -~
of 7. Remove from ~ the set v N A; ol

and exchange it to its reflection across
0A; denote the obtained curve by 4.

Any arc of 4 with one endpoint in dA is a geodesic in Ag. Since
z,y € OA, the arc of 4 behind y lies in the image of map ¢ Flow?z (y),
where f, = %~disti. By (¢), this arc lies in 0.A.

Now choose a point z on this arc, so z € JA. Applying the same
argument, we get that the arc of 4 before y lies in 0.A. Hence the
claim follows. A

Choose a point p in W; let f := %-distf,. It is sufficient to show
that (f o7)” < 1 for any ¢t. If p € JA, then the statement follows
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from function comparison in Ay and A;. So, we can assume that
p € A \ 0A.

If 4 lies in 0A, then this inequality follows from the comparison
in .A().

Choose y = 7(to); without

loss of generality we can assume L1
that ¢t = 0. Q‘
If y € Ap \ OA, then (f o or -
07)"”(0) < 1in the barrier sense;
it follows from the comparison
. v
in Ag.
Assume y € A; \ 0A. Sup- Lo D

pose [py] crosses OA at x. Let

Y, be the space of directions of A at x, and let = be its doubling.

As before, we denote by ¥y and ¥; two copies of ¥, in = and keep

notation 0%, for their common boundary. By (d),,—1, = is ALEX(1).
The directions Ty,,; and Ty, lie on opposite sides from = and

|T[:L’y] T[:rp |E =

Otherwise, we could choose a direction £ € 9% such that

‘T [zy] — 5'” + ‘g sz] ‘H <.

Furthermore, we could consider the radial curve a(t) = gexp,(t-§).
By (¢)m, « lies in 0A. By 5.12

P —a(s)]a, + 1y —als)la, <Ip—ylw

for small values s > 0 — a contradition.
Cone = contains a line with directions 1(,,; and T, . By the split-
ting theorem, Cone = split in these directions; in particular,

for any £ € Z. It follows that for any & € = there is ¢’ € 9%, such
that £ and ¢’ lie on some geodesic [T, T1zp))=-

Fix t ~ 0 such that t # 0; let z = (). Choose such &’ for £ = 1.,
Consider the radial curve a(s) := gexp,(s-¢’). Let us show that

P —a(s)] 4, +lals) = 2l <

— 2zl <
P Ip— zlw I
< Yly?Zl

for suitable value s.
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The first inequality in @ is evident. Set ¢ = L[z Y] and ¢ =
= K(T[w] ,&"). The choice of s comes from the model configuration p,
Z, §, W, 2 € E? such that

7f:|p71’|, |Aﬁ*g|:|p7y|v ‘jfg‘:‘xfzh
2

|
] L[#5] =9, s = |7 —wl.

w € [pz], LT

ISIR

By 5.12, we get

P = a(s)] 4, < [P =@,
|la(s) — 2|4, </ |

by the comparison,

9.10. Exercise. Prove the last inequality.

Hence we get (f ov)”(0) < 1 in the barrier sense.
Finally if 4(0) € 0.A, then splitting argument shows that

(Fo)*(0)+ (foy) (0)<O.

Summarizing, we get that (f o)’ < 1 on every arc of v that
lies entirely in Ap or A;. If v crosses 0.4, then we know that it
happens only once and at the crossing moment tq we have fo~y™(tg) +
+ fovy (to) < 0. All this implies that (f o~v)” < 1. O

9.11. Exercise. Let A be a finite-dimensional ALEX(1) space of di-
mension > 2 with non-empty boundary 0A. Show that 0A is con-
nected.

9.12. Exercise. Let A be an m-dimensional ALEX(0) space with non-
empty boundary 0A for 2 < m < oco. Show that the distance function
to the boundary

distg4: A —> R

1S concave.
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9.13. Exercise. Let A be a finite-dimensional ALEX(0) space with
non-empty boundary 0A. Suppose v is a geodesic in A with the
induced length metric. Show that the function t — %distf, oy(t) is
1-concave for any point p.

9.14. Exercise. Let W be a doubling of finite-dimensional Alexan-
drov space A across its boundary, and let proj: W — A be the natural
projection. Suppose f: A — R is a A-concave function. Show that
foproj: W — R is A-concave if and only if V. f € 0T, for any
x € 0A.

F Remarks

The doubling of a finite-dimensional Alexandrov space across its bound-
ary results in an Alexandrov space without boundary. This observa-
tion can often be used to reduce a statement about general finite-
dimensional Alexandrov spaces to Alexandrov spaces without bound-
ary.

For spaces without boundary the following tools become available.

9.15. Fundamental-class lemma. Any compact finite-dimensional
Alexzandrov space A without boundary has a fundamental class with
Z/2 coefficients; that is, if A is m-dimensional, then

H™(A,7,)2) = 7,)2.

This lemma was proved by Karsten Grove and Peter Petersen [36].
Originally it was stated for Alexander—Spanier cohomology. We do not
make this distinction because for compact Alexandrov spaces it is the
same as singular cohomology. Indeed, both cohomology theories are
homotopy invariant [91, Chapter 6], compact Alexandrov spaces are
homotopy equivalent to finite simplicial complexes 8.14 and for para-
compact CW complexes Alexander—Spanier cohomology is isomorphic
to Cech and singular cohomolgy [91, Chapter 6].

This lemma implies, for example, that on finite-dimensional Alex-
androv spaces without boundary the gradient flow for a A-concave
function is an onto map; in other words, gradient curves can be ex-
tended into the past. It is also used in the proof of the following version
of the domain invariance theorem [47, Theorem 3.2].

9.16. Domain invariance. Let A; and As be two m-dimensional
Alezandrov spaces with empty boundary; m is finite. Suppose £, is an

open subset in Ay and f: Q1 — As is an injective continuous map.
Then f(€1) is open in As.
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Theorem 9.1 can be used to prove the following.

9.17. Topological stratification. Any m-dimensional Alexandrov
space with m < oo can be subdivided into topological manifolds Sy, . . .
., S such that for every i we have dim .S; =i or S; = @. Moreover,
(a) the closure of Sy,—1 is the boundary of the space, and
(b) Sp—2=0.

Let us mention that this statement implies that a compact finite-
dimensional Alexandrov space has the homotopy type of a finite CW
complex, but it seems to be unknown if it has to be homeomorphic to
a CW complex.

The stratification theorem 9.17 can be sharpened as follows.

9.18. Boundary characterization. Let A be an m-dimensional
Alexandrov space with m < oco. Then the following statements are
equivalent.

(a) p € OA;

(b) 3, is contractible;

(¢) Hn-1(%p,Z/2) = 0;

(d) Hpm(A, A\{p} Z/2) = 0;

Let f be a semiconcave function. A point p € Dom f is called
critical point of f if d,f < 0; otherwise it is called regular.

The following statement plays a technical role in the proof of sta-
bility theorem, but it is also a useful technical tool on its own.

9.19. Morse lemma. Let f be a semiconcave function on a finite-
dimensional Alexandrov space without boundary. Suppose K is a com-
pact set of reqular points of f in its level set f = a. Then an open
neighborhood Q of K admits a homeomorphism x — (h(x), f(z)) to a
product space A X (a —¢e,a + ¢).

Subsets in Alexandrov spaces that satisfy the condition in 9.9¢ are
called extremal. More precisely, a subset E is extremal if for any
x € FE and f-gradient curve that starts in F remains in F; here f is
arbitrary function of the form édisti.

Extremal subsets were introduced by Grigory Perelman and the
second author [69]. They will pop up in the next lecture.

The following conjecture is one of the oldest questions in Alexan-
drov geometry that remains open.

9.20. Conjecture. Let S be a component of the boundary of a
finite-dimensional Alexandrov space. Then S equipped with the in-
duced length metric is an Alexandrov space with the same curvature
bound.



F. REMARKS 85

The doubling theorem has several generalization [28, 79] that allows
to glue nonidentical spaces.
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Lecture 10

Quotients

This lecture gives several applications of Alexandrov geometry to iso-
metric group actions.

A Quotient space

Suppose that a group G acts isometrically on a metric space X. Note
that

G-z —Gyly)g=f{|lz—gyly : g€ G}
defines a semimetric on the orbit space X' /G. Moreover, it is a genuine
metric if the orbits of the action are closed.

10.1. Theorem. Suppose that a group G acts isometrically on a
proper ALEX(0) space A, and G has closed orbits. Then the quotient
space A/G is ALEX(0).

A more general formulation will be given in 10.5.

Proof. Denote by o: A — A/G the quotient map.
Fix a quadruple of points p, x1, z2, 3 € A/G. Choose an arbitrary
p € A such that o(p) = p. Since A is proper, we can choose points
%; € A such that o(%;) = z; and
p—zilaye = 1P — Zila

for all 3.
Note that

lwi — x| 46 <12 — 2|4

for all 4 and j. Therefore
0 Lps) < L%

87
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holds for all ¢ and j.
By E2-comparison in A, we have

P35+ L5 + L0 <2
Applying @, we get
Lpiy) +4p32) + L(p3) < 2-m;
that is, the E2-comparison holds for any quadruple in A/G. O

10.2. Very advanced exercise. Let G be a compact Lie group with
a bi-invariant Riemannian metric. Show that G is isometric to a
quotient of a Hilbert space by an isometric group action.

Conclude that G is ALEX(0).

B Submetries

A map o: X — Y between the metric spaces X and ) is called a
submetry if

o(B(p,r)x) = B(o(p),r)y

for any p € X and r > 0.

Suppose G and A are as in 10.1. Observe that the quotient map
o: A — A/G is a submetry. The following two exercises show that
this is not the only source of submetries.

10.3. Exercise. Construct submetries
(a) o1:S* — [0, 7],
(b) o2:S* = [0, 5],
(¢) on:S* — [0, Z] (for integer n > 1)
such that the fibers o, *{x} are connected for any x.

10.4. Exercise. Let o: E? — [0,00) be a submetry. Show that K =
= 0710} is a closed convex set without interior points and o(x) =
= distgx.

The proof of 10.1 works for submetries equally well; that is, if
o: A — Bis a submetry and A is ALEX(0), then so is B. Theorem
10.1 admits a straightforward generalization to ALEX(—1) case. In
the ALEX(1) case, the proof produces a slightly weaker statement —
S2-comparison holds in any open 5-ball in the quotient of ALEX(1); in
particular, the quotient space is locally ALEX(1). But since ALEX(1)
space is geodesic, then so is its quotient. Therefore, the globalization
theorem implies that it is globally ALEX(1). The same holds for the
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targets of submetries from a ALEX(1) space. With a bit of extra work,
one can extend the statement to nonproper spaces; see [47 8.34]. Thus,
we have the following two statements.

10.5. Theorem. Let o: A — B be a submetry. If A is ALEX(k)
space, then so is B.

In particular, if G acts isometrically on a proper ALEX(k) space A,
and G has closed orbits. Then the quotient space A/G is ALEX(k).

C Hopf’s conjecture

Does S? xS? admit a Riemannian metric with positive sectional curva-
ture? This question is known as Hopf’s conjecture. The following
partial result was obtained by Wu-Yi Hsiang and Bruce Kleiner [42].

10.6. Theorem. There is no Riemannian metric on S? x S? with
sectional curvature > 1 and a nontrivial isometric St-action.

10.7. Key lemma. Suppose S' ~ S? is an isometric action without
fized points and ¥ = S3/S' is its quotient space. Then there is a
distance noncontracting map > — %-SQ, where %-SQ is the standard
2-sphere rescaled with a factor %

The proof of the lemma is done mostly by calculations; it is guided
by the following exercise.

10.8. Exercise. Suppose S' ~ S3 is an isometric action without
fized points. Let us think of S® as the unit sphere in R*.
(a) Show that one can identify R* with C? so that the action is given

by matriz multiplication
uP 0
0 wil)’

where (p,q) is a pair of relatively prime positive integers and
ueS'={z€C: |z| =1}. In particular, our S* is a subgroup
of the torus that acts by matriz multiplication

()

Fiz p and q as above. Let ¥, , = S*/S' be the quotient space.

(b) Show that the %,, = S3/S' is a topological sphere with S*-
symmetry. This symmetry has two fixed points, north pole and
south pole, that correspond to the orbits of (1,0) and (0,1) in S3.

where v,w € S'.
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Denote by S(r) the circle of radius r with the center at the north pole
of ¥pq-
(¢) Show that the inverse image T(r) of S(r) in S? is also an orbit
of the torus action. Conclude that a(r) = 72-sinr-cosr is the
area T'(r).
(d) Let by, 4(r) be the length of the S'-orbit in S* that corresponds to
a point on S(r). Show that by, = m-+/(p-sinr)2 + (q- cosr)2.

(e) Letcy (1) be the length of S(r). Show that a(r) = cp 4(r)-bp q(1).

(f) Show that cp 4(r) < c1,1(r) for any pair (p,q) of relatively prime
positive integers. Use it to construct a distance moncontracting
map pq = 5-S* == %1 1.

Proof of 10.6. Assume B = (S? x S?,g) is a counterexample. By
the Toponogov theorem, B is ALEX(1). By 10.1, the quotient space
A= B/S! is ALEX(1); evidently, A is 3-dimensional.

Denote by F C B the fixed point set of the S'-action. Each con-
nected component of F' is either an isolated point or a 2-dimensional
geodesic submanifold in B; the latter has to have positive curvature,
and therefore it is either S or RP2. Notice that

o each isolated point contributes 1 to the Euler characteristic of B,

¢ each sphere contributes 2 to the Euler characteristic of B, and

¢ each projective plane contributes 1 to the Euler characteristic
of B.
Since x(B) = 4, we are in one of the following three cases:

o F has exactly 4 isolated points,

¢ F has one 2-dimensional submanifold and at least 2 isolated

points,

¢ F has at least two 2-dimensional submanifolds.

In each case we will arrive at a contradiction.

Case 1. Suppose F' has exactly 4 isolated points 1, x2, x3, and x4.
Denote by y1, y2, y3, and 14 the corresponding points in 4. Note that
¥, A is isometric to a quotient of S? by an isometric S'-action without
fixed points.

By 10.8, each angle «[y; 1] < 5 for any three distinct points y;,
Yj, Y- In particular, all four triangles [y192y3], [y1Y294], [Y1Y3y4], and
[y2y3ya] are nondegenerate. By the comparison, the sum of angles in
each triangle is strictly greater than .

Denote by o the sum of all 12 angles in the 4 triangles [y1y2ys],
[y192v4], [Y1y3y4], and [y2ysya]. From above,

o>4-.
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On the other hand, by 10.8 any triangle in ¥, .4 has perimeter at
most 7. In particular,

Ly 2]+ Ly 21+ Ly ha] <

Apply the same argument in 3, A, 3, A, and ¥, A; adding the re-
sults, we get
o<4m

— a contradiction.

Case 2. Suppose F' contains one surface S. Then the projection of S to
A forms its boundary d.A. The doubling W of A across its boundary
has 4 singular points — each singular point of A corresponds to two
singular points of W.

By the doubling theorem, W is a ALEX(1) space. Therefore we
arrive at a contradiction in the same way as in the first case.

Case 3. Impossible by 9.11. O

D Erdés’ problem rediscovered

A point p in an Alexandrov space is called extremal if £[p7] < § for

any hinge [py] with the vertex at p, or equivalently diam %, < /2.

10.9. Theorem. Let A be a compact m-dimensional ALEX(0) space.
Then it has at most 2™ extremal points.

The proof is a translation of the proof of the following classical
problem in discrete geometry to Alexandrov’s language.

10.10. Problem. Let F be a set of points in E™ such that any tri-
angle formed by three distinct points in F' has no obtuse angles. Then
|F| < 2™. Moreover, if |F| = 2™, then F consists of the vertices of
an m-dimensional rectangle.

This problem was posed by Paul Erdds [25] and solved by Ludwig
Danzer and Branko Griinbaum [23]. Grigory Perelman noticed that,
after proper definitions, the same proof works in Alexandrov spaces
[68]; thus, it proves 10.9.

Proof of 10.9. Let {p1,...,pn} be extremal points in .A. For each p;
consider its open Voronoi domain V;; that is,

Vi={zxeA:|pj—x| <|pj —x| forany j #i}.

Clearly ViNV; =@ if i # j.



92 LECTURE 10. QUOTIENTS

Suppose 0 < o < 1. Given a point « € A, choose a geodesic [p;x]
and denote by z; the point on [p;z] such that |p; — z;| = a-|p; — z|;
let ®;: x — x; be the corresponding map. By the comparison,

lzi —yil = |z -y
for any x, y, and i. Therefore
vol(®;A) > o™ vol A.

Suppose a < % Then z; € V; for any x € A. Indeed, assume
x; ¢ Vi, then there is p; such that |p; — ;| > |p; — x;|. Then from
the comparison, we have Z(pj Pi)g2 > 55 that is, p; does not form
a one-point extremal set. It follows that volV; > a™-vol A for any
O<a< %; hence

vol%}%-vol/l and N <2™.
O

It’s easy to see that 10.9 implies the bound in |F| < 2™ in 10.10
by taking A to be the convex hull of F'; the case of equality requires
more work.

E Crystallographic actions

An isometric action I' ~ E™ is called crystallographicifitis prop-
erly discontinuous (that is, for any compact set X C E™ and z €
€ E™ there are only finitely many g € T such that g-z € K) and
cocompact (that is, the quotient space A =E™ /T is compact).

Let F be a maximal finite subgroup of I'; that is, if F < H < T
for a finite group H, then F' = H. Denote by #(I') the number of
maximal finite subgroups of I up to conjugation.

10.11. Open question. Let I' ~ E™ be a crystallographic action.
Is it true that #(I") < 2m?

Note that any finite subgroup F' of I' fixes an affine subspace Ap
in E™. If F is maximal, then Ar completely describes F. Indeed,
since the action is properly discontinuous, the subgroup of I' that fix
Ar has to be finite. This subgroup must contain F', but since F' is
maximal, it must coinside with F.

Denote by #(I') the number of maximal finite subgroups F' < T’
(up to conjugation) such that dim Ap = k.

Choose a finite subgroup F' < I'; consider a conjugate subgroup
F' = g-F-g~!'. Note that Ap = g-Ap. In particular, the subspaces
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Ap and Ap have the same image in the quotient space A = E™/T.
Therefore, to count subgroups up to conjugation, we need to count
the images of their fixed sets. Therefore, by the lemma below (10.13),
#0(T) cannot exceed the number of extremal points in A = E™ /T,
Combining this observation with 10.9, we get the following.

10.12. Proposition. LetT' ~ E™ be a crystallographic action. Then
#o(T) < 2™

10.13. Lemma. Let I' ~ E™ be a crystallographic action and F be
a maximal finite subgroup of I' that fixes an isolated point p. Then the
image of p in the quotient space A =TE™/T is an extremal point.

Proof. Let q be the image of p. Suppose ¢ is not extremal; that is,
L[qyi] > 5 for some hinge [¢¥!] in A.

Choose the inverse images z1,22 € E™ of y1,y2 € A such that
|p — @ilgm = [q — yil 4 Note that £L[p7l] > £L[q}i] > 5. Moreover,
since p is fixed by F', we have

) A3, > 5

for any g € F.

Denote by z the barycenter of the orbit G-x5. Note that z is a
fixed point of F'. By @, z # p; so F' must fix the line pz. But p is an
isolated fixed point of F' — a contradiction. O

10.14. Exercise. Let I' ~ E™ be a crystallographic action. Show
that
(a) #m-1(T) <2, and
(b) if #m-1(T) =1, then #o(I') <21
Construct crystallographic actions with equalities in (a) and (b).

F Remarks

Submetries were introduced by Valerii Berestovskii [10] and have at-
tracted attention in various contexts of differential and metric geom-
etry.

A more general form of Theorem 10.6 was found by Karsten Grove
and Burkhard Wilking [37]; it classifies isometric S! actions on 4-
dimensional manifolds with nonnegative sectional curvature. This
proof is as beautiful as the original work of Wu-Yi Hsiang and Bruce
Kleiner.

Tt is expected that no ALEX(1) space with a nontrivial isometric
St-action can be homeomorphic to S x S?; so 10.6 holds for general
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ALEX(1) space. The proof of 10.6 would work if we had the following
generalization of 10.7; see [40].

10.15. Open question. Let 3 be an ALEX(1) space homeomorphic
to S3. Suppose S' acts on ¥ isometrically and without fized points. Is
it true that any triangle in /S has perimeter at most 72 and, what
about the existence of distance-noncontracting map 3/S' — %SQ ?

10.16. Advanced exercise. Suppose S! acts isometrically on an
ALEX(1) space A that is homeomorphic to S®. Assume its fized-point
set is a closed local geodesic . Show that length~y < 2-7.

The same question for a Zs-action is open [73].

Compact m-dimensional ALEX(0) spaces with the maximal number
of extremal points include m-dimensional rectangles and the quotients
of flat tori by reflections across a point. (This action has 2™ isolated
fixed points; each corresponds to an extremal point in the quotient
space A = T™/Zy.) Nina Lebedeva has proved [52] that every m-
dimensional ALEX(0) space with 2™ extremal points is a quotient of
Euclidean space by a crystallographic action.

Counting maximal finite subgroups in a crystallographic group I
is equivalent to counting the so-called primitive extremal subsets in
the quotient space A = E™/T". So, 10.12 would follow from the next
conjecture.

10.17. Conjecture. Any m-dimensional compact ALEX(0) space
has at most 2™ primitive extremal subset.

Here is an equivalent definition of extremal sets. A closed subset E
in a finite-dimensional Alexandrov space is called extremal if £[p 7] <
< § forany ¢ E and p € E such that [z — p| takes a minimal value.
An extremal set is called primitive if it contains no proper extremal
subsets.

For example, the whole space and the empty set are extremal. Also,
every vertex, edge, or face (as well as their union) of the cube is an
extremal subset of the cube. Vertices of the cube are its only primitive
extremal subsets.



Lecture 11

Surface of convex body

In this lecture, we discuss surfaces of convex bodies; this is historically
the first application of Alexandrov geometry.

A Definitions

Let us define a convex body as a compact convex subset in E™ with
non-empty interior.

In This chapter we will only deal with convex bodies in 2. There-
fore, unless indicated otherwise, we will assume that m = 3 from now
on.

The surface of a convex body is defined as its boundary equipped
with the induced length metric.

11.1. Exercise. Show that the surface of a conver body is homeo-
morphic to S2.

In this lecture, we will prove that surface of a conver body is

ALEX(0).

B Surface of convex polyhedra

A convex polyhedron is a convex body with a finite number of
extremal points, called its vertices.

Observe that the surface, say ¥, of a convex polyhedron P admits a
triangulation such that each triangle is isometric to a plane triangle. In
other words, ¥ is a polyhedral surface; that is, it is a 2-dimensional
manifold with a length metric that admits a triangulation such that

95
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each triangle is isometric to a solid plane triangle. A triangulation
of a polyhedral surface will always be assumed to satisfy this condition.
The total angle around a vertex v in X is defined as the sum of
angles at v of all triangles in the triangulation that contain v.
If a point p € ¥ is not a vertex of P, then
¢ p lies in the interior of a face of P, and its neighborhood in ¥ is
a piece of plane, or
¢ p lies on an edge, and its neighborhood is two half-planes glued
along the boundary.
In both cases, a neighborhood of p in ¥ (with the induced length
metric) is isometric to an open domain of the plane. Therefore, the
total angle around p should be defined to be 2-7.

11.2. Claim. Let X be the surface of a convex polyhedron P. Then,
the total angle around any point in X cannot exceed 2-m.

In the proof, we will need the triangle inequality for angles (or
the spherical triangle inequality). A proof of this statement is given
in the classical geometry textbook by Andrei Kiselyov [49, § 47]; it
also follows from 1.9. (In fact our proof of 1.9 is a straightforward
generalization of the argument in [49, § 47].)

11.3. Spherical triangle inequality. Let wq,ws, w3 be unit vectors
in E3. Denote by ;.5 the angle between the vectors v; and vj. Then

013 <012+ 023

and in case of equality, the vectors wy,ws,ws lie in a plane.

Proof of 11.2. Consider the intersection of P with a small sphere cen-
tered at p; it is a convex spherical polygon, say F. Applying rescaling
we may assume that the sphere has unit radius. Then we need to show
that the perimeter of F' does not exceed 2-7.
Note that F' lies in a hemisphere, say H. More-
over, there is a decreasing sequence of convex spher-
ical polygons

H:HOD...DH,”:F’

such that H;11 is obtained from H; by cutting along
a chord.
By the spherical triangle inequality (11.3), we have

2. = perim H = perim Hy > ... > perim H,, = perim F'

— hence the result. O
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A vertex of a triangulation of a polyhedral surface is called essen-
tial if the total angle around it is not 2-7.

11.4. Exercise. Let v be a point on the surface 3 of a convex poly-
hedron P. Show that v is a vertex of P if and only if v is an essential
vertex of 3.

11.5. Exercise. Show that geodesics on the surface of a convex poly-
hedron do not pass thru its essential vertices.

C Curvature

Let p be a point on the surface of a polyhedron, and 6, is the total
angle around p. The value 2-m — 8, is called the curvature of the
polyhedral surface at p. If p is not a vertex, then its curvature is zero.

11.6. Exercise. Assume that the surface of a nondegenerate tetra-
hedron T has curvature w at each of its vertices. Show that
(a) all faces of T are congruent;
(b) the line passing thru midpoints of opposite edges of T intersects
these edges at right angles.

Claim 11.2 says that surfaces of convex polyhedra have nonnegative
curvature in the sense of the above definition. Now we show that this
definition agrees with the 4-point comparison.

11.7. Proposition. A polyhedral surface with nonnegative curvature
at each vertex is ALEX(0).

Proof. Denote the surface by . By 2.18, it is sufficient to check that
distf, o~y is 1-concave for any geodesic v and a point p in X.

We can assume that p is not a vertex; the vertex case can be done
by approximation. Further, by 11.5, we may assume that v does not
contain vertices.

Given a point & = 7(tg), choose a geodesic [pz]. Again, by 11.5,
[px] does not contain vertices. Therefore a small neighborhood of
U D [pz] can be unfolded on a plane; that is, there is an injective
length-preserving map z — Z of U into the Euclidean plane. This way
we map part of v in U to a line segment 7. Let

F(t) = 3-dist; o 4(t).

Since the geodesic [pz] maps to a line segment, we have f(to) = f(to).
Furthermore, since the unfolding z + Z preserves lengths of curves,
we get f(t) > f(t) if t is sufficiently close to to. That is, f is a local
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upper support of f at to. Evidently, f/ = 1; therefore f” < 1. It
remains to apply 2.18. O

11.8. Exercise. Prove the converse to the proposition; that is, show
that if a poyhedral surface is ALEX(0), then it has nonnegative curva-
ture in the sense defined in this section.

D Surface of convex body

11.9. Advanced exercise. Let K1, K,,..., and K. be convex bod-
ies in E™. Denote by S, the surface of K,, with induced length metric.
Suppose K, = K, in the sense of Hausdorff. Show that S, = Ss in
the sense of Gromov—Hausdorff.

Any convex body is a Hausdorff limit of a sequence of convex poly-
hedra. Therefore, the next proposition follows from 11.7, 11.9, and
8.1.

11.10. Proposition. The surface of a convex body is ALEX(0).

E Remarks

11.1 and 11.7 imply that the surface of a convex body is a sphere with
nonnegative curvature in the sense of Alexandrov. The celebrated
theorem of Alexandrov states that the converse also holds if we allow
degeneration of convex bodies to plane figures; the surface of a plane
figure is defined as its doubling across the boundary. In other words,
any ALEX(0) metric on the sphere is isometric to a surface of (possibly
degenerate) convex body. Moreover this convex body is unique up to
congruence. The last result is due to Alexei Pogorelov [87].
Originally, Alexandrov proved the statement for polyhedral metrics
on the sphere; this proof is sketched in the appendix. Then he used
11.9 to extend the result to an arbitrary ALEX(0) metric on the sphere.

11.11. Advanced exercise. Let S be the surface of a nondegenerate
convex body K C E3; we assume that S is equipped with its induced
length metric.
(a) Show that any geodesic v in S is one-sided differentiable as a
curve in E3
(b) Let 1 and v2 be geodesic paths in S that start at one point p =
=71(0) = 72(0). Suppose z; =vi(1), and y; = p+ ;" (0). Show
that
|1 — 22ls < |y1 — Y2lws
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where W is the complement to the interior of K.
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Appendix A

Alexandrov’s embedding
theorem

BY NINA LEBEDEVA AND ANTON PETRUNIN

A Introduction

Intrinsic distance between two points on the surface of a convex polyhe-
dron is defined as the length of a shortest curve on the surface between
these points.

Recall that the sum of angles at the tip of a convex polyhedral angle
is less than 2-7r; this statement can be found in a school textbook [49,
§ 48].

It is easy to see that the surface of a convex polyhedron is homeo-
morphic to the sphere. Therefore the statements above imply that the
surface of a convex polyhedron equipped with its intrinsic metric is an
example of a polyhedral metric on the sphere with the sum of angles
around each vertex at most 2-m; a metric is called polyhedral if the
sphere admits a triangulation such that every triangle is congruent to
a plane triangle.

Alexandrov’s theorem states that the converse holds if one includes
in the consideration twice covered polygons. In other words, we assume
that a polyhedron can degenerate to a plane polygon; in this case,
its surface is defined as two copies of the polygon glued along their
boundary.

Further, we assume that a polyhedron can degenerate to a plane
polygon.
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A.1. Alexandrov’s theorem.
1. A polyhedral metric on the sphere is isometric to the surface of
a convez polyhedron if and only if the sum of angles around each
of its vertex is not greater than 2-m.
II. Moreover, a convex polyhedron is defined up to congruence by the
intrinsic metric on its surface.

A. D. Alexandrov has many remarkable theorems, but in our opin-
ion, this theorem is the most remarkable. At the same time, its proof is
elementary; it could be explained to anyone familiar with basic topol-
ogy.

This theorem has many applications. In particular, it is used in
the proof of its generalization that gives a complete description of
intrinsic metrics on the sphere that are isometric to convex surfaces in
the Euclidean space (see [7], a gap in the proof was fixed in [21]).

The first part of theorem is central; it is called the existence the-
orem. The second part is called the uniqueness theorem; it is a slight
variation of Cauchy’s theorem about polyhedrons. (There is another
uniqueness theorem of Alexandrov that generalizes Minkowski’s theo-
rem about polyhedrons.)

According to the theorem, a convex polyhedron is completely de-
fined by the intrinsic metric of its surface. In particular, knowing the
metric we could find the position of the edges. However, in practice, it
is not easy to do. For example, the surface glued from a rectangle as
shown on the diagram defines a tetrahedron. Some of the glued lines
appear inside facets of the tetrahedron and some edges (dashed lines)
do not follow the sides of the rectangle.

The theorem was proved by A. D. Alexan-
drov in 1941 [6]; we will present a sketch of his Q
proof. A complete proof is nicely written by A. ( - s :>
D. Alexandrov in his book [5]. Yet another proof Tea 1 e
was found by Yu. A. Volkov in his thesis [97]; it N
uses a deformation of three-dimensional polyhe-
dral space.

B Space of polyhedrons and metrics

Space of polyhedrons. Let us denote by ® the space of all con-
vex polyhedrons in the Euclidean space, including polyhedrons that
degenerate to a plane polygon. Polyhedra in ® will be considered up
to a motion of the space, and the whole space ® will be considered
with the natural topology (an intuitive meaning of closeness of two
polyhedrons should be sufficient).
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Further, denote by ®,, the polyhedrons in ® with exactly n vertices.
Since any polyhedron has at least 3 vertices, the space ® admits a
subdivision into a countable number of subsets ®3, Dy, . ..

Space of polyhedral metrics. The space of polyhedral metrics
on the sphere with the sum of angles around each point at most 2.7
will be denoted by W. The metrics in ¥ will be considered up to an
isometry, and the whole space ¥ will be equipped with the natural
topology (again, an intuitive meaning of closeness of two metrics is
sufficient).

A point on the sphere with the sum of angles strictly less than 2-7
will be called an essential vertex. The subset of U of all metrics
with exactly n essential vertices will be denoted by W¥,,. It is easy to
see that any metric in W has at least 3 essential vertices. Therefore W
is subdivided into countably many subsets W3, Wy, ...

From a polyhedron to its surface. Recall that the surface of a
convex polyhedron is a sphere with a polyhedral metric such that the
sum of angles around each point is at most 2-7. Therefore passing
from a polyhedron to its surface defines a map

t: & — W,

The number of vertices of a polyhedron is equal to the number of
essential vertices of its surface. In other words, «(®,) C ¥,, for any
n > 3.

C About the proof

Using the notation introduced in the previous section, we can give the
following more exact formulation of Alexandrov’s theorem:

A.2. Reformulation. For any integern > 3, the map ¢ is a bijection
from @, to U,,.

We sketch the original proof of A. D. Alexandrov. It is based on
the construction of a one-parameter family of polyhedrons that starts
at arbitrary polyhedron and ends at a polyhedron with its surface
isometric to the given one. This type of argument is called the conti-
nuity method; it is often used in the theory of differential equations.

The two parts of the first formulation will be proved separately.

Part II. Let us show that the map ¢: ®,, — ¥, is injective; in other
words, a convex polyhedron is defined by the intrinsic metric on its
surface up to a motion of the space.
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The last statement is analogous to the Cauchy theorem about poly-
hedrons, and the proof goes along the same lines.

The Cauchy theorem states that facets of a polyhedron together
with the gluing rule completely describe a convex polyhedron; its proof
is given in many classical popular texts [1, 24, 92].

Part I. Let us prove that ¢: ®,, — W, is surjective. This part of the
proof is subdivided into the following lemmas:

A.3. Lemma. For any integer n > 3, the space V,, is connected.

The proof of this lemma is not complicated, but it requires ingenu-
ity; it can be done by the direct construction of a one-parameter family
of metrics in ¥,, that connects two given metrics. Such a family can
be obtained by a sequential application of the following construction
and its inverse.

Let M be a sphere with metric from W¥,,. Suppose v and w are
essential vertices in M. Let us cut M along a shortest path from v
to w. The shortest path cannot pass thru an essential vertex of M.
Further, note that there is a three-parameter family of patches that
can be used to patch the cut so that the obtained metric remains in
¥,,; in particular, the obtained metric has exactly n essential vertices
(after the patching, the vertices v and w may become inessential).

A.4. Lemma. The map ¢: ®,, — U, is open, that is, it maps any
open set in ®,, to an open set in V,,.
In particular, for any n > 3, the image 1(®,,) is open in U,

This statement is very close to the so-called invariance of do-
main theorem; the latter states that a continuous injective map
between manifolds of the same dimension is open.

According to part II, ¢ is injective. The proof of the invariance
of domain theorem can be adapted to our case since both spaces ®,,
and ¥,, are (3-n — 6)-dimensional and both look like manifolds, altho,
formally speaking, they are mot manifolds. In a more technical lan-
guage, ®,, and ¥, have the natural structure of (3-n — 6)-dimensional
orbifolds, and the map ¢ respects the orbifold structure.

We will only show that both spaces ®, and ¥,, are (3-n — 6)-
dimensional.

Choose a polyhedron P in ®,. It is uniquely determined by the
3-n coordinates of its n vertices. We can assume that the first vertex
is the origin, the second has two vanishing coordinates and the third
has one vanishing coordinate; therefore, all polyhedrons in ®, that
lie sufficiently close to P can be described by 3-n — 6 parameters. If
P has no symmetries then this description can be made one-to-one;
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in this case, a neighborhood of P in @, is a (3-n — 6)-dimensional
manifold. If P has a nontrivial symmetry group, then this description
is not one-to-one but it does not have an impact on the dimension of
D,,.

The case of polyhedral metrics is analogous. We need to construct
a subdivision of the sphere into plane triangles using only essential
vertices. By Euler’s formula, there are exactly 3-n — 6 edges in this
subdivision. The lengths of edges completely describe the metric, and
slight changes of these lengths produce a metric with the same prop-
erty.

A.5. Lemma. The map t: ®, — ¥, is closed; that is, the image of
a closed set in ®,, is closed in V,,.
In particular, for any n > 3, the set o(®,,) is closed in V.

Choose a closed set q in ®,. Denote by Z the closure of Z in
®; note that Z = &, N Z. Assume Pi, P>, - € Z is a sequence of
polyhedrons that converges to a polyhedron P, € Z. Note that ¢(P,)

converges to0 ((Ps) in W. In particular, ¢(Z) is closed in V.

Since ¢(®,) C U, for any n > 3, we have «(Z) = «(Z) N ¥,,; that
is, 1(Z) is closed in .

Summarizing, ¢(®,) is a non-empty closed and open set in ¥,
and U, is connected for any n > 3. Therefore, ¢(®,) = ¥,,; that is,
t: 9, — ¥, is surjective. O]

Acknowledgments. We want to thank Stephanie Alexander, Yuri
Burago, and Jules Tsukahara for help. The authors were partially
supported by RFBR grant 20-01-00070 and NSF grant DMS-2005279.
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Semisolutions

1.1. Choose a sequence of positive numbers €,, — 0 and a finite €,,-net
N, of K for each n. We can assume that ¢y > diam K, and Ny is a
one-point set. If |z — y| < e for some & € Niy1 and y € Ny, then
connect them by a curve of length at most ey.

Let K’ be the union of all these curves and K. Show that K’ is
compact and path-connected.

Source: This problem is due to Eugene Bilokopytov [11].

1.2. Choose a Cauchy sequence xz,, in (X, | * — = ||); it is sufficient to
show that a subsequence of x, converges.

Observe that the sequence x,, is Cauchy in (X, |* — *|); denote its
limit by zo.

Passing to a subsequence, we can assume that ||z, — 41| < 5.
It follows that there is a 1-Lipschitz path « in (X, || * — ||) such that
zn, = (5=) for each n and o = 7(0). Therefore,

[0 — zn | < 1ength’y\[07%] < 2%

In particular, x,, converges to o in (X, || * —*||).
Source: [43, Corollary]; see also [74, Lemma 2.3].

1.3. Given a pair of points p and ¢, choose a sequence of paths -,
from p to ¢ such that

lengthy, = |p—q| as n— oo;

these paths exist since we are in a length space. We can assume that
each v, is parametrized proportionally to the arc length; in particular,
v, are equicontinuous. Show that paths -, lie in a closed ball, say
E[p, r] of some radius r < oco. Since the space is proper, §[p7 r] is
compact. By the Arzela—Ascoli theorem, we can pass to a converging
subsequence of ,. Show that its limit is a geodesic path from p to q.
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1.5. Choose a sequence €, > 0 that converges to zero very fast, say
such that ) 10"-g, is small. Follow the argument in the proof of
Menger’s lemma, taking e,-midpoints at the n*® stage.

1.6. Let us write the Riemannian metric on M?(k) in polar coordi-

nates (6,7); it has the form (%°0), where h = h(x,r) > 0. Calculate

h(k,r). Show that for fixed r, the function r + h(k, ) is nonincreas-
ing in the domain of definition. Suppose x < K, consider the partially
defined map M?(x) — M?(K) that sends a point to the point with the
same polar coordinates. Show that this map is short in the domain of
definition. Use it to prove the statement in the exercise.

1.7. Show and use that Z(pg)sz - Z(p?j)w =O0(p—z*+p—yl?
and L(p2)g2 — L(pP)we = O(lp— z* + [p — y[?).

1.8. Consider a hinge in the plane R? with a metric defined by norm,
say by the £>°-norm.

1.10. Assume £[p?] + £[p¥] < m. By 1.9, £[pj] < m. Therefore,

z

4(py) < for some & € Jpz] and § € |py]. Hence
p =2+ [y —pl <[z -9l
— a contradiction.

1.11. Denote by « the arc-length parametrization of [gp] from ¢ to p.
Choose € > 0. Observe that

V(1) —a(Z1)]* <t?-(1 - 2-cosp+ ) +o(t?),
where ¢ = £[q?]. By the triangle inequality
P =) <I(t) —alZ-Ol +lg—pl - 2t
Conclude that
lp =y ()] < lg—pl —t-cosp+6(e)-t + o(t),

where 6(¢) — 0 as e — 0. The statement follows since € > 0 is
arbitrary.

1.13. Since the space is proper, it is separable; that is, we can choose
an countable everywhere dense set {z1,xa,...}.

Let Ay, As, ... be a sequence of closed sets. Applying the diagonal
procedure, we can pass to a subsequence such that for each 7 the
sequence dist 4, x; converges as n — oo; denote its limit by f(z;).

Since dist 4, is 1-Lipschitz for any n, we have

(i) = f(a))] < |2i = 2]
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for all ¢ and j. Suppose f(z;) < oo for some i, then the same holds
for any i. Therefore, the function f can be extended to a continuous
function defined on the whole ambient space. Show that Ao, = f~1{0}
is the limit of A,, in the sense of Hausdorfl.

If f(x;) = oo for some 4, then the same holds for any ¢. Show that
in this case A,, — & in the sense of Hausdorff.

1.16. Apply the definition of Hausdorff distance (1.14).

1.18. Given Zso, Yoo € Xoo, choose z,,y, € X, such that z, —
and Yy, — Yoo. Let z, be the midpoint of [z,y,]. Since X is proper,
we can choose a subsequence of z, that converges to a point, say
Zoo € Xoo. Note that z., is a midpoint of x4 and y.,, then apply
Menger’s lemma (1.4).

1.21. Given a pair of points xg,yo € K, consider two sequences

Z0,%1,-.. and yo,y1,... such that x,11 = f(z,) and yor1 = f(yn)
for each n.

Since K is compact, we can choose an increasing sequence of inte-
gers ny such that both sequences (x,,)52; and (yn,)$2; converge. In
particular, both are Cauchy; that is,

|wm - xnj |IC — 0 and |ym - ynj |IC —0

as min{i, j} — oo.
Since f is distance-noncontracting,

|$O - x\nlfnj” < ‘xn13 — T,
for any ¢ and j. Therefore, there is a sequence m; — oo such that
(%) Tm, = o and  Ym, = Yo

as ¢ — 0.
Since f is distance-noncontracting, the sequence ¢,, = |z, — yn|x
is nondecreasing. By (%), £,, — ¢o as m; — oco. It follows that

bo=1t1=...
In particular,
lzo — yolc = Lo = 1 = | f(2o) — f(yo)lx

for any pair of points (xg,yo) in K. That is, the map f is distance-
preserving; hence f is injective. From (x), we also get that f(K) is
everywhere dense. Since K is compact f: KL — K is surjective — hence
the result.
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Remarks. This is a basic lemma in the introduction to Gromov—
Hausdorff distance [see 7.3.30 in 15]. The presented proof is not quite
standard; I learned it from Travis Morrison, a student in my MASS
class at Penn State, Fall 2011.

This exercise implies that any surjective non-expanding map from
a compact metric space to itself is an isometry.

1.22. The only-if part is trivial. Let us prove the if part.

If |X, — Xsolgyg 7 0, then we can pass to a subsequence such
that |X,, — X|qy = € for some ¢ > 0. Show that we can pass to
a subsequence again, so that X, converges in the sense of Gromov—
Hausdorff, say to ). Observe that J < X, and X, < Y. By 1.21,
Y =2 X, — a contradiction.

1.23. Show and use that |X.o — X/ |qy < € for any € > 0.

1.27; (a) Consider the graphs of the following functions with the in-
duced metric from R2.

T cosw+cosZ and x> cosw+sin .

(b) For every rational number ¢ € [1,2] consider an interval of length
q. Let X be obtained by identifying all initial points of the intervals
to one point and all end points to another.

Let )Y be constructed in the same way but skipping the interval of
length 1.5.

2.2. The 4-point comparison (2.1) reduces our question to the fol-
lowing. Any spherical triangle has perimeter at most 2-w. Choose a
spherical triangle [xyz]. Let 2’ be the antipode of z; that is 2’ = —z.
The spherical triangle inequality (1.9 or 11.3) implies that

|z — 2lg: < |y — 2'ge + 2" — 2]ga.
Observe that
o=yl +ly—2'lse =7, and o — 2lg + |2 — alle = 7.

Hence
|7 = ylge + |z — 2[g2 + |y — 2lg2 < 2-7.

2.3. For the only-if part consider the following two cases.

If L(p3!)+4£(p32) > m, then choose two model triangles [qy1y2] =
= A(pa172) and [qyays] = A(pzax,) that lie on the opposite sides of
[qy=2]. By the comparison, |y; —y3| = |z1 —x3|. Therefore the obtained
configuration meets all the conditions.
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If £(p o)+ AL(p 2) > 7, then choose two model triangles [qy1y2] =
= A(pwlxg) and take y3 on the extension of [y1g] behind ¢ such that
lg —ys| = [p— ws|. Then L[q}2] > £(p3?2), therefore [ys — ys| > |va —
— x3|. Further, |y2 — ys3| = |22 — p| + |p — 23| = |22 — 23|, and again,
the obtained configuration meets all the conditions.

To prove the if part, choose a configuration ¢, y1, Y2, y3 that meets
all the conditions and maximize the sum

lyr — y2| + |y2 — y3| + |lyz — w1l

Show that g lies in the solid triangle y;y2ys; in particular
Lg ]+ Llgy] + Lla ] = 2-m.

Moreover, |q — y;| = |p — x;| for each i. Applying that increasing the
opposite side in a plane triangle increases the corresponding angle, we
get

LI+ 4(p22)+L(p2?) < 2.

2

2.5. Consider model triangles [pzz] = A(pzz) and [pjz] = A(pyz)
that share side [pZ] and lie on its opposite sides. Note that
1T — Glgz 2 |2 — Glgz + |2 — Glg= =
=lz—zly +|z—ylx =
= |3j - y‘Xv

where X' is our metric space. It remains to apply the monotonicity of
angle in a triangle with respect to its opposite side.

2.7. Apply 2.6.

2.9. Without loss of generality, we can assume that |p — x| < |p — y|.
Choose T € [px]; let § € [px] be such that |p — Z| = |[p — §|. Apply 2.6
to show that z = g. Conclude that [px] C [py].

2.10. Assume that there are two distinct geodesics from z to x. Then
we can choose distinct points p and ¢ on these geodesics such that
|z —p| = |2z — q|. Observe that £(z7) > 0. By the triangle inequality,
we get

[z —pl+Ip—yl <le—pl+lp—zl+lz—yl =l —z]+]|z -yl
Observe that Z(zg) = . Therefore £[2{] = 7 for any geodesic [2z].

2.11. By 1.10, we have

Llpi]+4[pYl > m.
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Since z € |zy[ we have

Z(z%) =

for any T € [zz[ and § € |zy|. By comparison, we have that

LD+ LED<r
for any p € |zp|. Passing to the limit as |z — Z| — 0, |z — | — 0, and
|z — p| = 0, we get the statement.

2.12. Without loss of generality, we can assume that z, v, w, and y
appear on [zy] in this order. By 2.6,

Lal) > L) > Aab).

Hence, = follows.
By Alexandrov’s lemma,

L(z¥) = L(z?)

<
Z(Ig) Z(:L'g) —

Whence, < follows.
2.13. Suppose £[To Y] > . Then we can choose Yoo € |Toc¥oo] and

Zoo € |TooZoo] Such that Z(acoo §°°) > «a. Now choose g, € |z,y,] and

oo

Un € |Tnzn] such that ¥, — Yo and Z, — Zoo. Observe that

lim [z, %] > lim £(z, %) > o,
n— o0 " n—oo

hence the result.

2.16. The Urysohn space provides an example; see for example [83,
Lecture 2].

2.17. Choose a triangle [Qvw]. Note that m = % (v+w) is the midpoint
of [vw].
Use comparison, to show that

2:[3(v+w)l* + 2|30 —w)[* = Jvf* + |w]*.

Note this inequality implies the opposite one; it follows if we rewrite
it via z = 2(v +w) and y = (v — w). Hence we have

230 +w)? + 230 —w)* = v + w]?
for any v, w. That is, the norm is quadratic and the statement follows.

3.3. Suppose such a point does not exist; that is, for any p € X there
is a point p’ such that r(p') < (1 —e€)-r(p) and |[p — p/| < L-r(p).
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Construct a sequence of points pg,pi,... such that p, = p,_; for
any n. Show that this sequence is Cauchy; denote its limit by p..
Arrive at a contradiction by showing that r(p) < 0.

3.6. The space X has no defined sphericlal model angles; therefore it
has curvature > 1.
However, X does not have curvature > 0 since

L(pas)ez = L(p32)E2 = L(p3))r2 = .

3.7. Suppose £[m ] # 0 and £[m 3] # m, or equivalently £[m] # 0.

We can assume that |p — g| only slightly exceeds 7, so [p—m| <7
and |¢ — m| < m. We can also assume that |z —m| < m. Use the
comparison to show that

lp— x| +]qg—z] <|p—ql

and arrive at a contradiction with the triangle inequality.

Extend [pg] to a maximal local geodesic 7. It might be a closed or
a line segment. Argue as above to show that any point lies on v and
make a conclusion.

3.8. Arguing by contradiction, suppose
o p—al+lg—rl+lr—pl >27

for p,q,r € A. Rescaling the space slightly, we can assume that
diam A < 7, but the inequality @ still holds. By 3.5, after rescal-
ing A is still ALEX(1).

Take 2 € [¢r] on maximal distance from p. Consider the following
model configuration: two geodesics [pZg], [¢7] in S? such that

P — 20| = |p — 20l g =7 =1lg—rl
|20 — G| = |20 — ql, |Zo — 7| = |20 — ql,

and

Lzl =4L%] =13

P

Let Z € [¢F], and let z € [¢r] be the corresponding point. By

comparison, |p — z| < |p — Z| for points z near zg. Moreover, this
inequality holds as far as

|p— 2ol +[20 — 2| +|p— 2 < 2-m.

But this inequality holds for all Z since |p — Zp| < 7, |20 — G| < 7, and
|Zo — 7| < . Hence we get |p—q| <|p—¢| and |p —r| < |p—7|. The
latter contradicts @.
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4.1. Suppose 1, 1 7 Tpoo - Since Xy is compact, we may pass to
a converging subsequence of (., ;; denote by £ its limit. We may
assume that £(17,,_1,€) > 0.

Denote by 7, and s the arc-length parametrization of [px,] and
[pToo] from p. Choose a geodesic « that starts from p and goes in a
direction sufficiently close to £. By comparison we can choose o so
that

o(t) =Y (t)] <e-t

for all large n and all sufficiently small t. Moreover, we can assume
that

|a(t) = Yoo ()] > a-t

for some fixed a > 0 and all small t. These two inequalities imply that

|’7n(t) - P)/oo(t)| > %'t

for all small ¢ and all large n. On the other hand, by assumption,
[¥n (t) — Yoo (t)] — 0 as n — oo — a contradiction.

Comments. The compactness of ¥, is necessary. An example can be
built using iterated warped product of line segments and applying [2,
Theorem 1.2]. The space A can be assumed to be compact.

4.2. Any point of Cone X’ can be connected to the origin by a geodesic.
Given a nonzero element v € Cone X', denote by v’ its projection in
X.

Suppose X is w-geodesic. Choose two nonzero elements v, w €
€ Cone X; let o« = L(v,w) = |[v/ —w'| 5. If & > 7, then the product of
geodesics [v0]U[0w] forms a geodesic [vw]. If a < 7, there is a geodesic
v:[0,a] = X from v’ to w’. Consider hinge [6%] in the plane such
that £[6%] = «, [0 — 0| = |v|, and |6 — @| = |w]|. Let t — (¢(t),7(t))
be geodesic [vw] written in polar coordinates with origin 6, so that
©(0) = 0. Show that t — r(t)-y o ¢(¢) is a geodesic from v to w; here
we identify A with the unit sphere in Cone X.

To prove the converse, try to reverse the steps in the argument

above.

4.4. Let A, = \,-A. Note that for any n the space X,A4 is identical
to ¥, (p)An. In particular, we can identify isometrically T,.A with
T,, (»(X-A). So for any geodesic y that starts at p, the vector 4 (0)
corresponds to 1+ (tn, ©7)(0)).

Consider the logarithm maps f, =log, (,): An — TpA. We claim
that this sequence of maps satisfies the assumptions of Lemma 1.26;
the condition in (@) is evident.

It is sufficient to check the conditions in (b) and (¢) only for R = 1.
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Choose ¢ > 0. By compactness of ¥, we can find a finite e-net
&1,...,&6n in X,. Moreover, without loss of generality we can as-
sume that these directions are geodesic; that is, there exist geodesics
Y1, ..,7N starting at p such that & = ~;"(0) for each i.

Choose T' > 0 such that all ~; are defined on [0,T]. Show that for
any A, > = the image under f, of the union (J, 7;([0,7]) is an e-net
in B(0, 1)7,. This proves (c).

By comparison, we have that

& = &ils, > 2070

for all ¢ # j and any ¢;,t; € (0,7]. By the definition of an angle, we
can assume that 7" has been chosen so that in addition

& — &ils, < Z(p%((?)) +e

for all 4 # j and any t € (0,7].
By construction of the map f, this implies that

|z = 2’| 4, = fn(2) = ful(@)lz,| <

for all A, > 7 and all points z, 2" in (Jy %([0, 1) € B(p, 1) 4,

Now hinge comparison and the triangle inequality imply that the
same holds for arbitrary points z, 2’ in B(p, 1) 4, with e replaced by
3e. This verifies (b).

4.5. From 2.18, this inequality follows in the sense of distributions,
and hence in any other sense.

4.6. Since angles are defined, it follows that

|71(t) — 72(t)] < 0-t

for all small ¢ > 0. Since f is L-Lipschitz, we get

[f(n(8) = F(r2(8))] < L-6-2,

hence the statement.

4.7; (a) Note that we can assume there is a geodesic in the direction
of v, and apply 1.11.

(b). By (a), dydisty(v) < —maxeeqa(§,v). Suppose this inequality
is strict for some v. We can assume that |[v] = 1 and there is a
geodesic, say « in the direction of v. Let d,disty(v) = —cosag for
some a € [0,7]. Note that any geodesic from p to ¢ makes angle
bigger than «g with .
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The function f = dist, o« is Lipschitz. By Rademacher’s theorem
it is differentiable almost everywhere; moreover,

1) = £0) = [ f'(t)-dt.
0

Suppose f'(t) is defined. Use (a) to show that f'(t) = —cosal(t),
where a(t) is the angle between v and any geodesic from ~(t) to g. We
can choose a sequence t,, — 0 such that

lim a(t,) < ap.
n—oo
Consider a sequence of geodsics [py(t,)]. Since the space is proper,
we can pass to its convergent subsequence. Its limit is a geodesic from
p to g, denote it by [pg].
Use 2.13 to show that [pg] makes an angle at most ap with v — a
contradiction.

4.9. Let v: [0,4] — A be the geodesic [xy| parametrized from z to y,
and let ¢ = f o~. Observe that

The same way we get —¢'(£) < (1,4, Vi f). Since f is A-concave, we
have

(z) +¢'(0)-£ + 502,

<f
<) — (0L + 32

Hence the statement follows.

4.12. If the space is proper, then the statement follows from (b) and
2.10.

To do the general case argue by contradiction. Let z be a point on
the extension of [pg] behind ¢; it exists by the assumption. We can
assume that |v| = 1 and it is a direction of a geodesic, say [pz].

Show that for there is a sequence x,, € |pz] such that |p —z,| = 0
ad £[q ] > € for each n and some fixed £ > 0. Observe that £[g?"] <
< m — ¢; therefore

|2 — | <|zn —ql +1lg—2] -

for each n and some fixed 6 > 0. Pass to the limit as x,, — p and
arrive at a contradiction.
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4.13. Note that |(d,[f)(v) — (dpg)(v)| < s-|v| for any v € T),. From
the definition of gradient (4.8) we have:

(dpf)(Vpg) < (Vpf,Vpa), (dpg)(Vpf) < (Vpf,Vpa),
(dpf)(vpf) = <fo7 fo>, (dpg)(vpg) = <Vpg, Vp9>-

Therefore,

IVpf — vpg|2 = <fo, fo> + (Vpy, Vpg> —2«(Vpf,Vyg) <
< (dp/)(Vpf) +(dp9)(Vpg) — (dp f)(Vpg) — (dpg) (Vi f) <
< s ([Vpfl+Vypgl).

4.14. Suppose |V, f| > s. Then we can choose a geodesic + that starts
at z such that (f o~)*(0) > s. In particular, there is € > 0 such that

forn(t) > (s+¢e)t+ot),

hence the only-if part follows.

Now suppose f(y) — f(z) > s-€ + )\-g, were ¢ = |z — y|. Let

v:10,¢] = A be a geodesic from z to y. Since f o~y is A-concave, we
have

For(®) < foy(0)+ (for) " (0)-£+ A5
It follows that
dy(Tiay) = (F o) T(0) > s,
and by 4.10, |V, f| > s.

5.7. Note that f o« is a nondecreasing function. Apply 4.7a and the
definition of gradient to show that

—dot)dista(ts) (Vaw f) Z (Vaw)s Tawats)) = o) Ta@aes)) =0

for any ¢t < t3. Conclude that the function ¢ + disty,) o a(t) is
noncreasing for ¢t < t3.

5.8. For any s > sg,

(foda) (s0) = [Vao fl =
2 (da(so) ) Ma(so)a(s)) =
fod(s) — fod(so)
la(s) —a(so)|

Since s — sg = |&(s) — &(so)|, for any s > so we have

_ foil(s) = foa(s)

(f 0 @) (s0) -
S S0

WV
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5.9. Fix ¢, and let p = a(t) and ¢ = 5(t). Apply 5.5 to get
"< _<T[pq} Vo f) = <T[qp]’vqg>

<
<—(f@ -t - 25) /0= (90) - 9@~ X5 ) /e <
<AL+ 272

Integrating this inequality, we get the second statement.
6.2. Apply 4.5.
6.3. By the triangle inequality,

Y(=t) =2 + () —2| =2:t>0

for any ¢ > 0. Passing to the limit as ¢ — oo, we get the result.

6.7. Suppose ConeX is ALEX(0). Observe that two half-lines in
Cone X that start from the origin and go into directions = and y € X
form a line if and only if |x —y|, > 7. Apply the splitting theorem to
show that for any 2 € X there is at most one point y such that |z —
— 9|, = 7 and in this case we have equality. Conclude that diam X' <
<.

Now choose a quadruple of points p, x1, x2, 3 € X; we will identify
X with the unit sphere in Cone X. Suppose |[p — z;| < 7 for any i.

Consider the following points in the cone: y; = o= i and
tlx

q = p. Show that E2-comparison for q,y1, 2, y3 in Cone X implies S2-
comparsion for p, z1, 22, 3 in X'. Conclude that X is locally ALEX(1).
Apply the globalization theorem (3.4).

Now assume X is ALEX(1) and diam X < 7. By 3.8, the perimeter
of any triangle in X is at most 2-7. We need to check E2-comparison
for a given quadruple of points q, y1, y2, y3 in Cone X. We can assume
that none of these points is the origin; otherwise perturb them a bit.

Set z; = y;/|y;| for each i and p = ¢q/|q|; we can assume that
p,T1,Ta,x3 are distinct in X', which is the unit sphere in Cone X.

Assume the model triangles A(pziz3), A(pzozs), and A(prszy)
are defined; that is, perimeters triangles [pxix2], [pxoxs], and [prsa:]
are strictly less than 2-7. Note that E? == ConeS?. Use this to-
gether with the S?-comparison for p, x1, z2,z3 in X to show that E2-
comparison holds for ¢, y1,y2,y3 in Cone X.

Finally, if some of the model triangles are not defined, consider
rescaling of X with a coefficient A slightly smaller than 1. Apply the
argument above to show that the comparison holds for the correspond-
ing points in Cone(A-X') and pass to the limit as A — 1.

Comment. The last part of the proof is close to the argument in 8.1.
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6.9. Observe that

(u,u) + (v, u) + (w,u)
(u,v) + (v,v) + (w,v)
(u, w) + (v, w) + (w, w)

A\YAR\
o oo

Add the first two inequalities and subtract the last identity.
6.13. Apply 6.12 to show that (v,v) = (v, w) = (w, w), and use it.
6.14. Show and use that

(u, ) + (v, 2) + (w,2) > 0

and
(u,—z) + (v, —z) + (w, —x) = 0.

6.15. Part = is evident. To prove part <, observe that
<U*7U*> = _<U7U*> < <u,u>

and since |u| = |[u*|, we have equality.
6.18. Apply 6.15.

7.2. By 7.13, A is separable; that is, it contains a countable dense
set of points. Apply 6.19 to this set.

7.3. Argue as in 3.7.

7.4. The only-if part is trivial. Suppose the configuration p, ag, ...
-,am € A meets the condition. By 6.18 the directions Tysq;,- -
- MNga,) € Ling for G-delta dense set of points ¢ € A. If ¢ is

sufficiently close to p, then £(q i) > %, and therefore, £L[qg!] > 7

for ¢ # j. Conclude that dim Lin, > m in this case.
7.7; (a). Apply 4.2, 4.3, and 7.5.
(b). Apply 7.4 to show that LinDim T}, = LinDim A (argue as in 4.3).

(c). By 7.5 for any two points £, ¢ € X, such that |§fq2p < 7 there is
a geodesic [{(]x,. Suppose [£ — sz > , then T, contains a line thru
the origin in the directions £ and ¢. By (a) we can apply the splitting
theorem (6.4) to T),. We get that ¥, is a spherical suspension with
poles ¢ and ¢. Hence, |£ — (| = 7 and there is a geodesic [£(].

7.9; (a). By 4.5, each function dist,, is semiconcave in a small neigh-
borhood of p. Therefore we can choose A and r > 0 so that f,, is
A-concave in B(p, r); further we will assume that r is sufficiently small.
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Choose a > 0 such that £(z %) > 5 +afor all i # j; we may assume

i
3J

that a < %; in particular,
[} (dadista, ) (Tfpe,)) = —cos L(z ) > &
for j #i.

By the definition of gradient and 4.7a, we have

—(dodisty, ) (Vafy) > <T[mai]7viﬂfy> >
Z (dwfy)(ﬁdmz])
If |a; — x| > y;, then

d, fy = 0+ e-ddist,,,

where ¢ is a minimum of a subset of the following functions 0, and
d. dist,; for 0 # j #i. By @,

(dedista, ) (Vafy) < —5-€.

Hence (i) holds for all sufficiently small € > 0.
Now assume that |a; — | —y; = min;{|a; — 2| —y;} < 0. Then

dyfy = migl{ d,disty; } +e-d,disty, <
1€
< dypdist,, + e (dpdisty, ),

where j € S if and only if |a; — 2| — y; = |a; — 2| — y;. Applying @,
we get

(dedista,)(Vafy) 2 dofy(Vafy) — e (dadista, ) (Vafy) =
> [(defy)(Hag)] — 26
>[2—¢)” -2
Thus, (ii) holds for all sufficiently small £ > 0.
(b) Consider the following real-to-real functions:
p(t) = max{la; — ay(t)] =i},

(3]

0(®) == min{la; — oy (6] — w1}
Use (a), to show that for ¢ € [0, %o], we have o™ (t) < —15-e2 if p(t) > 0
and T () > f5-¢2 if (t) < 0. Conclude that o(to) = ¥(to) = 0;
hence the result.
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(c¢) A straightforward application of 5.9 and a reformulation of (b).

Remarks. By 5.9, that the constructed map ® is bi-Hélder with the ex-
ponent % In particular, if an infinite-dimensional Alexandrov space A
contains a bi-Holder copy of Euclidean ball of arbitrary dimension. It
seems plausible that .4 should contain a bi-Lipschitz copy of Euclidean
ball of arbitrary dimension, but this question is open.

7.11. Apply the (n+1)-comparison (7.1) to show that at least one of
the inequalities

Llgd]<Z—¢ ..., Lzl < T —¢,
holds. Similarty, we get that at least one of the inequalities

A[yx]<g_87 sty K[yz’nl]<g_€’

ao

holds.
Suppose our statement does not hold for x and y in a sufficiently
small neighborhood of p. It follows that

(4] Llyal <% —¢e and <Lly;]<F—e.

Note that |z —y| is small compared to |ag — x| and |ag —y|. Therefore,
the comparison contradicts @.

By the construction, f is Lipschitz. From above, we can choose
i>0sothat L[z ¥ ] < T —¢ (if L[y} ] < § — ¢, then swap 2 and y).
By comparison, there is ¢ > 0 such that |a; — y| < |a; — x| + ¢ |z —y|.
Hence f is bi-Lipschitz, and now 7.8 implies 7.10.

7.13. Reuse the argument from the first part of the proof of Bishop—
Gromov inequality.

7.14. You should follow the proof Bishop—Gromov inequality, plus
prove the following two inequalities
[z —yla

sinhry -z —y| 4

sinhry-|log, x — log, y|r,

>
sinhry-|w(z) —w(y)| 4 =

for any x,y € B(p,r).

7.16. Suppose K is a compact set in A such that HausDim K > m.
Use the map w from the proof of the Bishop—Gromov inequality (7.12
and 7.14) to show that any open ball in A contains a compact set K’
such that HausDim K’ > m.

Use this in addition to the arguments in 7.15.

8.2. Apply 7.4.
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8.4; (a). Suppose X is compact. Then for any € > 0 any cover of X
by open e-balls have a finite subcover. Note that the centers of these
balls is an e-net of X.

Suppose X has a finite e-net. Show that any sequence z,, of points
in X has a subsequence such that all of its points lie in one e-ball.
Apply this statement for € = % together with the diagonal procedure.

(b). Let Z be a compact e-net of X. By (a), Z admits a finite e-net
F. Note that F is a 2-e-net of X. Since € > 0 is arbitrary, we get the
result.

8.5. If z1,...,x, is not an e-net, then there is a point y such that
|z; — y| > € for any i. Therefore x1,...,xz, is not a maximal packing
— a contradiction.

8.6; (a) Apply the Bishop—Gromov inequality (7.12).

(b) By 8.2, dim Ao, < m. To show that dim A, > m, apply 6.19 to a
maximal packing and use the estimate in (a).

Comment. A stronger statement holds

vol,, Aeo = lim vol,, A,;
n—oo
in other words, if K C GH denotes the set of isometry classes of
all compact ALEX(k) spaces with dimension < m, then the function
vol,,: K — R is continuous.

8.7. Argue as in 8.3 to construct a Gromov-Hausdorfl convergence
of B(pn, R) 4, for given R > 0, then apply the diagonal procedure to
construct the needed convergence.

8.10. Consider the infinite product S' x (3-S') x (1.81) x ...

9.3. Let V and W be two conic neighborhoods of a point p. Without
loss of generality, we may assume that V' € W that is, the closure of
V lies in W.
Construct a sequence of embeddings f,: V' — W such that
¢ For any compact set K C V there is a positive integer n = ng
such that f,,(k) = fi(k) for any k € K and m,n > ng.
o For any point w € W there is a point v € V such that f,(v) = w
for all large n.
Once such a sequence is constructed, f: V' — W can be defined by
f() = fn(v) for all large values of n gives the needed homeomorphism.
The sequence f,, can be constructed recursively

fn+1 =y, ofn o ®,,
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where ®,,: V — Vand ¥,,: W — W are homeomorphisms of the form
D, (z) =pn(x)xz and D,(z) =,(x) *z,

where ¢, : V= R0, ¢ : W — Ry are suitable continuous functions;
“x” and “x” denote the multiplications in the cone structures of V' and
W respectively.

Comment. 1If it is hard to follow, read the original proof by Kyung
Whan Kwun [50].

9.4; (a). Apply 9.1 and 9.2.
(b). Apply (a).

(c¢). Recall that the Poincaré homology sphere can be obtained as a
quotient space ¥ = S?/I" by an isometric action of a finite group I'
— the so-called binary icosahedral group. By the double suspension
theorem, Susp® ¥ 2 S5. Note that Susp? ¥ is an Alexandrov space and
it has a point with space of directions isometric to Susp X. Observe
that Susp ¥ is not a manifold; in particular Susp ¥ 2 S*. Therefore
the pair Susp? ¥ and S° provides the needed example.

9.6. Apply 9.1, 9.2, and 9.5.

9.7. Let A be a finite-dimensional Alexandrov space. Choose x € A.
By 9.1, a neighborhood U > z is homeomorphic to T. Therefore 9.6,
implies that UNJA = @ if and only if = ¢ J.A; that is, the complement
A\ OA is open, and therefore, A is closed.

9.10. Consider the model triangle [#72'] = A(zyz).

S
IS}
<

Show that
-2 <lp—2| < Y[yl

9.11. Assume A has at least two boundary components, say A and
B. Denote by 7 a geodesic that minimizes the distance from A to B.
Let
AL Ag A,

be a two-sided infinite sequence of copies on dA. Let us glue A; to
A1 along A if i is even and along B if i is odd.
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By the doubling theorem, every point in the obtained space N has
a neighborhood that is isometric to a neighborhood of the correspond-
ing point in A or its doubling. By the globalization theorem, N is
ALEX(1).

The copies of 7 in A; form a line in A. By the splitting theorem,
N is isometric to a product N/ & R. Since dim N > 1, Exercise 7.3
implies that diam AN < m — a contradiction.

9.12. Choose = on v; we can assume that 2 = v(0). Let y € A be a
closest point to z. Let o = 4@[@] ,7T(0).
Suppose z ¢ A. Show that T, = R0 x T,,0A and 1}, L T,0A.
Given a vector v € Ty, denote by v its projection to T, 0.A. Apply
the comparison and 5.12 to show that

[7(t) = gexpy (log, V(1)) < [& —y[ +t- cos e,
Conclude that 4”(0) < 0 in the barrier sense.

9.13. Suppose 7 is defined on the interval [0,¢]. Assume that the
function p: t %-dis‘cf7 o (t) is not l-concave. Let p: [0,4] — R be
the minimal 1-concave function such that p > p. Note that p = p at
the ends of [0, £].

Consider the curve (t) := Flowi(t)'y(t); where [ = %-distf) and
s(t) =Inop(t) — Inop(t). Use the first distance estimate to show that
length 4 < length v and arrive at a contradiction.

Comment. The statement was proved by Grigory Perelman and the
second author [69]; it generalizes a theorem of Joseph Liberman [60]
about geodesics on convex surfaces. The original Liberman’s version of
the following geometric statement. Suppose that C is the cone over ~y
with the vertex at p, where v is a geodesic on a convex surface and p is a
point in the convex body bounded by the surface. Then after unfolding
C into plane, vy becomes a locally conver curve. It is instructive to
check that this formulation is equivalent to ours for convex bodies.

9.14. Choose a geodesic v in W. Arguing as in the proof of 9.9d, we
get that v can cross the common boundary of two halves Ay and A;
of W at most once, or it lies in the common boundary.

In the later case A-concavity of foproj o~y follows from A-concavity
of f. In the former case the convexity has to be checked only at the
point of crossing; we may assume that it happens at © = v(0). Since
V.f € 0T, for any z € 0A the f-gradient flows agree on Ay and A;.

Assume f oproj oy is not A-concavity at 0. Apply f-gradinent flow
to shorten ~ keeping its ends as in the proof of 9.13, and arrive at a
contradiction.
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10.2. Read [93, Section 4] and/or the solution for “Quotient of the
Hilbert space” in [82].

10.3; (a). Choose an isometric S!-action on S? that fixes the poles of
the sphere. Consider the projection to the quotient space o;: S? —
— S?/St =10, 7).

. Take a half-circle v on S* and define o3(z) := dist~ (z)s2.
b). Take a half-circl S? and defi dist

(c). Consider the subdivision of S? into S'-orbits of the action from (a).
Cut S? into two hemispheres by meridians rotate one hemisphere by
an angle « = 7/n and glue it back. Observe that there is a submetry
o, such that the inverse image o, *{y} is a union of the arcs from the
original S'-orbits.

Note that for n = 2 we get the solution in (b).

10.4. Show that for any z € E? there is a half-line H > x such that
the restriction o|g is an isometry. Suppose such a half-line H starts at
p and passes thru q. Show that (x —p,q — p) < 0 for any x € o~1{0}.
Conclude that 0=1{0} is a convex closed set. Finally use the definition
of submetry to show that ¢~*{0} has no interior points.

10.8; (a). Our S! is a commutative subgroup of SO(3). Therefore it is
a subgroup of a maximal torus in SO(3). Show that the described torus
action is induced by a maximal torus in SO(3). Use that maximal tori
in SO(3) are conjugate.

(b). Cut S* into two solid tori the Clifford torus %'Sl x St. Observe

that the quotient of each solid torus is a disc; conclude that ¥, , is a
sphere. The torus action on S* induce the needed S'-cation on %, ,.

(c)+(d)+(e). Straightforward calculations.

(f). Consider the map ¥, ; — X1 ; that sends poles to poles, preserve
the distance to the poles and respects the S' action.

10.14; (a). Suppose #m,—1(I') > 3; that is A = E™/T" has at least
3 boundary components. Follow Case 3 in the proof 10.6 to glue a
train-space from copies of A using two of these components. Show
that the obtained space splits and arrive at a contradiction.
(Alternatively, apply a similar construction to all components of
the boundary. Show that the obtained space has exponential vol-
ume growth; that is, there is @ > 1 such that vol B(p,r) > a” for all
large r. Arrive at a contradiction with the Bishop—-Gromov inequality.)

(b). Apply the doubling theorem as in Case 2 in the proof 10.6.

10.16. Show that the quotient space A = A/S' is an ALEX(1) disc and
~ projects isometrically to JA. It remains to show that the perimeter
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of A cannot exceed 2-w. The latter follows from [78, 3.3.5]; it states
that if A as an m-dimensional ALEX(1) space, then vol,,_1 0A <
< vol,,_1 0S™~1L.

11.1. We can assume that the origin lies in the interior of the convex
body. Consider the central projection from its surface, say X, to the
sphere S? centered at the origin. Show that this projection ¥ — S? is
a homeomorphism.

11.4. Follow the argument in 11.2. Show that the inequality is strict
if and only if F' has opposite points.

11.5. Suppose a geodesic 7 passes thru a vertex v. Denote by o and 3
the angles that v cuts at v. Since v is essential, a+ 3 < 2-m. Therefore
a < mor < m. Arrive at a contradiction by showing that ~ is not
length-minimizing,.

11.6; (a). Cut the surface of T along three edges coming from one
vertex v; and unfold the obtained surface onto the plane. Show that
this way we get a triangle, the three vertices correspond to v; and the
midpoints of sides correspond to the remaining three vertices. Make
a conclusion.

(b). Suppose that 0,v1,v2,v3 € R? are the vertices of T. From (a),
we have that

\U1| = \Uz —U3|» |U2| = |U3 —U1|7 |U3\ = |U1 —v1|-

Use it to show that (vq,vs + v3 — v1) = 0. Make a conclusion.

11.8. We need to show that if a polyhedral surface is ALEX(0), then
the total angle 0 at every vertex p it at most 2-7.

Assume that 6 > 2.7, let ¢ = max{n, £-6 }. We can choose three
points x1, T2, and x3 close to p such that «[p ij] = ¢ for ¢ # j. Since
the points x; are close to p, we have £L[p7i] = A(p 2:). The latter
contradicts E2-comparison.

11.9. We will use that the closest-point projection from the Euclidean
space to a convex body is short; that is, distance-nonexpanding [75,
13.3].
Assume K, is nondegenerate. Without loss of generality, we may
assume that
B(0,7) C Koo C B(0,1)

for some r > 0. Then there is a sequence ¢,, — 0 such that

K,C(Q+e,) Ky and Ko C(l4e,)K,
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for each large n.

Given = € K,, denote by g,(x) the closest-point projection of
(1+ep)x to Ky. Similarly, given 2 € K, denote by h,(z) the
closest point projection of (1 4+ ¢,) -z to K. Note that

|gn(®) = gn(y)| < (1 +&n): |z —y

and

hn () = ha(y)] < (1 +&n)-|z —y].

Denote by ¥, and 3, the surface of K, and K,, respectively. The
above inequalities imply

19n(2) = gn(W)ls. < (T+en)-|z—yls,

for any z,y € 3, and

() = hn ()]s, < (L +en)-fz—yls -

for any z,y € Y.

Note that the maps g, and h,, are onto. Apply 1.22 to finish the
proof.

Alternatively, since the closest-point projection cannot increase the
length of curve, we also get

| — hn 0 gn(@)g < 10-¢,
|y —9n© hn(y)|g77 < 10-gy,.

for all large n. Therefore, g, is a d,,-isometry %,, — X, for a sequence
0n — 0.

Comments. More generally, if a sequence of m-dimensional ALEX (k)
spaces Aj, As, ... converges to A, and dim A, = m < oo, then 0.4,
equipped with the induced length metrics converge to 0A.,. This
statement is a partial case of the theorem about extremal subsets
proved by the second author |79, 1.2].

11.11; (a). By 9.13, the function f,: ¢t — dist, o y(¢) is semiconcave
for any p € K. In particular, one-sided derivatives f; (t) are defined
for every t.

Given z = 7(t), choose three points p1,ps, p3 € K in general po-
sition; that is, the four points x,p1,ps2, p3 do not lie in one plane.
Observe that the distance functions dist,, give smooth coordinates in
a neighborhood of z. From above the functions f,, have one-sided
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derivatives at t. Since the coordinates are smooth we get that v (¢)
is defined as well.

(b). If the plane py;y» supports K, then £[p¥i]gs = £[p3!]s. In this
case, the statement follows from 11.10.

Now suppose that the line segment [yy2]gs intersects K. Choose
a geodesic [y1y2]w; note that it contains a point of K, say z. Now
consider a one-parameter family of points y; (¢) := () +~ " (t)- (1 —1t)-
-|p — x;|g. Note that this family is not continuous.

Show that for any point p € K, the function t — [p — v;(t)[gs is
nonincreasing. Conclude that the function ¢ — |p — 7;(t)|y; is nonin-
creasing for any p € S. Therefore,

ly1 — yolw = [y1(0) — y2(0) |y, =
= [y1(0) — z[w + [y2(0) — 2|
2 [y1(1) — 2w + [y2(1) — 2|
2 |z1 — z2lg.

The last inequality follows since the closest point projection W — S
is short.

It remains to consider the case when the plane py;ys does not
support K, and [y1y2|gs does not intersect K. In this case the plane
py1y2 intersects K along a convex figure F' that lies in the solid triangle
py1y2 and contains its vertex p.

Choose points y; € [py1]gs and y4 € [pye]rs such that [y]y5] touches
F. Denote by 2} € [pr1]s and x5 € [pr2]s the corresponding points;
that is, [p — ¥ilgs = |p — @lg and |[p — y5lgs = [p — 23]g. From the
above, we have that |y} — y5|gs > |2] — 25]g; in other words,

L(py)) = £(p3));
here we think that [py]y5] is a triangle in E3, but [pr)z}] is a triangle
in S. Note that

~ ’ ~

Lpy)=2(pY) and L) < Lp3));

the second inequality follows from 2.7. Hence the remaining case fol-
lows.

Comments. Part (a) is the so-called Liberman lemma — the main tools
in studying geodesics on convex surfaces. It was originally proved by
Joseph Liberman [60]; the proof of 9.13 is its generalization.

Part (b) is the result of Anatolii Milka [65, Theorem 2.
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A ® B (direct sum), 46
[pq] (geodesic), 5
HausDim, 61

I (real interval), 5
LinDim, 55

St E™, H", and M"(k), 4
¥, (space of directions), 29, 76
7, 29

T, (tangent space), 30, 76
TopDim, 61

£(p?) (model angle), 7
dim, 55

T(pq (direction), 29

|z —y| = |z — y|5 (distance), 3
e-net, 11, 64

3] (hinge). 7

A-concave function, 20, 21
Jzyl, [wyl, ey, 16

log,, z (logarithm), 37

A (model triangle), 7

V (gradient), 32

pack, X, 57

m-geodesic space, 30

rank £, 75

Y[z k] (model side), 24
[pgr] = [pgr]x (triangle), 6

adjacent hinges, 9
affine function, 47
Alexandrov space, 16
Alexandrov’s lemma, 16
almost midpoint, 6, 57

barrier, 20

Busemann function, 45

closed ball, 4

comparison, 15
adjacent angle comparison, 19
hinge comparison, 19
point-on-side comparison, 19

cone, 30

conic neighborhood, 74

continuity method, 97

convex body, 91

convex polyhedron, 91

convex set, 46

critical point, 82

crystallographic action, 88

curvature, 93

differential, 32

differential of a function, 31
direct sum, 46

direction, 29

doubling, 76

doubling theorem, 77

essential vertex, 92, 97
extremal point, 87
extremal set, 82, 90

geodesic, 5
direction, 29
path, 5
space, 5
gradient, 32
curve, 38
exponential map, 42
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flow, 41
Gromov—Hausdorff distance, 13
Gromov—Hausdorff limit, 10

half-line, 45
Hausdorff
dimension, 61
distance, 10
limit, 9
hinge, 7
comparison, 19
Hopf’s conjecture, 85
hyperbolic model triangle, 7

induced length metric, 4
invariance of domain, 98
isometry

e-isometry, 11

Jensen inequality, 20

Lebesgue covering dimension, 61
length metric, 4

length space, 4

lifting, 67

line, 46

linear dimension, 55

linear subspace, 50

locally ALEX(0), 23

logarithm, 37

maximal packing, 64
model
angle, 7
side, 24
space, 4
triangle, 7

nerve, 67
norm, 30

open ball, 4
opposite vectors, 50
orbifold, 98

origin, 30

INDEX

pointed convergence, 11
pointed homeomorphic, 74
polar vectors, 49
polyhedral space, 95
polyhedral surface, 91
primitive extremal set, 90
proper space, 3

properly discontinuous, 88

rank, 75
regular point, 82
right derivative, 32, 37

scalar product, 30
self-contracting curves, 40
semiconcave function, 31
semimetric, 29
Sharafutdinov’s retraction, 43
short map, 119

space of directions, 29, 76
space of geodesic directions, 29
spherical model triangles, 7
submetry, 84

surface, 91

tangent space, 30, 76
tangent vector, 30
triangle, 6
triangulation, 91

vertex, 91
volume, 59
Voronoi domain, 87
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