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Pure metric geometry
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Lecture 1

Definitions

In this lecture, we remind several definitions related to metric spaces
and fix some conventions.

This lecture is self-contained, but it is written for students with
some prior knowledge of metric spaces; an introduction to general
topology is sufficient but not necessary. For a more detailed introduc-
tion, we recommend the first couple of chapters in the book by Dmitri
Burago, Yuri Burago, and Sergei Ivanov [34].

A Metric spaces

The distance between two points x and y in a metric space X will be
denoted by |x− y| or |x− y|X . The latter notation is used if we need
to emphasize that the distance is taken in the space X .

Let us recall the definition of metric.

1.1. Definition. A metric on a set X is a real-valued function
(x, y) 7→ |x−y|X that satisfies the following conditions for any x, y, z ∈
∈ X :
(a) |x− y|X ⩾ 0,
(b) |x− y|X = 0 ⇐⇒ x = y,
(c) |x− y|X = |y − x|X ,
(d) |x− y|X + |y − z|X ⩾ |x− z|X .

Recall that a metric space is a set with a metric on it. The
elements of the set are called points. Most of the time we keep the
same notation for the metric space and its underlying set; the latter
can be denoted by X if needed.

7



8 LECTURE 1. DEFINITIONS

Given radius R ∈ [0,∞] and center x ∈ X , the sets

B(x,R) = { y ∈ X : |x− y| < R } ,
B[x,R] = { y ∈ X : |x− y| ⩽ R }

are called, respectively, the open and the closed balls. The nota-
tions B(x,R)X and B[x,R]X might be used if we need to emphasize
that these balls are taken in the metric space X .

1.2. Exercise. Show that the following inequality

|p− q|X + |x− y|X ⩽ |p− x|X + |p− y|X + |q − x|X + |q − y|X

holds for any four points p, q, x, and y in a metric space X .

B Topology
The standard calculus definitions of closed and open sets, continu-
ous functions, and converging sequences admit straightforward
generalizations in the context of metric spaces.

1.3. Exercise. Let x be a point in a metric space X . Show that the
distance function distx : X → R defined by

distx : y 7→ |x− y|

is continuous.

1.4. Exercise. Let A and B be two disjoint closed sets in a metric
space X . Construct a continuous function f : X → [0, 1] such that
A = f−1{0} and B = f−1{1}.

1.5. Advanced exercise. Let f : A → R be a continuous function
defined on a closed set A in a metric space X . Show that it admits a
continuous extension to the whole space; that is, there is a continuous
function F : X → R such that F (a) = f(a) for any a ∈ A.

C Variations

Pseudometris. A metric for which the distance between two distinct
points can be zero is called a semimetric (also known as pseudo-
metric). In other words, to define semimetric, we need to remove
condition (b) from 1.1.
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Assume X is a semimetric space. Consider an equivalence relation
∼ on X defined by

x ∼ y ⇐⇒ |x− y| = 0.

Note that if x ∼ x′, then |y − x| = |y − x′| for any y ∈ X . Thus,
|∗ − ∗| defines a metric on the quotient X/∼. The so-obtained metric
space, say X ′, is called the corresponding metric space for the
semimetric space X .

This construction shows that nearly any question about semimet-
ric spaces can be reduced to a question about genuine metric spaces.
Often we do not distinguish between a semimetric space X and its
corresponding metric space X ′.

∞-metrics. One may also consider metrics with values in [0,∞];
that is, we allow infinite distance between points. We might call them
∞-metrics, but most of the time we use the term metric.

The following construction shows how to reduce questions about
∞-metrics to genuine metrics.

Let
x ≈ y ⇐⇒ |x− y| <∞;

it defines another equivalence relation on X . The equivalence class of
a point x ∈ X will be called the metric component of x; it will be
denoted by Xx. Note that

Xx = B(x,∞)X ;

that is, the metric component of x is the open ball centered at x and
radius ∞.

If {Xα} is a collection of metric spaces, then disjoint unionX =
=

⊔
α Xα will be considered with a natural metric defined by

|x− y|X :=

{
|x− y|Xα

if x, y ∈ Xα for some α,

∞ otherwise.

It follows that any ∞-metric space is a disjoint union of genuine metric
spaces — the metric components of the original ∞-metric space.

1.6. Exercise. Given two sets A and B on the plane, set

|A−B| = µ(A△B),

where µ denotes the Lebesgue measure and △ denotes symmetric dif-
ference

A△B := (A ∪B) \ (B ∩A) = (A \B) ∪ (B \A).
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(a) Show that |∗ − ∗| is a semimetric on the set of bounded closed
subsets.

(b) Show that |∗ − ∗| is an ∞-metric on the set of all open subsets.

D Maximal metric and gluing

Maximal metric. Let { | − |α } be a family of ∞-semimetrics on a
fixed set. Observe that

|x− y| := sup
α

{ |x− y|α }

defines an ∞-semimetric; it is called the maximal metric of the
family.

Gluing. Suppose ∼ is an equivalence relation on an ∞-semimetric
space X . Given x ∈ X , denote by [x] its equivalence class in the
quotient X/ ∼. Consider all ∞-semimetrics | − |α on X/ ∼ such that
the maps X → X/ ∼ defined by x 7→ [x] are short; that is,

|[x]− [x′]|α ⩽ |x− x′|X

for any x, x′ ∈ X . Let us equip X/ ∼ with the maximal metric of
this family; in general, it is an ∞-semimetric. The space Z that cor-
responds to the obtained ∞-semimetric space is called gluing of X
along ∼.

This definition can be applied to a disjoint union of spaces; this
way we can glue an arbitrary collection of metric spaces.

Note that any partially defined map φ from X to Y defines a mini-
mal equivalence relation on X ⊔Y such that x ∼ φ(x); the correspond-
ing gluing space is called gluing along φ.

The following exercise shows that metric gluing and the corre-
sponding topological gluing might have different topologies.

1.7. Exercise. Construct a homeomorphism φ : [0, 1] → [0, 1] such
that gluing of two unit intervals [0, 1] along φ is a one-point metric
space.

E Completeness

A metric space X is called complete if every Cauchy sequence of
points in X converges in X .
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1.8. Exercise. Suppose that ρ is a positive continuous function on a
complete metric space X and ε > 0. Show that there is a point x ∈ X
such that

ρ(x) < (1 + ε)·ρ(y)
for any point y ∈ B(x, ρ(x)).

Most of the time we will assume that a metric space is complete.
The following construction produces a complete metric space X̄ for
any given metric space X .

Completion. Given a metric space X , consider the set C of all Cauchy
sequences in X . Note that for any two Cauchy sequences (xn) and (yn)
the right-hand side in ➊ is defined; moreover, it defines a semimetric
on C

➊ |(xn)− (yn)|C := lim
n→∞

|xn − yn|X .

The corresponding metric space is called the completion of X ; it will
be denoted by X̄ .

For each point x ∈ X , one can consider a constant sequence xn = x
which is Cauchy. It defines a natural inclusion map X ↪→ X̄ . It is easy
to check that this map is distance-preserving. In particular, we can
(and will) consider X as a subset of X̄ .

Note that X is a dense subset in its completion X̄ .

1.9. Exercise. Show that the completion of a metric space is com-
plete.

F G-delta sets

1.10. Baire’s theorem. For any sequence Ω1,Ω2, . . . of open dense
subsets in a complete metric space, the intersection

⋂
n∈N Ωn is dense.

A subset is called a G-delta if it can be presented as an intersection
of a countable number of open subsets. Note that by Baire’s theorem,
a countable intersection of dense G-delta sets is a dense G-delta set
— in particular it is nonempty. Therefore we are allowed to say that
a dense G-delta set contains most of the points in a complete metric
space.

Proof. We may assume that the space is nonempty; otherwise, there
is nothing to prove.

Given a closed ball B[p0, R0], let us apply induction to construct a
nested sequence of closed balls

B[p0, R0] ⊃ B[p1, R1] ⊃ B[p2, R2] ⊃ . . .
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such that B[pn, Rn] ⊂ Ωn and Rn > 0 for each n ⩾ 1. Assume
B[pn−1, Rn−1] is already constructed. Since Ωn is dense we can choose
a closed ball B[pn, Rn] ⊂ Ωn ∩ B[pn−1, Rn−1].

Note that we can assume that Rn <
1
n for each n ⩾ 1. In this case,

the sequence p1, p2, . . . is Cauchy; therefore, it is converging. Observe
that its limit p∞ belongs to each Ωn. It follows that any closed ball
B[p0, R0] contains a point in

⋂
n∈N Ωn, hence the result.

G Compact spaces
Let us recall a few statements about compact metric spaces.

1.11. Definition. A metric space K is compact if and only if one of
the following equivalent conditions holds:
(a) Every open cover of K has a finite subcover.
(b) Every sequence of points in K has a subsequence that converges

in K.
(c) The space K is complete and total ly bounded; that is, for any

ε > 0, the space K admits a finite cover by open ε-balls.

Totally bounded spaces are also called precompact. Note that a
space is precompact if and only if its completion is compact.

1.12. Lebesgue lemma. Let K be a compact metric space. Then
for any open cover of K, there is ε > 0 such that any ε-ball in K lies
in an element of the cover.

The value ε is called a Lebesgue number of the covering.

A subset N of a metric space K is called ε -net if any point x ∈ K
lies at the distance less than ε from a point in N . More generally, a
subset N is called an ε -net of a subset S ⊂ K if any point x ∈ S lies
at the distance less than ε from a point in N .

Note that totally bounded spaces can be defined as spaces that
admit a finite ε-net for any ε > 0.

1.13. Exercise. Show that a space K is totally bounded if and only
if it contains a compact ε-net for any ε > 0.

Let packε X be the exact upper bound on the number of points
x1, . . . , xn ∈ X such that |xi − xj | ⩾ ε if i ̸= j.

If n = packε X < ∞, then the collection of points x1, . . . , xn is
called a maximal ε -packing. If X is a length space (see Section 1L),
then n is the maximal number of disjoint open ε

2 -balls in X .

1.14. Exercise. Show that any maximal ε-packing is an ε-net. Con-
clude that a complete space X is compact if and only if packε X < ∞
for any ε > 0.
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1.15. Exercise. Let K be a compact metric space and f : K → K be
a distance-noncontracting map. Prove that f is an isometry; that is,
f is a distance-preserving bijection.

A metric space X is called local ly compact if any point in X
admits a compact neighborhood; equivalently, for any point x ∈ X , a
closed ball B[x, r] is compact for some r > 0.

H Proper spaces
A metric space X is called proper if all closed bounded sets in X are
compact. Note that X is proper if for some (and therefore any) point
p ∈ X and any R <∞, the closed ball B[p,R]X is compact.

Recall that a function f : X → R is proper if, for any compact
set K ⊂ R, its inverse image f−1(K) is compact. Observe that X is
proper if and only if the function distp : X → R is proper for some
(and therefore any) point p ∈ X .

1.16. Exercise. Give an example of a metric space that is locally
compact but not proper.

I Geodesics
Let X be a metric space and I a real interval. A distance-preserving
map γ : I → X is called a geodesic1; in other words, γ : I → X is a
geodesic if

|γ(s)− γ(t)|X = |s− t|

for any pair s, t ∈ I.
If γ : [a, b] → X is a geodesic such that p = γ(a), q = γ(b), then

we say that γ is a geodesic from p to q. In this case, the image of
γ is denoted by [pq], and, with abuse of notations, we also call it a
geodesic. We may write [pq]X to emphasize that the geodesic [pq] is
in the space X .

In general, a geodesic from p to q need not exist and if it exists, it
need not be unique. However, once we write [pq] we assume that we
have chosen such geodesic.

A geodesic path is a geodesic with constant-speed parametriza-
tion by the unit interval [0, 1].

A metric space is called geodesic if any pair of its points can be
joined by a geodesic.

1Others call it differently: shortest path, minimizing geodesic. Also, note that
the meaning of the term geodesic is different from what is used in Riemannian
geometry, altho they are closely related.
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An ∞-metric space X is called geodesic if each metric component
of X is geodesic.

1.17. Exercise. Let f be a centrally symmetric positive continuous
function on S2. Given two points x, y ∈ S2, set

∥x− y∥ =
w

B(x,π2 )\B(y,π2 )

f.

Show that (S2, ∥∗ − ∗∥) is a geodesic space, and the geodesics in
(S2, ∥∗ − ∗∥) run along great circles of S2.

J Metric trees

A geodesic space T is called a metric tree if any two points in T are
connected by a unique geodesic, and the union of any two geodesics
[xy]T , and [yz]T contains the geodesic [xz]T .

p

x

y

zThe latter means that any triangle in T is a tri-
pod; that is, for any three points x, y, and z there
is a point p such that

[xy] ∪ [yz] ∪ [zx] = [px] ∪ [py] ∪ [pz].

1.18. Exercise. Let p, x, y, and z be points in a metric tree.
(a) Consider three numbers

a = |p− x|+ |y − z|,
b = |p− y|+ |z − x|,
c = |p− z|+ |x− y|.

Suppose that a ⩽ b ⩽ c. Show that b = c.
(b) Consider three numbers

α = 1
2 ·(|p− y|+ |p− z| − |y − z|),

β = 1
2 ·(|p− x|+ |p− z| − |x− z|),

γ = 1
2 ·(|p− x|+ |p− y| − |x− y|).

Suppose that α ⩽ β ⩽ γ. Show that α = β.

The set
S(p, r)X = {x ∈ X : |p− x|X = r }

will be called a sphere with center p and radius r in a metric space X .



K. LENGTH 15

1.19. Exercise. Show that spheres in metric trees are ultrametric
spaces. That is,

|x− z| ⩽ max{ |x− y|, |y − z| }

for any x, y, z ∈ S(p, r)T .

K Length
A curve is defined as a continuous map from a real interval I to a
metric space. If I = [0, 1], then the curve is called a path.

1.20. Definition. Let X be a metric space and α : I → X be a curve.
We define the length of α as

lengthα := sup
t0⩽t1⩽...⩽tn

∑
i

|α(ti)− α(ti−1)|.

A curve α is called recti fiable if lengthα <∞.

1.21. Theorem. Length is a lower semi-continuous with respect to
the pointwise convergence of curves.

More precisely, assume that a sequence of curves γn : I → X in a
metric space X converges pointwise to a curve γ∞ : I → X ; that is, for
any fixed t ∈ I we have γn(t) → γ∞(t) as n→ ∞. Then

➊ lim
n→∞

length γn ⩾ length γ∞.

Note that the inequality ➊ might be strict. For
example, the diagonal γ∞ of the unit square can be
approximated by stairs-like polygonal curves γn with
sides parallel to the sides of the square (γ6 is on the
picture). In this case

length γ∞ =
√
2 and length γn = 2

for any n.

Proof. Fix a sequence t0 ⩽ . . . ⩽ tk in I. Set

Σn := |γn(t0)− γn(t1)|+ · · ·+ |γn(tk−1)− γn(tk)|.
Σ∞ := |γ∞(t0)− γ∞(t1)|+ · · ·+ |γ∞(tk−1)− γ∞(tk)|.

Note that for each i we have

|γn(ti−1)− γn(ti)| → |γ∞(ti−1)− γ∞(ti)|
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and therefore
Σn → Σ∞

as n→ ∞. Note that
Σn ⩽ length γn

for each n. Hence,
lim
n→∞

length γn ⩾ Σ∞.

Since the partition was arbitrary, applying the definition of length,
we get ➊.

1.22. Exercise. Show that most of 1-Lipschitz paths in the plane
have length 1.

More precisely, consider the space P of 1-Lipschitz paths in the
plane; that is, all paths a : [0, 1] → R2 such that |a(t0)−a(t1)| ⩽ |t0−t1|
for any t0 and t1. Equip P with the metric defined by

|a− b| := sup { |a(t)− b(t)| : t ∈ [0, 1] } .

Show that a dense G-delta set of paths in P has length 1.

L Length spaces
Let X be a metric space. If for any ε > 0 and any pair of points
x, y ∈ X , there is a path α connecting x to y such that

lengthα < |x− y| + ε,

then X is called a length space and the metric on X is called a
length metric.

An ∞-metric space is a length space if each of its metric compo-
nents is a length space. In other words, if X is an ∞-metric space,
then in the above definition we assume in addition that |x− y|X <∞.

Note that any geodesic space is a length space. The following
example shows that the converse does not hold.

1.23. Example. Set In = [0, 1 + 1
n ] for every natural n. Suppose a

space X is obtained by gluing intervals {In}, where the left ends are
glued to p and the right ends to q.

Observe that the space X carries a natural complete length metric
with respect to which |p− q|X = 1, but there is no geodesic connecting
p to q.

1.24. Exercise. Give an example of a complete length space X such
that no pair of distinct points in X can be joined by a geodesic.
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Directly from the definition, it follows that if α : [0, 1] → X is a
path from x to y (that is, α(0) = x and α(1) = y), then

lengthα ⩾ |x− y|.

Set
∥x− y∥ = inf{ lengthα }

where the greatest lower bound is taken for all paths from x to y.
It is straightforward to check that (x, y) 7→ ∥x − y∥ is an ∞-metric;
moreover, (X , ∥∗ − ∗∥) is a length space. The metric ∥∗ − ∗∥ is called
the induced length metric.

1.25. Exercise. Let X be a complete length space. Show that for
any compact subset K ⊂ X there is a compact path-connected subset
K ′ ⊂ X that contains K.

1.26. Exercise. Suppose (X , |∗−∗|) is a complete metric space. Show
that (X , ∥∗ − ∗∥) is complete.

Let A be a subset of a metric space X . Given two points x, y ∈ A,
consider the value

|x− y|A = inf
α
{ lengthα },

where the greatest lower bound is taken for all paths α from x to y
in A. In other words, |∗ − ∗|A denotes the induced length metric on
the subspace A. (The notation |∗ − ∗|A conflicts with the previously
defined notation for distance |x− y|X in a metric space X . However,
most of the time we will work with ambient length spaces where the
meaning will be unambiguous.)

Let x and y be points in a metric space X .
(i) A point z ∈ X is called a midpoint between x and y if

|x− z| = |y − z| = 1
2 ·|x− y|.

(ii) Assume ε ⩾ 0. A point z ∈ X is called an ε -midpoint between
x and y if

|x− z| ⩽ 1
2 ·|x− y| + ε and |y − z| ⩽ 1

2 ·|x− y| + ε.

Note that a 0-midpoint is the same as a midpoint.

1.27. Menger’s lemma. Assume X is a complete metric space.
(a) Suppose that for any two points in X , and any positive ε, there

is an ε-midpoint. Then X is a length space.
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(b) Suppose that for any two points in X , there is a midpoint. Then
X is a geodesic space.

The second part of this lemma was proved by Karl Menger [97,
Section 6].

Proof; (a). Choose x, y ∈ X ; set εn = ε
4n , α(0) = x, and α(1) = y.

Let α( 12 ) be an ε1-midpoint between α(0) and α(1). Further, let
α( 14 ) and α( 34 ) be ε2-midpoints between the pairs (α(0), α( 12 )) and
(α( 12 ), α(1)) respectively. Continue the above procedure; on the n-th
step, we define α( k

2n ), for every odd integer k such that 0 < k
2n < 1,

as an εn-midpoint of the already defined α(k−1
2n ) and α(k+1

2n ).
This way we define α(t) for all dyadic rationals t in [0, 1]. Moreover,

α has Lipschitz constant |x−y|+ε. Since X is complete, the map α can
be extended (|x− y| + ε)-Lipschitz map α : [0, 1] → X . In particular

➊ lengthα ⩽ |x− y| + ε.

Since ε > 0 is arbitrary, we get (a).

(b). Apply the same argument with midpoints instead of εn-midpoints.
In this case, ➊ holds for εn = ε = 0.

1.28. Exercise. Suppose that for any two distinct points x and y in
a complete metric space X there is yet another point z such that

|x− z| + |y − z| = |x− y|.

Show that X is geodesic.

In a compact space, a sequence of 1
n -midpoints zn contains a con-

vergent subsequence. Therefore Menger’s lemma (1.27) implies the
following.

1.29. Proposition. Any proper length space is geodesic.

1.30. Hopf–Rinow theorem. Any complete, locally compact length
space is proper.

Before reading the proof, it is instructive to solve 1.16. In the
proof, we will use the following exercise.

1.31. Exercise. Let X be a length space. Show that B(x,R+ ε)X is
the ε-neighborhood of B(x,R)X .

Proof. Choose a point x in a locally compact length space X . Let

ρ(x) := sup
{
R : B[x,R] is compact

}
.
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Since X is locally compact,

➋ ρ(x) > 0 for any x ∈ X .

It is sufficient to show that ρ(x) = ∞ for some (and therefore any)
point x ∈ X .

➌ If ρ(x) <∞, then B = B[x, ρ(x)] is compact.

Suppose ρ(x) > ε > 0; by 1.31, the set B[x, ρ(x) − ε] is a com-
pact 2·ε-net in B. Since B is closed and hence complete, it must be
compact; see 1.11c and 1.13. △

➍ |ρ(x)− ρ(y)| ⩽ |x− y|X for any x, y ∈ X ; in particular, ρ : X → R
is a continuous function.

Suppose ρ(x)+|x−y| < ρ(y) for some x, y ∈ X . Then B[x, ρ(x)+ε]
is a closed subset of B[y, ρ(y)] for some ε > 0. Since B[y, ρ(y)] is
compact, so is B[x, ρ(x) + ε] — a contradiction. △

Let ε = min { ρ(y) : y ∈ B }; the minimum is defined since B is
compact and ρ is continuous. By ➋, we have ε > 0.

Choose a finite ε
10 -net {a1, a2, . . . , an} inB = B[x, ρ(x)]. The union

W of the closed balls B[ai, ε] is compact. By 1.31, B[x, ρ(x)+ ε
10 ] ⊂W .

Therefore, B[x, ρ(x) + ε
10 ] is compact, a contradiction.

1.32. Exercise. Construct a geodesic space X that is locally compact,
but whose completion X̄ is neither geodesic nor locally compact.

1.33. Exercise. Let X be a locally compact geodesic space. Suppose
that any geodesic γ : (a, b) → X can be extended to [a, b]. Show that X
is proper.

1.34. Advanced exercise. Show that for any compact connected
space X there is a number ℓ such that for any finite collection of points
there is a point z that lies on average distance ℓ from the collection;
that is, for any x1, . . . , xn ∈ X there is z ∈ X such that

1
n ·

∑
i

|xi − z|X = ℓ.
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Lecture 2

Universal spaces

The Urysohn space is the main hero of this lecture. It shares some
fundamental properties with classical spaces (spheres, Euclidean, and
Lobachevsky spaces), but also has many counterintuitive properties.

This space often serves as a counterexample to plausible conjec-
tures; so it is worth knowing it. In addition, this space is beautiful.

A Embedding in a normed space

Recall that a function v 7→ |v| on a vector space V is called norm if
it satisfies the following condition for any two vectors v, w ∈ V and a
scalar α:

⋄ |v| ⩾ 0;
⋄ |α·v| = |α|·|v|;
⋄ |v|+ |w| ⩾ |v + w|.
As an example, consider ℓ∞ — the space of real sequences equipped

with sup-norm; that is, the norm of a = (a1, a2, . . . ) is defined by

|a|ℓ∞ := sup
n
{ |an| }.

It is straightforward to check that for any normed space the func-
tion (v, w) 7→ |v − w| defines a metric on it. Therefore, any normed
space is an example of metric space; moreover, it is a geodesic space.
Often we do not distinguish normed space from the corresponding met-
ric space. (By the Mazur–Ulam theorem, the metric remembers the
affine structure of the space; so, to recover the original normed space
we only need to specify the origin. A slick proof of this theorem was
given by Jussi Väisälä [133].)

21



22 LECTURE 2. UNIVERSAL SPACES

Recall that diameter of a metric space X (briefly diamX ) is de-
fined as the least upper bound on the distances between pairs of its
points; that is,

diamX := sup { |x− y|X : x, y ∈ X } .

If diamX <∞, then the space X is called bounded.

2.1. Lemma. Suppose X is a bounded separable metric space; that
is, X contains a countable, dense set, say {wn}. Given x ∈ X , set
an(x) = |wn − x|X . Then

ι : x 7→ (a1(x), a2(x), . . . )

defines a distance-preserving embedding ι : X ↪→ ℓ∞.

Proof. By the triangle inequality

➊ |an(x)− an(y)| ⩽ |x− y|X .

Therefore, ι is short (in other words, ι is distance-nonexpanding).
Again by the triangle inequality we have

|an(x)− an(y)| ⩾ |x− y|X − 2·|wn − x|X .

Since the set {wn} is dense, we can choose wn arbitrarily close to x.
Whence

➋ sup
n
{ |an(x)− an(y)| } ⩾ |x− y|X ;

that is, ι is distance-noncontracting.
Finally, observe that ➊ and ➋ imply the lemma.

2.2. Exercise. Show that any compact metric space K is isometric
to a subspace of a compact geodesic space.

The following exercise generalizes the lemma to arbitrary separable
spaces.

2.3. Exercise. Suppose {wn} is a countable, dense set in a metric
space X . Choose x0 ∈ X ; given x ∈ X , set

an(x) = |wn − x|X − |wn − x0|X .

Show that ι : x 7→ (a1(x), a2(x), . . . ) defines a distance-preserving em-
bedding ι : X ↪→ ℓ∞.
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Conclude that any separable metric space X admits a distance-
preserving embedding ι : X ↪→ ℓ∞.

The following lemma implies that any metric space is isometric to
a subset of a normed vector space; its proof is nearly identical to the
proof of 2.3. Given a set X , denote by ℓ∞(X ) the space of all bounded
functions on X equipped with sup-norm; that is,

|f − g|ℓ∞ = sup { |f(x)− f(x) : x ∈ X } .

2.4. Lemma. Let x0 be a point in a metric space X . Then the map
ι : X → ℓ∞(X ) defined by

ι : x 7→ (distx − distx0
)

is distance-preserving.
In particular, any metric space X admits a distance-preserving

into ℓ∞(X ).

B Extension property
If a metric space X is a subspace of a semimetric space X ′, then we
say that X ′ is an extension of X . If in addition, diamX ′ ⩽ d, then
we say that X ′ is a d-extension.

If the complement X ′ \X contains a single point, say p, then X ′ is
called a one-point extension of X . In this case, to define a metric
on X ′, it is sufficient to specify the distance function from p; that is,
a function f : X → R defined by

f(x) := |p− x|X ′ .

Any function f of that type will be called an extension function
or d-extension function respectively.

The extension function f cannot be taken arbitrarily — the triangle
inequality implies that

f(x) + f(y) ⩾ |x− y|X ⩾ |f(x)− f(y)|

for any x, y ∈ X . In particular, f is a nonnegative 1-Lipschitz function
on X . For a d-extension, we need to assume in addition that diamX ⩽
⩽ d and f(x) ⩽ d for any x ∈ X . A straightforward check shows that
these conditions are necessary and sufficient.

2.5. Exercise. Let X be a subspace of metric space Y. Assume f is
an extension function on X .
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(a) Show that
f̄(y) := inf

x∈X
{ f(x) + |x− y|Y }

defines an extension function on Y.
(b) Assume that diamY ⩽ d and f(x) ⩽ d for any x ∈ X . Show

that
f̄d := min{ f̄ , d }

is a d-extension function on Y.

The functions f̄ and f̄d in the above exercise are called Katětov
extensions of f and the minimal possible X is called its support,
briefly supp f̄ = X .

2.6. Definition. A metric space U meets the extension property
if for any finite subspace F ⊂ U and any extension function f : F → R
there is a point p ∈ U such that |p− x| = f(x) for any x ∈ F .

If we assume in addition that diamU ⩽ d and instead of extension
functions we consider only d-extension functions, then it defines the
d-extension property.

Furhter, if, in addition, U is separable and complete, then it is
called Urysohn space or d-Urysohn space, respectively.

2.7. Proposition. There is a separable metric space with the (d-)
extension property (for any d ⩾ 0).

Proof. Choose d ⩾ 0. Let us construct a separable metric space with
the d-extension property.

Let X be a metric space such that diamX ⩽ d. Denote by X d

the space of all d-extension functions on X equipped with the metric
defined by the sup-norm. Note that the map X → X d defined by
x 7→ distx is a distance-preserving embedding, so we can (and will)
treat X as a subspace of X d; equivalently, X d is an extension of X .

Let us iterate this construction. Start with a one-point space X0

and consider a sequence of spaces (Xn) defined by Xn+1 := X d
n . Note

that the sequence is nested; that is, X0 ⊂ X1 ⊂ . . . and the union

X∞ =
⋃
n

Xn;

comes with metric such that |x− y|X∞
= |x− y|Xn

if x, y ∈ Xn.
Note that if X is compact, then so is X d. It follows that each space

Xn is compact. In particular, X∞ is a countable union of compact
spaces; therefore, X∞ is separable.

Any finite subspace F of X∞ lies in some Xn for n < ∞. By
construction, given an extension function f : F → R, there is a point
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p ∈ Xn+1 that meets the condition in 2.6. That is, X∞ has the d-
extension property.

The construction of a separable metric space with the extension
property requires only two changes. First, the sequence should be
defined by Xn+1 := X dn

n , where dn is an increasing sequence such that
dn → ∞. Second, the point p should be taken in Xn+k for sufficiently
large k, so that dn+k > max{f(x)} (here one has to apply 2.5a).

(Alternatively, one can start with any separable space X0 and con-
sider a nested sequence X0 ⊂ X1 ⊂ . . . where Xn+1 is the space of all
extension functions on Xn with at most n + 1 points in its support.
The last condition is needed to keep Xn separable.)

Given a metric space X , denote by X∞ the space of all extension
functions on X equipped with the metric defined by the sup-norm.

2.8. Exercise. Construct a proper length space X such that X∞ is
not separable.

2.9. Proposition. If a metric space V meets the (d-) extension prop-
erty, then so does its completion.

Proof. Let us assume V meets the extension property. We will show
that its completion U = V̄ meets the extension property as well. The
d-extension case can be proved along the same lines.

Note that V is a dense subset in a complete space U . Observe that
U has the approximate extension property; that is, if F ⊂ U is
a finite set, ε > 0, and f : F → R is an extension function, then there
exists p ∈ U such that

➊ |p− x| <> f(x)± ε

for any x ∈ F . Indeed, consider the Katětov extension f̄ : U → R of f .
Since V is dense in U , we can choose a finite set F ′ ∈ V such that
for any x ∈ F there is x′ ∈ F ′ with |x − x′| < ε

2 . Let p be the point
provided by the extension property for the restriction f̄ |F ′ . It remains
to observe p meets ➊.

It follows that there is a sequence of points pn ∈ U such that for
any x ∈ F ,

|pn − x| <> f(x)± 1
2n .

Moreover, we can assume that

➋ |pn − pn+1| < 1
2n

for all large n. Indeed, consider the sets Fn = F ∪ {pn} and the
functions fn : Fn → R defined by fn(x) := f(x) and

fn(pn) := max
{ ∣∣|pn − x| − f(x)

∣∣ : x ∈ F
}
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if x ̸= pn. Observe that fn is an extension function for large n and
fn(pn) <

1
2n . Therefore, applying the approximate extension property

recursively, we get ➋.
Therefore, the sequence pn is Cauchy. Note that its limit meets

the condition in the definition of extension property (2.6).

Note that 2.7 and 2.9 imply the following:

2.10. Theorem. Urysohn space and d-Urysohn space exist for any
d > 0.

Here is a slightly stronger statement:

2.11. Theorem. Any separable metric space X admits a distance-
preserving embedding into an Urysohn space U such that any isometry
of X can be extended to an isometry of U .

Sketch of proof. Start with X0 = X and construct a nested sequence
of spaces X0 ⊂ X1 ⊂ . . . as at the alternative end of the proof of 2.7.
Note that any isometry Xn → Xn can be extended to a unique isometry
Xn+1 → Xn+1. It follows that any isometry of X can be extended to
an isometry of X ′ =

⋃
n Xn.

Now, consider a new nested sequence X ⊂ X ′ ⊂ X ′′ ⊂ . . . ; denote
its union by Y. Arguing as in 2.7 and 2.9 we get that the completion of
Y is an Urysohn space, say U , that comes with a distance-preserving
inclusion X ↪→ U .

From above, any isometry of X can be extended to isometries of
X ′, X ′′, and so on. They all define an isometry of Y; passing to its
continuous extension, we get an isometry of U .

C Universality

A metric space will be called universal if it has a subspace isometric
to any given separable metric space. In 2.3, we proved that ℓ∞ is
a universal space. The following proposition shows that an Urysohn
space is universal as well. Unlike ℓ∞, Urysohn spaces are separable;
so it might be considered as a better universal space. Theorem 2.20
will give another reason why Urysohn spaces are better.

2.12. Proposition. An Urysohn space is universal. That is, if U
is an Urysohn space, then any separable metric space S admits a
distance-preserving embedding S ↪→ U .

Moreover, for any finite subspace F ⊂ S, any distance-preserving
embedding F ↪→ U can be extended to a distance-preserving embedding
S ↪→ U .
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A d-Urysohn space is d-universal; that is, the above statements hold
provided that diamS ⩽ d.

Proof. We will prove the second statement; the first statement is its
partial case for F = ∅.

The required isometry will be denoted by x 7→ x′.
Choose a dense sequence of points s1, s2, . . . ∈ S. We may assume

that F = {s1, . . . , sn}, so s′i ∈ U are defined for i ⩽ n.
The sequence s′i for i > n can be defined recursively using the

extension property in U . Namely, suppose that s′1, . . . , s′i−1 are already
defined. Since U meets the extension property, there is a point s′i ∈ U
such that

|s′i − s′j |U = |si − sj |S
for any j < i.

The constructed map si 7→ s′i is distance-preserving. Therefore it
can be continuously extended to the whole S. It remains to observe
that the constructed map S ↪→ U is distance-preserving.

2.13. Exercise. Show that any two distinct points in an Urysohn
space can be joined by an infinite number of distinct geodesics.

2.14. Exercise. Modify the proofs of 2.9 and 2.12 to prove the fol-
lowing theorem.

2.15. Theorem. Let K be a compact set in a separable space S.
Then any distance-preserving map from K to an Urysohn space can
be extended to a distance-preserving map of the whole S.

2.16. Exercise. Show that (d-) Urysohn space is simply-connected.

D Uniqueness and homogeneity

2.17. Theorem. Suppose F ⊂ U and F ′ ⊂ U ′ be finite isometric sub-
spaces in a pair of (d-)Urysohn spaces U and U ′. Then any isometry
ι : F ↔ F ′ can be extended to an isometry U ↔ U ′.

In particular, (d-)Urysohn space is unique up to isometry.

Note that 2.12 implies that there are distance-preserving maps U →
→ U ′ and U ′ → U . The next exercise shows that it does not solely
imply the existence of an isometry U ↔ U ′.

2.18. Exercise. Construct two metric spaces X and Y such that there
are distance-preserving maps X → Y and Y → X , but no isometry
X ↔ Y.
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The following construction uses the idea of 2.12, but it is applied
back-and-forth to ensure that the obtained distance-preserving map
is onto.

Proof. Choose dense sequences a1, a2, . . . ∈ U and b′1, b′2, . . . ∈ U ′. We
can assume that F = {a1, . . . , an}, F ′ = {b′1, . . . , b′n} and ι(ai) = b′i
for i ⩽ n.

The required isometry U ↔ U ′ will be denoted by u ↔ u′. Set
ai = bi and a′i = b′i if i ⩽ n.

Let us define recursively a′n+1, bn+1, a
′
n+2, bn+2, . . . — on the odd

step we define the images of an+1, an+2, . . . and on the even steps we
define inverse images of b′n+1, b

′
n+2, . . . The same argument as in the

proof of 2.12 shows that we can construct two sequences a′1, a′2, . . . ∈ U ′

and b1, b2, · · · ∈ U such that

|ai − aj |U = |a′i − a′j |U ′ ,

|ai − bj |U = |a′i − b′j |U ′ ,

|bi − bj |U = |b′i − b′j |U ′

for all i and j.
It remains to observe that the constructed distance-preserving bi-

jection defined by ai ↔ a′i and bi ↔ b′i extends continuously to an
isometry U ↔ U ′.

Observe that 2.17 implies that the Urysohn space (as well as the
d-Urysohn space) is finite-set-homogeneous; that is,

⋄ any distance-preserving map from a finite subset to the whole
space can be extended to an isometry.

Recall that S(p, r)X denotes the sphere of radius r centered at p
in a metric space X ; that is,

S(p, r)X = {x ∈ X : |p− x|X = r } .

2.19. Exercise. Choose d ∈ [0,∞]. Denote by Ud the d-Urysohn
space, so U∞ is the Urysohn space.
(a) Assume that L = S(p, r)Ud

̸= ∅. Show that L is isometric to Uℓ;
find ℓ in terms of r and d.

(b) Let ℓ = |p − q|Ud
. Show that the subset M ⊂ Ud of midpoints

between p and q is isometric to Uℓ.
(c) Show that Ud is not countable-set-homogeneous; that is, there is

a distance-preserving map from a countable subset of Ud to Ud

that cannot be extended to an isometry of Ud.
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In fact, the Urysohn space is compact-set-homogeneous; more pre-
cisely the following theorem holds.

2.20. Theorem. Let K be a compact set in a (d-)Urysohn space U .
Then any distance-preserving map K → U can be extended to an isom-
etry of U .

A proof can be obtained by modifying the proofs of 2.9 and 2.17
the same way as it is done in 2.14.

2.21. Exercise. Let S be a unit sphere in the Urysohn space U . Show
that for any two distinct points x, y ∈ U there is a point z ∈ S such
that |x− z| ≠ |y − z|.

Conclude that two isometries of U coincide if they coincide on S.

2.22. Exercise. Let B be an open unit ball in the Urysohn space U .
Show that U \B is isometric to U .

Use it to construct an isometry of a unit sphere S in U that cannot
be extended to an isometry of U .

2.23. Exercise.
(a) Show that there is a distance-preserving inclusion of the Urysohn

space ι : U ↪→ U such that U ′ = ι(U) is nowhere dense in U and
any isometry of U ′ can be extended to an isometry of the whole U .

(b) Consider a nested sequence U0 ⊂ U1 ⊂ . . . of Urysohn spaces
with each inclusion Un ↪→ Un+1 as in (a). Show that the union⋃

n Un is a noncomplete finite-set-homogeneous metric space that
meets the extension property.

2.24. Exercise. Which of the following metric spaces are one-point-
homogeneous, finite-set-homogeneous, compact-set-homogeneous,
countable-set-homogeneous?
(a) Euclidean plane,

(b) Hilbert space ℓ2,

(c) ℓ∞,

(d) ℓ1 — the space of all real absolutely converging series a =
= (a1, a2, . . . ) with the norm |a|ℓ1 =

∑
i |ai|.

2.25. Exercise. Show that any separable one-point-homogeneous
metric tree is isometric to the real line R or the one-point space.
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E Remarks

The statement in 2.3 was proved by Maurice René Fréchet [58, p.
162]; its extension 2.4 was given by Kazimierz Kuratowski [87]. Both
maps x 7→ (distx − distx0) and x 7→ distx can be called Kuratowski
embedding.

Let us describe a closely related construction introduced by Mi-
khael Gromov [61]. Suppose X be a proper metric space. Denote by
C(X ,R) the space of continuous functions X → R equipped with the
compact-open topology; that is, for any compact set K ⊂ X and
any open set U ⊂ R the set of all continuous functions f : X → R such
that f(K) ⊂ U is declared to be open.

Choose a point x0 ∈ X . Consider the map FX : X → C(X ,R)
defined by

x 7→ fx := −|x− x0| + distx.

2.26. Exercise. Show that if X is a proper length space, then FX is
an embedding. Construct a proper metric space Y such that FY is not
an embedding.

Denote by X̂ the closure of FX (X ) in C(X ,R); observe that X̂
is compact. If FX is an embedding, then X̂ is a compactification of
X , and it is called the horo-compacti fication. In this case, the
complement

∂∞X = X̂ \ FX (X )

is called the horo-absolute of X . A variation of this construction
for nonproper spaces was considered by Anders Karlsson [81].

The following two exercises show that ℓ∞ is very different from ℓ1.
For more on the subject, see [55].

Let S be a subset of X. We say that S separates x and y if
x ∈ S and y /∈ S or x /∈ S and y ∈ S. The cut metric δS on X is a
semimetric such that δS(x, y) = 1 if x and y are separated by S and
otherwise δS(x, y) = 0.

2.27. Exercise. Show that a finite metric space F admits a distance-
preserving embedding into ℓ1 if and only if the metric of F can be
written as a nonnegative linear combination1 of cut metrics on F .

Recall that the vertex set of any graph comes with the path met-
ric — the distance between two vertices is the minimal number of
edges in a path connecting them.

1that is, linear combination with nonnegative coefficients.
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2.28. Exercise. Use 2.27 to show that the metric for
complete bipartite graph K2,3 (see the diagram) does not
admit a distance-preserving embedding into ℓ1.

The question about the existence of a separable universal space was
posed by Maurice René Fréchet and answered by Pavel Urysohn [131].
Exercise 2.23 answers a question posed by Pavel Urysohn [131, §2(6)].
It was solved by Miroslav Katětov [82], but long after that, it was
again mentioned as an open problem [65, p. 83].

The idea of Urysohn’s construction was reused in graph theory;
it produces the so-called Rado graph, also known as Erdős–Rényi
graph or random graph; see [44]. In certain sense, the Urysohn space
is the random metric space [136].

The (d-) Urysohn space is homeomorphic to the Hilbert space;
the latter was proved by Vladimir Uspenskij [132] using the so-called
Toruńczyk criterion.

The finite-set-homogeneous spaces include Euclidean spaces, hy-
perbolic spaces, and spheres all with standard length metrics and ar-
bitrary finite dimensions. In fact, these are the only examples of lo-
cally compact three-point-homogeneous length spaces. The latter was
proved by Herbert Busemann [40]; it also follows from the more gen-
eral result of Jacques Tits about two-point-homogeneous spaces [130].
The same conclusion holds for complete all-set-homogeneous geodesic
spaces with local uniqueness of geodesics; it was proved by Garrett
Birkhoff [25]. The answer might be the same for complete separable
all-set-homogeneous length spaces. Without the separability condi-
tion, we also get the so-called universal metric trees with finite
valence [56]; no other examples seem to be known [91].

2.29. Exercise. Show that the real projective plane RP2 with
the standard metric is two-point-homogeneous, but not three-point-
homogeneous.

2.30. Exercise. Let Q be the set of vertices on the n-dimensional
cube; assume n is large. Show that Q is three-point-homogeneous, but
not four-point-homogeneous.

2.31. Question. Are there examples of metric spaces that are n-
point-homogeneous, but not (n + 1)-point-homogeneous for large n?
See [109].
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Lecture 3

Injective spaces

Injective hull is a useful construction that provides a canonical choice
of a specially nice (injective) space that includes a given metric space.
This construction is similar to the convex hull in Euclidean space. The
following exercise gives a bridge from the latter to the former.

3.1. Advanced exercise. Show that A ⊂ Rn is a closed convex set
if and only if for any B ⊂ Rn any short map B → A can be extended
to a short map Rn → A.

A Definition

3.2. Definition. A metric space Y is called injective if, for any
metric space X and any of its subspace A, any short map f : A → Y
can be extended to a short map F : X → Y; that is, f = F |A.

3.3. Exercise. Show that any injective space is

(a) complete, (b) geodesic, and (c) contractible.

3.4. Exercise. Show that for any injective space Y there is a map
m : Y × Y → Y (the midpoint map) such that the inequality

2·|p−m(x, y)|Y ⩽ |p− x|Y + |p− y|Y

holds for any p, x, y ∈ Y.

3.5. Exercise. Show that the following spaces are injective:
(a) the real line;

33
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(b) complete metric tree;
(c) The space ℓ∞(S) for any set S (defined in 2.4). In particular,

the coordinate plane with the metric induced by the ℓ∞-norm.

3.6. Exercise. Let Y be an injective space.
(a) Show that any closed ball in Y is injective.
(b) Show that the intersection of an arbitrary collection of closed

balls in Y is injective.

3.7. Advanced exercise. Let Y be a bounded injective space. Show
that any short map s : Y → Y has a fixed point.

B Admissible and extremal functions

Let X be a metric space. A function r : X → (−∞,∞] is called ad-
missible if the following inequality

➊ r(x) + r(y) ⩾ |x− y|X

holds for any x, y ∈ X .

3.8. Observation.
(a) Any admissible function is nonnegative.
(b) If X is a geodesic space, then a function r : X → R is admissible

if and only if
B[x, r(x)] ∩ B[y, r(y)] ̸= ∅

for any x, y ∈ X .

Proof; (a). Apply ➊ for x = y.

(b). Apply the triangle inequality and the existence of a geodesic
[xy].

A minimal admissible function will be called extremal. More
precisely, an admissible function r : X → R is extremal if for any
admissible function s : X → R we have

s ⩽ r =⇒ s = r.

Applying Zorn’s lemma, we get the following.

3.9. Observation. For any admissible function s there is an extremal
function r such that r ⩽ s.
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3.10. Lemma. Let r be an extremal function and s an admissible
function on a metric space X . Suppose that r ⩾ s − c for some con-
stant c. Then r ⩽ s+ c; in particular, c ⩾ 0.

Proof. Note that if c < 0, then r > s. The latter is impossible since r
is extremal and s is admissible.

Observe that the function r̄ = min{ r, s+ c } is admissible. Indeed,
choose x, y ∈ X . If r̄(x) = r(x) and r̄(y) = r(y), then

r̄(x) + r̄(y) = r(x) + r(y) ⩾ |x− y|.

Further, if r̄(x) = s(x) + c, then

r̄(x) + r̄(y) ⩾ [s(x) + c] + [s(y)− c] =

= s(x) + s(y) ⩾

⩾ |x− y|.

Since r is extremal, we have r = r̄; that is, r ⩽ s+ c.

3.11. Observations. Let X be a metric space.
(a) For any point p ∈ X the distance function r = distp is extremal.
(b) Any extremal function r on X is 1-Lipschitz; that is,

|r(p)− r(q)| ⩽ |p− q|

for any p, q ∈ X . In other words, any extremal function is an
extension function [see 2B].

(c) An admissible function r on X is extremal if and only if for any
point p ∈ X and any δ > 0, there is a point q ∈ X such that

r(p) + r(q) < |p− q|X + δ.

(d) Suppose X is compact. Then an admissible function r on X is
extremal if and only if for any point p ∈ X there is a point q ∈ X
such that

r(p) + r(q) = |p− q|X .

Proof; (a). By the triangle inequality, ➊ holds; that is, r = distp is an
admissible function.

Further, if s ⩽ r is another admissible function, then s(p) = 0 and
➊ implies that s(x) ⩾ |p− x|. Whence s = r.

(b). By (a), distp is admissible. Since r is admissible, we have that

r ⩾ distp − r(p).
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Since r is extremal, 3.10 implies that

r ⩽ distp + r(p),

or, equivalently,
r(q)− r(p) ⩽ |p− q|

for any p, q ∈ X . Whence the statement follows.

(c). Assume r is extremal. Arguing by contradiction, assume there is
δ > 0 such that

r(q) ⩾ distp(q)− r(p) + δ

for any q. By (a), distp is extremal; in particular, admissible. There-
fore 3.10 implies that

r(q) ⩽ distp(q) + r(p)− δ

for any q. Taking q = p, we get r(p) ⩽ r(p)− δ, a contradiction.
Now suppose r is not extremal; that is, there is an admissible

function s ⩽ r such that r(p) − s(p) = δ > 0 for some p. Then, for
any q, we have

r(p) + r(q) ⩾ s(p) + s(q) + δ ⩾ |p− q|X + δ

— a contradiction.

(d). The if part follows from (c).
Denote by qn the point provided by (c) for δ = 1

n . Let q be a
partial limit of qn. Then

r(p) + r(q) ⩽ |p− q|X .

Since r is admissible, the opposite inequality holds; whence the only-if
part follows.

3.12. Exercise. Consider the unit circle

S1 =
{
(x, y) : x2 + y2 = 1

}
in the plane with induced length metric. Show that r : S1 → R is
extremal if and only if it is 1-Lipschitz and

r(p) + r(−p) = π

for any p ∈ S1.

3.13. Exercise. Given a real-valued function s on a metric space X ,
consider the function

s∗(x) = sup { |x− y|X − s(y) : y ∈ X }

Show that the function 1
2 ·(s+ s∗) is admissible for any s.
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C Equivalent conditions

3.14. Theorem. For any metric space Y the following conditions are
equivalent:
(a) Y is injective
(b) If r : Y → R is an extremal function, then there is a point p ∈ Y

such that
|p− x| = r(x)

for any x ∈ Y.
(c) Y is hyperconvex; that is, if

{
B[xα, rα] : α ∈ A

}
is a family

of closed balls in Y such that

rα + rβ ⩾ |xα − xβ |

for any α, β ∈ A, then all the balls in the family {B[xα, rα]}α∈A
have a common point.

Proof. We will prove implications (a)⇒(b)⇒(c)⇒(a).

(a)⇒(b). By 3.11b, r is an extension function. Applying the definition
of injective space to a one-point extension of Y, we get a point p ∈ Y
such that

|p− x| = distp(x) ⩽ r(x)

for any x ∈ Y. By 3.11a, the distance function distp is extremal. Since
r is extremal, we get distp = r.

(b)⇒(c). By 3.8b, part (c) is equivalent to the following statement:
⋄ If r : Y → R is an admissible function, then there is a point p ∈ Y

such that

➊ |p− x| ⩽ r(x)

for any x ∈ Y.
Indeed, set r(x) := inf { rα : xα = x }. (If xα ̸= x for any α, then
r(x) = ∞.) The condition in (c) implies that r is admissible. It
remains to observe that p ∈ B[xα, rα] for every α if and only if ➊
holds.

By 3.9, for any admissible function r there is an extremal function
r̄ ⩽ r; hence (b)⇒(c).

(c)⇒(a). Arguing by contradiction, suppose Y is not injective; that
is, there is a metric space X with a subset A such that a short map
f : A → Y cannot be extended to a short map F : X → Y. By Zorn’s
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lemma, we may assume that A is a maximal subset; that is, the domain
of f cannot be enlarged by a single point.1

Fix a point p in the complement X \A. To extend f to p, we need
to choose f(p) in the intersection of the balls B[f(x), r(x)], where
r(x) = |p − x|. Therefore, this intersection for all x ∈ A has to be
empty.

Since f is short, we have that

r(x) + r(y) ⩾ |x− y|X ⩾

⩾ |f(x)− f(y)|Y .

By (c) the balls B[f(x), r(x)] have a common point — a contradiction.

3.15. Exercise. Suppose a length space W has two subspaces X and
Y such that X ∪Y = W and X ∩Y is a one-point set. Assume X and
Y are injective. Show that W is injective

3.16. Exercise. Show that an m-dimensional normed space is injec-
tive if and only if it is isometric to Rm with ℓ∞-norm; that is,

|(x1, . . . , xm)| = max
i

{ |xi| }.

A metric space Y is called finitely hyperconvex or countably
hyperconvex if the condition in 3.14c holds only for any finite or
respectively countable family of balls.

3.17. Exercise. Show that any proper finitely hyperconvex metric
space is hyperconvex.

3.18. Exercise. Show that the d-Urysohn space is finitely hypercon-
vex, but not countably hyperconvex. Conclude that the d-Urysohn space
is not injective.

Try to do the same for the Urysohn space.

3.19. Exercise. Let Y be a complete metric space. Suppose Y is al-
most hyperconvex, that is, for any ε > 0 any family of closed balls{
B[xα, rα + ε] : α ∈ A

}
has a common point if rα + rβ ⩾ |xα − xβ |

for all α, β ∈ A. Show that Y is hyperconvex.

1In this case, A must be closed, but we will not use it.
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D Space of extremal functions
Let X be a metric space. Consider the space ExtX of extremal func-
tions on X equipped with sup-norm; that is,

|f − g|ExtX := sup { |f(x)− g(x)| : x ∈ X } .

Recall that by 3.11a, any distance function is extremal. It follows
that the map x 7→ distx produces a distance-preserving embedding
X ↪→ ExtX . So we can (and will) treat X as a subspace of ExtX , or,
equivalently, ExtX as an extension of X . In particular, from now on,
a point x ∈ X can refer to the function distx : X → R and the other
way around.

Since any extremal function is 1-Lipschitz, for any f ∈ ExtX and
p ∈ X , we have that f(x) ⩽ f(p) + distp(x). By 3.10, we also get
f(x) ⩾ −f(p) + distp(x). Therefore

➊
|f − p|ExtX = sup { |f(x)− distp(x)| : x ∈ X } =

= f(p).

In particular, the statement in 3.11c can be written as

|f − p|ExtX + |f − q|ExtX < |p− q|ExtX + δ.

3.20. Exercise. Show that ExtX is compact if and only if so is X .

3.21. Exercise. Describe the set of all extremal functions on a metric
space X and the metric space ExtX in each of the following cases:
(a) X is a metric space with exactly two points v, w on distance 1

from each other.
(b) X is a metric space with exactly three points a, b, c such that

|a− b|X = |b− c|X = |c− a|X = 1.

(c) X is a metric space with exactly four points p, q, x, y such that

|p− x|X = |p− y|X = |q − x|X = |q − y|X = 1

and
|p− q|X = |x− y|X = 2.

3.22. Exercise. Assume X is a compact metric space. Recall that
the map x 7→ distx gives an isometric embedding X ↪→ ℓ∞(X ); so we
can think that X is a subset of ℓ∞(X ).
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Given two points x, y ∈ X , denote by Gx,y the union of all geodesics
from x to y in ℓ∞(X ). Show that ExtX is isometric to

G =
⋂
x∈X

 ⋃
y∈X

Gx,y

 .

3.23. Proposition. ExtX is injective for any metric space X .

3.24. Lemma. Let X be a metric space. Then

σ ∈ Ext(ExtX ) =⇒ σ|X ∈ ExtX .

In other words, if σ is an extremal function on ExtX , then the
restriction of σ to X is an extremal function on X .

Proof. Arguing by contradiction, suppose that there is an admissible
function s : X → R such that s(x) ⩽ σ(x) for any x ∈ X and s(p) <
< σ(p) for some point p ∈ X . Consider another function σ̄ : ExtX →
→ R such that σ̄(f) := σ(f) if f ̸= p and σ̄(p) := s(p).

Let us show that σ̄ is admissible; that is,

➋ |f − g|ExtX ⩽ σ̄(f) + σ̄(g)

for any f, g ∈ ExtX .
Since σ is admissible and σ̄ = σ on (ExtX ) \ {p}, it is sufficient

to prove ➋ assuming f ̸= g = p. By ➊, we have |f − p|ExtX = f(p).
Therefore, ➋ boils down to the following inequality

➌ σ(f) + s(p) ⩾ f(p).

for any f ∈ ExtX .
Fix small δ > 0. Let q ∈ X be the point provided by 3.11c. Then

σ(f) + s(p) ⩾ [σ(f)− σ(q)] + [σ(q) + s(p)] ⩾

since σ is 1-Lipschitz, and σ(q) ⩾ s(q), we can continue

⩾ −|q − f |ExtX + [s(q) + s(p)] ⩾

by ➊ and since s is admissible

⩾ −f(q) + |p− q| >
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and by 3.11c

> f(p)− δ.

Since δ > 0 is arbitrary, ➌ and ➋ follow.
Summarizing: the function σ̄ is admissible, σ̄ ⩽ σ and σ̄(p) < σ(p);

that is, σ is not extremal — a contradiction.

Proof of 3.23. Choose a function σ ∈ Ext(ExtX ). By 3.24, s :=
:= σ|X ∈ ExtX ; that is, s is extremal. By 3.14b, it is sufficient to
show that

➍ σ(f) ⩾ |s− f |ExtX

for any f ∈ ExtX .
Since σ is 1-Lipschitz (3.11b) we have that

s(x)− f(x) = σ(x)− |f − x|ExtX ⩽ σ(f).

for any x ∈ X . By 3.10, s(x)− f(x) ⩾ −σ(f) for any x ∈ X . Whence
➍ follows.

3.25. Exercise. Let X be a compact metric space. Show that for any
two points f, g ∈ ExtX lie on a geodesic [pq] with p, q ∈ X .

A metric space X is called δ -hyperbol ic if

|p− q| + |x− y| ⩽ max{ |p− x| + |q − y|, |p− y| + |q − x| }+ 2·δ

for any p, q, x, y ∈ X .

3.26. Advanced exercise. Show that ExtX is δ-hyperbolic if and
only if so is X .

E Injective envelope
An extension E of a metric space X will be called its injective enve-
lope if E is an injective space, and there is no proper injective subspace
of E that contains X .

Two injective envelopes e : X ↪→ E and f : X ↪→ F are called equiv-
alent if there is an isometry ι : E → F such that f = ι ◦ e.

3.27. Theorem. For any metric space X , its extension ExtX is an
injective envelope.

Moreover, any other injective envelope of X is equivalent to ExtX .
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Proof. Suppose S ⊂ ExtX is an injective subspace containing X .
Since S is injective, there is a short map w : ExtX → S that fixes all
points in X .

Suppose that w : f 7→ f ′; observe that f(x) ⩾ f ′(x) for any x ∈ X .
Since f is extremal, f = f ′; that is, w is the identity map, and therefore
S = ExtX .

Assume we have another injective envelope e : X ↪→ E . Then there
are short maps v : E → ExtX and w : ExtX → E such that x = v◦e(x)
and e(x) = w(x) for any x ∈ X . From above, the composition v ◦w is
the identity on ExtX . In particular, w is distance-preserving.

The composition w ◦ v : E → E is a short map that fixes points in
e(X ). Since e : X ↪→ E is an injective envelope, the composition w ◦ v
and, therefore, w are onto. Whence w is an isometry.

3.28. Exercise. Suppose e : X ↪→ E and f : X ↪→ F are two injective
envelopes of X . Show that there is a unique isometry ι : E → F such
that ι ◦ e = f .

3.29. Exercise. Suppose X is a subspace of a metric space U . Show
that the inclusion X ↪→ U can be extended to a distance-preserving
inclusion ExtX ↪→ ExtU .

3.30. Exercise. Consider the hemisphere

S2+ =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z ⩾ 0

}
and its boundary

S1 =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z = 0

}
;

both with induced length metrics.
Show that there is unique isometric embedding ι : S2+ ↪→ ExtS1

such that ι(u) = u for any u ∈ S1.

F Remarks
Injective spaces were introduced by Nachman Aronszajn and Prom
Panitchpakdi [12]. The injective envelope was introduced by John
Isbell [75]; it is also known as tight span and hyperconvex hull.

It was observed by John Isbell [76] that if X is a Banach space,
then its injective hull ExtX has a natural structure of Banach space
(which is unique by the Mazur–Ulam theorem). Moreover, X is a
linear subspace of ExtX .
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Let us mention that a metric space X is called convex if for any
pair of points x1, x2 ∈ X and any r1, r2 ⩾ 0 we have

r1 + r2 ⩾ |x1 − x2|X =⇒ B[x, r1]X ∩ B[y, r2]X ̸= ∅;

in other words, a pair of balls intersect if the triangle inequality does
not forbid it. Clearly, hyperconvexity (3.14c) is stronger than convex-
ity. Note that any geodesic space is convex. The converse does not
hold in general, but by Menger’s lemma (1.27b) any complete convex
space is geodesic.

More generally, a metric space X is called n -hyperconvex if the
condition in 3.14c holds only for families with at most n balls; so
convex means 2-hyperconvex.

The following striking result was proved by Benjamin Miesch and
Maël Pavón [100].

3.31. Theorem. Any complete 4-hyperconvex space is finitely hy-
perconvex.

So, by 3.17, it follows that any proper 4-hyperconvex space is hy-
perconvex.

3.32. Exercise. Show that ℓ1 is 3- but not 4-hyperconvex.

Recall that if the following inequality

|x− z|X ⩽ max{ |x− y|X , |y − z|X }

holds for any three points x, y, z in a metric space X , then X is called
an ultrametric space. In some sense, ultrametric spaces are dual
to injective spaces.

3.33. Exercise. Suppose that a metric space X satisfies the following
property: For any subspace A in X and any other metric space Y, any
short map f : A → Y can be extended to a short map F : X → Y.

Show that X is an ultrametric space.

A subspace S of a metric space X is called its short retract if
there is a short map X → S that is the identity on S.

3.34. Exercise. Show that any compact subspace K of an ultrametric
space X is its short retract.

Construct an example of a complete ultrametric space X with a
closed subspace Q that is not its short retract.

The following exercise gives a sufficient condition for the existence
of a short extension.
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3.35. Exercise. Let f : A→ K be a short map from a subset A in a
metric space X to compact metric space K. Assume that for any finite
set F ⊂ X there is a short map F → K that agrees with f on F ∩ A.
Show that there is a short map X → K that agrees with f on A.



Lecture 4

Space of subsets

In this lecture we define and study Hausdorff metric on subsets of a
given metric space.

A Hausdorff distance

Let X be a metric space. Given a subset A ⊂ X , consider the distance
function to A

distA : X → [0,∞)

defined as
distA(x) := inf { |a− x|X : a ∈ A } .

Further, we define the so-called Hausdorff metric on all nonempty
compact subsets of a given metric space X . The obtained metric space
will be denoted as HausX .

4.1. Definition. Let A and B be two nonempty compact subsets of
a metric space X . Then the Hausdorff distance between A and B
is defined as

|A−B|HausX := sup
x∈X

{ |distA(x)− distB(x)| }.

The following observation gives a useful reformulation of the defi-
nition:

4.2. Observation. Suppose A and B be two compact subsets of a
metric space X . Then |A − B|HausX < R if and only if and only if
B lies in an R-neighborhood of A, and A lies in an R-neighborhood
of B.

45
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4.3. Exercise. Let X be a metric space. Given a subset A ⊂ X ,
define its diameter as

diamA := sup
a,b∈A

|a− b|.

Show that
diam: HausX → R

is a 2-Lipschitz function; that is,

|diamA− diamB| ⩽ 2·|A−B|HausX

for any two compact nonempty sets A,B ⊂ X .

4.4. Exercise. Let A and B be two compact subsets in the Euclidean
plane R2. Assume |A−B|HausR2 < ε.
(a) Show that |ConvA−ConvB|HausR2 < ε, where ConvA denoted

the convex hull of A.
(b) Is it true that |∂A−∂B|HausR2 < ε, where ∂A denotes the bound-

ary of A.
Does the converse hold? That is, assume A and B be two com-
pact subsets in R2 and |∂A − ∂B|HausR2 < ε; is it true that
|A−B|HausR2 < ε?

Note that part (a) implies that A 7→ ConvA defines a short map
HausR2 → HausR2.

4.5. Exercise. Let A and B be compact subsets in metric space X .
Show that

|A−B|HausX = sup
f

{max
a∈A

{f(a)} −max
b∈B

{f(b) },

where the least upper bound is taken for all 1-Lipschitz functions f .

Given a subset A ⊂ Rn, the support function hA : Rn → R of a
nonempty closed set A ⊂ Rn is defined as

hA(x) := sup { ⟨x, a⟩ : a ∈ A } .

4.6. Exercise. Show that

|A−B|HausRn ⩾ sup
|u|=1

{|hA(u)− hB(u)|}

for any nonempty compact subsets A,B ⊂ Rn.
Moreover, equality holds if both A and B are convex.

4.7. Advanced exercise. Suppose Ct ⊂ X , t ∈ [0, 1] is a family of
subsets. A path c : [0, 1] → X such that c(t) ∈ Ct for all t will be called
a section of Ct.
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(a) Construct a family of nonempty compact sets Ct ⊂ S1, t ∈ [0, 1]
that is continuous in the Hausdorff topology, but does not admit
a section.

(b) Show that any family of nonempty compact sets Ct ⊂ R, t ∈ [0, 1]
that is continuous in the Hausdorff topology, admits a section.

B Hausdorff convergence

4.8. Blaschke selection theorem. A metric space X is compact if
and only if so is HausX .

The Hausdorff metric can be used to define convergence. Namely,
suppose K1,K2, . . . , and K∞ are compact sets in a metric space X .
If |K∞ −Kn|HausX → 0 as n→ ∞, then we say that the sequence Kn

converges to K∞ in the sense of Hausdorff; equivalently, K∞
is the Hausdorff l imit of the sequence Kn.

Note that the theorem implies that from any sequence of nonempty
compact sets in X one can select a convergent subsequence; for that
reason, it is called a selection theorem.

Proof; if part. Consider the map ι that sends each point x ∈ X to
the one-point subset {x} of X . Note that ι : X → HausX is distance-
preserving.

Suppose that A ⊂ X . Note that diamA = 0 if and only if A is
a one-point set. By 4.3, ι(X ) is a closed subset of the compact space
HausX . It follows that ι(X ) and, therefore, X , are compact.

Since the map ι above is distance-preserving, we can and will con-
sider X as a subspace of HausX .

4.9. Exercise. Let X be a compact length space. Suppose that there
is a short retraction HausX → X . Show that X is contractible.

To prove the only-if part we will need the following two lemmas.

4.10. Monotone convergence. Let K1 ⊃ K2 ⊃ . . . be a nested
sequence of nonempty compact sets in a metric space X . Then K∞ =
=

⋂
nKn is the Hausdorff limit of Kn; that is, |K∞ −Kn|HausX → 0

as n→ ∞.

Proof. By finite intersection property, K∞ is a nonempty compact set.
Arguing by contradiction, assume that there is ε > 0 such that for

each n one can choose xn ∈ Kn such that distK∞(xn) ⩾ ε. Note that
xn ∈ K1 for each n. Since K1 is compact, there is a partial l imit
x∞ of xn; that is, a limit of a subsequence. Clearly, distK∞(x∞) ⩾ ε.
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On the other hand, since Kn is closed and xm ∈ Kn for m ⩾ n,
we get x∞ ∈ Kn for each n. It follows that x∞ ∈ K∞ and therefore
distK∞(x∞) = 0 — a contradiction.

4.11. Lemma. If X is a compact metric space, then HausX is com-
plete.

Proof. Let Q1, Q2, . . . be a Cauchy sequence in HausX . Passing to a
subsequence, we may assume that

➊ |Qn −Qn+1|HausX ⩽ 1
10n

for each n.
Denote by Kn the closed 2

10n -neighborhood of Qn; that is,

Kn =
{
x ∈ X : distQn

(x) ⩽ 2
10n

}
Since X is compact so is each Kn.

From ➊, we get Kn ⊃ Kn+1 for each n. Set

K∞ =

∞⋂
n=1

Kn.

By the monotone convergence (4.10), |Kn−K∞|HausX → 0 as n→ ∞.
By 4.2, |Qn −Kn|HausX ⩽ 2

10n . Therefore, |Qn −K∞|HausX → 0
as n→ ∞ — hence the lemma.

4.12. Exercise. Let X be a complete metric space and K1,K2, . . .
be a sequence of compact sets that converges in the sense of Hausdorff.
Show that the union K1 ∪K2 ∪ . . . has compact closure.

Use this statement to show that in Lemma 4.11 compactness of X
can be exchanged to completeness.

Proof of only-if part in 4.8. According to Lemma 4.11, HausX is
complete. It remains to show that HausX is totally bounded (1.11c);
that is, given ε > 0 there is a finite ε-net in HausX .

Choose a finite ε-net A in X . Denote by B the set of all nonempty
subsets of A. Note that B is a finite set in HausX . For each compact
set K ⊂ X , consider the subset K ′ of all points a ∈ A such that
distK(a) ⩽ ε. Observe that K ′ ∈ B and |K −K ′|HausX ⩽ ε. In other
words, B is a finite ε-net in HausX .

4.13. Exercise. Let X be a complete metric space. Show that X is
a length space if and only if so is HausX .

4.14. Exercise.
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(a) Show that the set of all connected compact subsets of R2 is closed
in HausR2.

(b) Show that any connected compact subset of R2 is a Hausdorff
limit of a sequence of closed simple curves.

C An application

In this section, we will sketch a proof of the isoperimetric inequality
in the plane that uses the Hausdorff convergence.

It is based on the following exercise.

4.15. Exercise. Let C be the set of all nonempty compact convex
subsets in R2. Show that C is a closed subset of HausR2 and perimeter
and area are continuous on C. (If the set degenerates to a line segment
of length ℓ, then its perimeter is defined as 2·ℓ.)

More precisely, if a sequence of convex compact plane sets Xn con-
verges to X∞ in the sense of Hausdorff, then X∞ is convex,

perimXn → perimX∞, and areaXn → areaX∞

as n→ ∞.

4.16. Isoperimetric inequality. Among the plane figures bounded
by closed curves of length at most ℓ, the round disk has the maximal
area.

Sketch. It is sufficient to consider only convex figures of the given
perimeter; if a figure is not convex, pass to its convex hull and observe
that it has a larger area and smaller perimeter.

Note that the selection theorem (4.8) together with the exercise
implies the existence of figure D with perimeter ℓ and maximal area.

It remains to show that D is a round disk; it will be done by means
of elementary geometry.

Let us cut D along a chord [ab] into two lenses, L1 and L2. Denote
by L′

1 the reflection of L1 across the perpendicular bisector of [ab].
Note that D and D′ = L′

1 ∪ L2 have the same perimeter and area.
That is, D′ has perimeter ℓ and maximal possible area; in particular,
D′ is convex.

The following exercise will finish the proof.
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4.17. Exercise. Suppose D
is a convex figure such that for
any chord [ab] of D the above
construction produces a con-
vex figure D′. Show that D is
a round disk.

Another popular way to prove that D is a round disk is given by
the so-called Steiner’s 4-joint method [27].

D Remarks
It seems that Hausdorff convergence was first introduced by Felix
Hausdorff [71]. A couple of years later an equivalent definition was
given by Wilhelm Blaschke [27].

The following refinement was introduced by Zdeněk Froĺık [59] and
rediscovered by Robert Wijsman [138]. This refinement is also called
Hausdorff convergence; in fact, it takes an intermediate place be-
tween the original Hausdorff convergence and the so-called closed con-
vergence, also introduced by Hausdorff in [71].

4.18. Definition. Let A1, A2, . . . be a sequence of closed sets in a
metric space X . We say that the sequence An converges to a closed set
A∞ in the sense of Hausdorff if, for any x ∈ X , we have distAn(x) →
→ distA∞(x) as n→ ∞.

For example, suppose X is the Euclidean plane and An is the circle
with radius n and center at the point (0, n). If we use the standard
definition (4.1), then the sequenceA1, A2, . . . diverges, but it converges
to the x-axis in the sense of Definition 4.18.

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2 A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3 A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4A4 A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5

A∞

Further, consider the sequence of one-point sets Bn = {(n, 0)} in
the Euclidean plane. It diverges in the sense of the standard definition,
but, in the sense of 4.18, it converges to the empty set; indeed, for any
point x we have distBn

(x) → ∞ as n → ∞ and dist∅(x) = ∞ for
any x.

The following exercise is analogous to the Blaschke selection theo-
rem (4.8) for the modified Hausdorff convergence.
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4.19. Exercise. Let X be a proper metric space and A1, A2, . . . be a
sequence of closed sets in X . Show that the sequence A1, A2, . . . has a
convergent subsequence in the sense of Definition 4.18.
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Lecture 5

Space of spaces

In this lecture we define and study the so-called Gromov–Hausdorff
metric on the isometry classes of compact metric spaces.

A Gromov–Hausdorff metric

In this section we cook up a metric space out of all compact met-
ric spaces. More precisely, we want to define the so-called Gromov–
Hausdorff metric on the set of isometry classes of compact metric
spaces. (Being isometric is an equivalence relation, and an isometry
class is an equivalence class with respect to this relation.)

The obtained metric space will be denoted by GH. Given two
metric spaces X and Y, denote by [X ] and [Y] their isometry classes;
that is, X ′ ∈ [X ] if and only if X ′ iso

== X . Pedantically, the Gromov–
Hausdorff distance from [X ] to [Y] should be denoted as |[X ]− [Y]|GH;
but we will write it as |X − Y|GH and say (not quite correctly) that
|X − Y|GH is the Gromov–Hausdorff distance from X to Y. In other
words, from now on the term metric space might also stand for its
isometry class.

The metric on GH is defined as the maximal metric such that the
distance between subspaces in a metric space is not greater than the
Hausdorff distance between them. Here is a formal definition:

5.1. Definition. The Gromov–Hausdorff distance |X − Y|GH

between compact metric spaces X and Y is defined by the following
relation.

Given r > 0, we have that |X −Y|GH < r if and only if there exists
a metric space W and subspaces X ′ and Y ′ in W that are isometric
to X and Y, respectively, such that |X ′ − Y ′|HausW < r. (Here |X ′ −

53
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Y ′|HausW denotes the Hausdorff distance between sets X ′ and Y ′ in
W.)

5.2. Theorem. The set of isometry classes of compact metric spaces
equipped with Gromov–Hausdorff metric forms a metric space (which
is denoted by GH).

In other words, for arbitrary compact metric spaces X , Y, and Z,
the following conditions hold
(a) |X − Y|GH ⩾ 0;
(b) |X − Y|GH = 0 if and only if X is isometric to Y;
(c) |X − Y|GH = |Y − X |GH;
(d) |X − Y|GH + |Y − Z|GH ⩾ |X − Z|GH.

Note that (a), (c), and the if part of (b) follow directly from 5.1.
Part (d) will be proved in Section 5B. The only-if part of (b) will be
proved in Section 5C.

Recall that a·X denotes X rescaled by a factor a > 0; that is,
a·X is a metric space with the underlying set of X and the metric
defined by

|x− y|a·X := a·|x− y|X .

5.3. Exercise. Let X be a compact metric space, O be the one-point
metric space. Prove the following.
(a) |X − O|GH = 1

2 · diamX .
(b) |a·X − b·X |GH = 1

2 ·|a− b|· diamX .
(c) ι[O] = [O] for any isometry ι : GH → GH.

5.4. Exercise. Find two subsets A,B ⊂ R2 such that

|A−B|GH > |A− ι(B)|HausR2

for any isometry ι of R2.

5.5. Exercise. Let Ar be a rectangle 1 by r in the Euclidean plane
and Br be a closed line interval of length r. Show that

|Ar − Br|GH > 1
10

for all large r.

5.6. Advanced exercise. Let X and Y be compact metric spaces;
denote by X̂ and Ŷ their injective envelopes (see 3D). Show that

|X̂ − Ŷ|GH ⩽ 2·|X − Y|GH.

In other words, X 7→ X̂ defines a 2-Lipschitz map GH → GH.
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B Approximations and almost isometries

5.7. Definition. Let X and Y be two metric spaces. A relation ≈
between points in X and Y is called ε-approximation if the following
conditions hold:

⋄ For any x ∈ X there is y ∈ Y such that x ≈ y.
⋄ For any y ∈ Y there is x ∈ X such that x ≈ y.
⋄ If x ≈ y and x′ ≈ y′ for some x, x′ ∈ X and y, y′ ∈ Y, then

|x− x′|X <> |y − y′|Y
∣∣± 2·ε.

5.8. Exercise. Let X and Y be two compact metric spaces. Show
that

|X − Y|GH < ε

if and only if there is an ε-approximation between X and Y.
In other words, |X − Y|GH is the greatest lower bound of values

ε > 0 such that there is an ε-approximation between X and Y.

Proof of 5.2d. Suppose that
⋄ ≈1 is a relation between points in X and Y,
⋄ ≈2 is a relation between points in Y and Z.

Consider the relation ≈3 between points in X and Z such that x ≈3 z
if and only if there is y ∈ Y such that x ≈1 y and y ≈2 z.

It is straightforward to check that if ≈1 is an ε1-approximation and
≈2 is an ε2-approximation, then ≈3 is an (ε1 + ε2)-approximation.

Applying 5.8, we get that if

|X − Y|GH < ε1 and |Y − Z|GH < ε2,

then
|X − Z|GH < ε1 + ε2.

Hence 5.2d follows.

The following weakened version of isometry is closely related to
ε-approximations.

5.9. Definition. Let X and Y be metric spaces and ε > 0. A map1

f : X → Y is called an ε- isometry if f(X ) is an ε-net in Y and

|x− x′|X <> |f(x)− f(x′)|Y
∣∣± ε

for any x, x′ ∈ X .

5.10. Exercise. Let X and Y be compact metric spaces.
(a) If |X − Y|GH < ε, then there is a 2·ε-isometry f : X → Y.
(b) If there is an ε-isometry f : X → Y, then |X − Y|GH < ε.
1possibly noncontinuous
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C Optimal realization
Note that

|X ′ − Y ′|HausW ⩾ |X − Y|GH,

where X , Y, X ′, Y ′, and W are as in 5.1. The following proposition
states that equality holds for some choice of X ′, Y ′, and W.

5.11. Proposition. For any two compact metric spaces X and Y
there is a metric space W with subsets X ′ and Y ′ such that X ′ iso

== X ,
Y ′ iso

== Y, and
|X ′ − Y ′|HausW = |X − Y|GH.

Let us introduce the so-called appropriate functions and use them
in a reinterpretation of the Gromov–Hausdorff distance.

Suppose X , Y, X ′, Y ′, and W are as in 5.1. By passing to the
subspace X ′ ∪ Y ′ in W, we can assume that W = X ′ ∪ Y ′. Note that
in this case the metric on W is completely determined by the function
f : X × Y → R defined by

f(x, y) := |x− y|W ;

a function f that can appear this way will be called appropriate.
Note that a function f : X × Y → R is appropriate if and only if

x 7→ f(x, y) and y 7→ f(x, y) are extension functions [see 2B]; that is,
if

➊
f(x, y) + f(x, y′) ⩾ |y − y′|Y ⩾ |f(x, y)− f(x, y′)|, and
f(x, y) + f(x′, y) ⩾ |x− x′|X ⩾ |f(x, y)− f(x′, y)|

for any x, x′,∈ X and y, y′ ∈ X . In other words, the following defines
a semimetric on X ⊔ Y

|x− y|X⊔Y :=


|x− y|X if x, y ∈ X ,
|x− y|Y if x, y ∈ Y,
f(x, y) if x ∈ X and y ∈ Y,

and the corresponding metric space W contains isometric copies of X
and Y.

5.12. Observation. Let X , Y be metric spaces. Given an appropri-
ate function f : X × Y → R, set

af = max
x∈X

{min
y∈Y

{f(x, y)}},

bf = max
y∈Y

{min
x∈X

{f(x, y)}},

cf = max{ af , bf }.
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Then
|X − Y|GH = inf{ cf },

where the greatest lower bound is taken for all appropriate functions
f : X × Y → R.

Proof of 5.11. Equip the product X × Y with ℓ1-metric; that is,

|(x, y)− (x′, y′)|X×Y := |x− x′|X + |y − y′|Y

Note that any appropriate functions f : X × Y → R is 1-Lipschitz.
Let us equip the space of appropriate functions X × Y → R with

supnorm. Observe that the functional f 7→ cf is continuous. By the
Arzelà–Ascoli theorem, we can choose an appropriate function f with
minimal possible value cf . It remains to apply 5.12.

5.13. Exercise. Construct three compact metric spaces X , Y, and
Z such that for any metric space W with subsets X ′, Y ′, and Z ′ such
that X ′ iso

== X , Y ′ iso
== Y, and Z ′ iso

== Z at least one of the following
three inequalities is strict

|X ′ − Y ′|HausW ⩾ |X − Y|GH,

|Y ′ −Z ′|HausW ⩾ |Y − Z|GH,

|Z ′ −X ′|HausW ⩾ |Z − X |GH.

D Convergence

The Gromov–Hausdorff metric defines Gromov–Hausdorff conver-
gence. Namely, a sequence of compact metric spaces Xn converges
to compact metric spaces X∞ in the sense of Gromov–Hausdorff if

|Xn −X∞|GH → 0 as n→ ∞.

This convergence is more important than the metric — in all ap-
plications, we use only the topology on GH, and we do not care about
the particular value of the Gromov–Hausdorff distance between spaces.
The following observation follows from 5.10:

5.14. Observation. A sequence of compact metric spaces (Xn) con-
verges to X∞ in the sense of Gromov–Hausdorff if and only if there is
a sequence εn → 0+ and an εn-isometry fn : Xn → X∞ for each n.
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5.15. Exercise.
(a) Show that a circle is not a Gromov–Hausdorff limit of compact

simply-connected length spaces.
(b) Construct a compact non-simply-connected metric space that is

a Gromov–Hausdorff limit of compact simply-connected length
spaces.

5.16. Exercise.
(a) Show that a sequence of length metrics on the 2-sphere cannot

converge to the unit disk in the sense of Gromov–Hausdorff.
(b) Construct a sequence of length metrics on the 3-sphere that con-

verges to the unit 3-ball in the sense of Gromov–Hausdorff.

E Uniformly totally bonded families

5.17. Definition. A family Q of (isometry classes) of compact met-
ric spaces is called uniformly total ly bonded if it meets the follow-
ing two conditions:
(a) Spaces in Q have uniformly bounded diameters; that is, there is

D ∈ R such that
diamX ⩽ D

for any space X in Q.
(b) For any ε > 0 there is n ∈ N such that any space X in Q admits

an ε-net with at most n points.

5.18. Exercise. Let Q be a family of compact spaces with uniformly
bounded diameters. Show that Q is uniformly totally bonded if for any
ε > 0 there is n ∈ N such that

packε X ⩽ n

for any space X in Q.

Fix a real constant C. A Borel measure µ on a metric space X is
called C -doubling if

µ[B(p, 2·r)] < C ·µ[B(p, r)]

for any point p ∈ X and any r > 0. A Borel measure is called dou-
bl ing if it is C -doubling for some real constant C.

5.19. Exercise. Let Q(C,D) be the set of all the compact metric
spaces with diameter at most D that admit a C-doubling measure.
Show that Q(C,D) is uniformly totally bounded.
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Fix an integer constant M ⩾ 0. А metric space X is called M -
doubling if any 2·r-ball in X can be covered by M r-balls. A space
X is called doubling if it is M -doubling for some M .

Observe that a space is doubling if it admits a doubling measure.

5.20. Exercise. Given a metric space X consider family BX of all
rescaled balls 1

r ·B[x, r]X for all r > 0 and x ∈ X . Show that X is
doubling if and only if BX is uniformly totally bounded.

Given two metric spaces X and Y, we will write X ⩽ Y if there is
a distance-noncontracting map f : X → Y; that is, if

|x− x′|X ⩽ |f(x)− f(x′)|Y

for any x, x′ ∈ X .

5.21. Exercise.
(a) Let Y be a compact metric space. Show that the set of all spaces

X such that X ⩽ Y is uniformly totally bounded.
(b) Show that for any uniformly totally bounded set Q ⊂ GH there

is a compact space Y such that X ⩽ Y for any X in Q.

F Gromov selection theorem

The following theorem is analogous to Blaschke selection theorems
(4.8).

5.22. Gromov selection theorem. Let Q be a closed subset of GH.
Then Q is compact if and only if the spaces in Q are uniformly totally
bounded.

5.23. Lemma. The space GH is complete.

Suppose U and V are metric spaces with isometric closed setsA ⊂ U
and A′ ⊂ V; let ι : A → A′ be an isometry. Consider the gluing
W = U ⊔ι V of U and V along ι [see 1D].

Let us identify points of U and V with their images in W. It is
straightforward to check that the metric on W is defined by

|u− u′|W := |u− u′|U ,
|v − v′|W := |v − v′|V ,
|u− v|W := min { |u− a|U + |v − ι(a)|V : a ∈ A } ,

where u, u′ ∈ U and v, v′ ∈ V.
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If one applies this construction to two copies of one space U with a
set A ⊂ U and the identity map ι : A→ A, then the obtained space is
called the doubling of U along A; this space can be denoted by ⊔2

AU .
Note that the inclusions U ↪→ W and V ↪→ W are distance-

preserving. Therefore we can and will consider U and V as the sub-
spaces of W; this way the subsets A and A′ will be identified and
denoted further by A. Note that A = U ∩ V ⊂ W.

Proof. Let X1,X2, . . . be a Cauchy sequence in GH. Passing to a
subsequence if necessary, we can assume that |Xn − Xn+1|GH < 1

2n

for each n. In particular, for each n there is a metric space Vn with
distance-preserving inclusions Xn ↪→ Vn and Xn+1 ↪→ Vn such that

|Xn −Xn+1|HausVn <
1
2n

for each n. Moreover, we may assume that Vn = Xn ∪ Xn+1.
Let us glue V1 to V2 along X2; to the obtained space glue V3 along

X3, and so on. The obtained metric space W has an underlying set
formed by the disjoint union of all Xn such that each inclusion Xn ↪→
↪→ W is distance-preserving and

|Xn −Xn+1|HausW < 1
2n

for each n. In particular,

➊ |Xm −Xn|HausW < 1
2n−1

if m > n.
Denote by W̄ the completion of W. Observe that the union X1 ∪

∪ X2 ∪ . . . ∪ Xn is compact and ➊ implies that it forms a 1
2n−1 -net in

W̄. Whence W̄ is compact; see 1.11c and 1.13.
Applying the Blaschke selection theorem (4.8), we can pass to a

subsequence of Xn that converges in Haus W̄; denote its limit by X∞.
It remains to observe that X∞ is the Gromov–Hausdorff limit of Xn.

Proof of 5.22; only-if part. Suppose that there is no sequence εn → 0
as described in 5.17. Observe that in this case there is a sequence of
spaces Xn ∈ Q such that

packδ Xn → ∞ as n→ ∞

for some fixed δ > 0.
Since Q is compact, this sequence has a partial limit, say X∞ ∈ Q.

Observe that packδ X∞ = ∞. Therefore, X∞ is not compact — a
contradiction.
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If part. Given a positive integer n consider the set of all nonempty
metric spaces Wn with the number of points at most n and diameter
⩽ D. Note that Wn is a compact set in GH for each n.

Let D and n = n(ε) be as in the definition of uniformly totally
bonded families (5.17).

Note that an ε-net of any X ∈ Q belongs to Wn(ε). Therefore,
Wn(ε) is a compact ε-net of Q for any ε > 0. Since Q is closed in a
complete space GH, it implies that Q is compact.

5.24. Exercise. Show that most of the compact metric spaces are
homeomorphic to the Cantor set.

More precisely, suppose Q denotes all metric spaces homeomorphic
to the Cantor set. Show that Q is a dense G-delta set in GH.

5.25. Exercise. Show that the space GH is

(a) separable, (b) length, and (c) geodesic.

5.26. Exercise. For two metric spaces X and Y, we write X ⩽ Y+ε
if there is a map f : X → Y such that

|x− x′|X ⩽ |f(x)− f(x′)|Y + ε

for any x, x′ ∈ X .
(a) Show that

|X − Y|GH′ := inf { ε > 0 : X ⩽ Y + ε and Y ⩽ X + ε }

defines a metric on the space of (isometry classes of) compact
metric spaces.

(b) Moreover, |∗−∗|GH′ is equivalent to the Gromov–Hausdorff met-
ric; that is,

|Xn −X∞|GH → 0 ⇐⇒ |Xn −X∞|GH′ → 0

as n→ ∞.

G Universal ambient space

Recall that a metric space is called universal if it contains an isometric
copy of any separable metric space (in particular, any compact metric
space). Examples of universal spaces include U∞ — the Urysohn space
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and ℓ∞ — the space of bounded infinite sequences with the metric
defined by sup-norm; see 2.12 and 2.3.

The following proposition says that the space W in Definition 5.1
can be exchanged to a fixed universal space.

5.27. Proposition. Let U be a universal space. Then for any com-
pact metric spaces X and Y we have

|X − Y|GH = inf{|X ′ − Y ′|HausU},

where the greatest lower bound is taken over all pairs of sets X ′ and
Y ′ in U that are isometric to X and Y, respectively.

Proof of 5.27. By the definition (5.1), we have that

|X − Y|GH ⩽ inf{|X ′ − Y ′|HausU};

it remains to prove the opposite inequality.
Suppse |X − Y|GH < ε; let X ′, Y ′ and W be as in 5.1. We can

assume that W = X ′ ∪ Y ′; otherwise, pass to the subspace X ′ ∪ Y ′

of W. In this case, W is compact; in particular, it is separable.
Since U is universal, there is a distance-preserving embedding of

W in U ; let us keep the same notation for X ′, Y ′, and their images.
It follows that

|X ′ − Y ′|HausU < ε,

— hence the result.

5.28. Exercise. Let U∞ be the Urysohn space. Given two compact
sets A and B in U∞, define

∥A−B∥ := inf{|A− ι(B)|HausU∞},

where the greatest lower bound is taken for all isometrics ι of U∞.
Show that ∥∗ − ∗∥ defines a semimetric on nonempty compact subsets
of U∞ and its corresponding metric space is isometric to GH.

The value ∥A− B∥ is called Hausdorff distance up to isometry
from A to B in U∞.

H Remarks
Suppose Xn

GH−−→ X∞, then there is a metric on the disjoint union

X =
⊔

n∈N∪{∞}

Xn



H. REMARKS 63

that satisfies the following property:

5.29. Property. The restriction of metric on each Xn and X∞ co-
incides with its original metric, and Xn

H−→ X∞ as subsets in X.

Indeed, since Xn
GH−−→ X∞, there is a metric on Vn = Xn ⊔X∞ such

that the restriction of metric on each Xn and X∞ coincides with its
original metric, and |Xn −X∞|HausVn

< εn for some sequence εn → 0.
Gluing all Vn along X∞, we get the required space X.

In other words, the metric on X defines the convergence Xn
GH−−→

GH−−→ X∞. This metric makes it possible to talk about limits of se-
quences xn ∈ Xn as n → ∞, as well as weak limits of a sequence of
Borel measures µn on Xn and so on.

For that reason, it is useful to define convergence by specify-
ing the metric on X that satisfies the property for the variation of
Hausdorff convergence described in Section 4D.

This approach is more flexible; in particular, it can be used to define
the Gromov–Hausdorff convergence of arbitrary metric spaces (not
necessarily compact). A limit space for this generalized convergence
is not uniquely defined. For example, if each space Xn in the sequence
is isometric to the half-line, then its limit might be isometric to the
half-line or the whole line. The first convergence is evident and the
second could be guessed from the diagram.

X1

X2

. . .

X∞

Often the isometry class of the limit can be fixed by marking a
point pn in each space Xn, it is called pointed Gromov–Hausdorff
convergence — we say that (Xn, pn) converges to (X∞, p∞) if there
is a metric on X as in 5.29 such that Xn

H−→ X∞ and pn → p∞. For
example, the sequence (Xn, pn) = (R+, 0) converges to (R+, 0), while
(Xn, pn) = (R+, n) converges to (R, 0).

The pointed convergence works nicely for proper metric spaces; the
following theorem is an analog of Gromov’s selection theorem for this
convergence.

5.30. Theorem. Let Q be a set of isometry classes of pointed proper
metric spaces. Assume that for any R > 0, the R-balls in the spaces
centered at the marked points form a uniformly totally bounded family
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of spaces. Then Q is precompact with respect to the pointed Gromov–
Hausdorff convergence.

Let us mention a characterization of doubling spaces discovered by
Patrice Assouad [13], [72, 12.2].

Given a metric space X , denote by X θ a space with the same
underlying set and the metric defined by

|x− y|X θ := |x− y|θX ;

here we assume that 0 < θ < 1. The space X θ is called snowflake
of X .

5.31. Theorem. Suppose 0 < θ < 1. A metric space X is doubling if
and only if its snowflake X θ admits a bi-Lipschitz embedding in some
Euclidean space.



Lecture 6

Ultralimits

Ultralimits provide a very general way to pass to a limit. This proce-
dure works for any sequence of metric spaces, its result reminds limit
in the sense of Gromov–Hausdorff, but has some strange features; for
example, the limit of a constant sequence of spaces Xn = X is not X
in general (see 6.13b).

In geometry, ultralimits are used mostly as a canonical way to pass
to a convergent subsequence. It is very useful in the proofs where one
needs to repeat “pass to convergent subsequence” too many times.

This lecture is based on the introductory part of the paper by Bruce
Kleiner and Bernhard Leeb [85].

A Faces of ultrafilters

Measure-theoretic definition. Recall that N = {1, 2, . . . } is the set
of natural numbers.

6.1. Definition. A finitely additive measure ω on N is called an
ultrafi l ter if it meets the following condition:
(a) ω(N) = 1 and ω(S) = 0 or 1 for any subset S ⊂ N.

An ultrafilter ω is called nonprincipal if in addition
(b) ω(F ) = 0 for any finite subset F ⊂ N.

If ω(S) = 0 for some subset S ⊂ N, we say that S is ω -small. If
ω(S) = 1, we say that S contains ω -almost al l elements of N.

6.2. Advanced exercise. Let ω be an ultrafilter on N and f : N →
→ N. Suppose that ω(S) ⩽ ω(f−1(S)) for any set S ⊂ N. Show that
f(n) = n for ω-almost all n ∈ N.

65
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Classical definition. More commonly, a nonprincipal ultrafilter is
defined as a collection, say F, of subsets in N such that

1. if P ∈ F and Q ⊃ P , then Q ∈ F,
2. if P,Q ∈ F, then P ∩Q ∈ F,
3. for any subset P ⊂ N, either P or its complement is an element

of F.
4. if F ⊂ N is finite, then F /∈ F.

Setting P ∈ F ⇔ ω(P ) = 1 makes these two definitions equivalent.
A nonempty collection of sets F that does not include the empty set

and satisfies only conditions 1 and 2 is called a fi lter; if, in addition, F
satisfies condition 3, it is called an ultrafi lter. From Zorn’s lemma,
it follows that every filter contains an ultrafilter. Thus there is an
ultrafilter F contained in the filter of all complements of finite sets.
Clearly, this ultrafilter F is nonprincipal.

Stone–Čech compactification. Given a set S ⊂ N, consider subset
ΩS of all ultrafilters ω such that ω(S) = 1. It is straightforward to
check that the sets ΩS for all subsets S ⊂ N form a topology on the
set of ultrafilters on N. The obtained space was first considered by
Andrey Tikhonov and called Stone–Čech compacti fication of N;
it is usually denoted as βN.

Let ωn be a principal ultrafilter such that ωn({n}) = 1; that is,
ωn(S) = 1 if and only if n ∈ S. Note that n 7→ ωn defines an embed-
ding N ↪→ βN; so, we can (and will) consider N as a subset of βN.

The space βN is the maximal compact Hausdorff space that con-
tains N as an everywhere dense subset. More precisely, the inclusion
N ↪→ βN has the following universal property: for any compact Haus-
dorff space X and a map f : N → X there is a unique continuous map
f̄ : βN → X such that the restriction f̄ |N coincides with f .

B Ultralimits of points

Let us fix a nonprincipal ultrafilter ω once and for all.
Assume xn is a sequence of points in a metric space X . Let us

define the ω - l imit of a sequence x1, x2, . . . as the point xω ∈ X such
that for any ε > 0, point xn lies in B(xω, ε) for ω-almost all n; that is,
if

Sε = {n ∈ N : |xω − xn| < ε } ,

then ω(Sε) = 1 for any ε > 0. In this case, we will write

xω = lim
n→ω

xn or xn → xω as n→ ω.
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For example, if ωn is the principal ultrafilter defined by ωn{n} = 1
for some n ∈ N, then xωn

= xn.
The sequence xn can be regarded as a map N → X defined by

n 7→ xn. If X is compact, then the map N → X can be extended to
a continuous map βN → X from the Stone–Čech compactification βN
of N. Then the ω-limit xω is the image of ω.

Note that the ω-limits of a sequence and its subsequence may differ.
For example, sequence yn = −(−1)n is a subsequence of xn = (−1)n,
but for any ultrafilter ω, we have

lim
n→ω

xn ̸= lim
n→ω

yn.

6.3. Proposition. Let xn be a sequence of points in a metric space
X . Assume xn → xω as n → ω. Then xω is a partial l imit of xn;
that is, there is a subsequence of xn that converges to xω in the usual
sense.

Proof. Given ε > 0, let Sε = {n ∈ N : |xn − xω| < ε }. Recall that
ω(Sε) = 1 for any ε > 0.

Since ω is nonprincipal, the set Sε is infinite for any ε > 0. There-
fore, we can choose an increasing sequence nk such that nk ∈ S 1

k
for

each k ∈ N. Clearly, xnk
→ xω as k → ∞.

6.4. Proposition. Any sequence xn of points in a compact metric
space X has a unique ω-limit xω.

In particular, a bounded sequence of real numbers has a unique
ω-limit.

The proposition is analogous to the Bolzano–Weierstrass theorem,
and it can be proved the same way. The following lemma is an ultra-
limit analog of the Cauchy convergence test.

6.5. Lemma. A sequence of points in a metric space converges if and
only if all its subsequences have the same ω-limit.

Proof. The only-if part is evident; it remains to prove the if part.
Suppose z is a ω-limit of all subsequences of x1, x2, . . . By 6.3, z is
a partial limit of xn. If x1, x2, . . . is Cauchy, then xn → z, and the
lemma is proved.

Assume x1, x2, . . . is not Cauchy. Then for some ε > 0, there is
a subsequence yn of xn such that |xn − yn| ⩾ ε for all n. Therefore
|xω − yω| ⩾ ε — a contradiction.

Recall that ℓ∞ denotes the space of bounded sequences of real
numbers equipped with the sup-norm.
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6.6. Exercise. Construct a linear functional L : ℓ∞ → R such that
for any sequence s = (s1, s2, . . . ) ∈ ℓ∞ the image L(s) is a partial
limit of s1, s2, . . .

6.7. Exercise. Suppose that f : N → N is a map such that

lim
n→ω

xn = lim
n→ω

xf(n)

for any bounded sequence xn of real numbers. Show that f(n) = n for
ω-almost all n ∈ N.

C An illustration
In this section, we illustrate the power of ultralimits by proving the
following simple claim.

6.8. Claim. Let X and Y be compact spaces. Suppose that for every
n ∈ N there is a 1

n -isometry fn : X → Y. Then there is an isometry
X → Y.

Proof. Consider the ω-limit fω of fn; according to 6.4, fω is defined.
Since

|fn(x)− fn(x
′)| ≶ |x− x′| ± 1

n

we get that
|fω(x)− fω(x

′)| = |x− x′|

for any x, x′ ∈ X ; that is, fω is distance-preserving.
Further, since fn is a 1

n -isometry, for any y ∈ Y there is a sequence
x1, x2, · · · ∈ X such that |fn(xn)− y| ⩽ 1

n for any n. Therefore,

fω(xω) = y,

where xω is the ω-limit of xn; that is, fω is onto.
It follows that fω : X → Y is an isometry.

D Ultralimits of spaces
Recall that ω is a fixed nonprincipal ultrafilter on N.

Let Xn be a sequence of metric spaces. Consider all sequences
of points xn ∈ Xn. On the set of all such sequences, define an ∞-
semimetric by

➊ |(xn)− (yn)| := lim
n→ω

|xn − yn|Xn
.
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Note that the ω-limit on the right-hand side is always defined and takes
a value in [0,∞]. (The ω-convergence to ∞ is defined analogously to
the usual convergence to ∞; that is, limxn = ∞ ⇐⇒ lim 1

xn
= 0).

Let Xω be the corresponding metric space; that is, the underlying
set of Xω is formed by classes of equivalence of sequences of points
xn ∈ Xn defined by

(xn) ∼ (yn) ⇔ lim
n→ω

|xn − yn| = 0

and the distance is defined by ➊.
The space Xω is called the ω - l imit of Xn. (It is also called ω -

product; this term is motivated by the fact that Xω is a quotient of
the product

∏
Xn) Typically Xω will denote the ω-limit of sequence

Xn; we may also write

Xn → Xω as n→ ω, or Xω = lim
n→ω

Xn.

Given a sequence xn ∈ Xn, we will denote by xω its equivalence
class which is a point in Xω; it can be written as

xn → xω as n→ ω, or xω = lim
n→ω

xn.

6.9. Observation. The ω-limit of any sequence of metric spaces is
complete.

We will repeat the proof of 1.9 using a slightly different language.

Proof. Let Xn be a sequence of metric spaces and Xn → Xω as n→ ω.
Choose a Cauchy sequence x1, x2, . . . ∈ Xω. Passing to a subsequence,
we can assume that |xk − xm|Xω

< 1
k if k < m.

Choose a double sequence xn,m ∈ Xn such that for any fixed m we
have xn,m → xm as n → ω. Note that for any k < m the inequality
|xn,k − xn,m| < 1

k holds for ω-almost all n.
Given m ∈ N, consider the subset Sm ⊂ N defined by

Sm =
{
n ⩾ m : |xn,k − xn,l| < 1

k for all k < l ⩽ m
}
.

Note that
⋄ N = S1 ⊃ S2 ⊃ . . .
⋄ ω(Sm) = 1 for each m, and
⋄ minSm ⩾ m.
Consider the sequence yn = xn,m(n), where m(n) is the largest

value such that n ∈ Sm(n); from above, m(n) ⩽ n. Denote by yω ∈ Xω

the ω-limit of yn.
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Observe that |ym − xn,m| < 1
m for ω-almost all n. It follows that

|xm − yω| ⩽ 1
m for any m. Therefore, xn → yω as n → ∞. That is,

any Cauchy sequence in Xω converges.

6.10. Observation. The ω-limit of any sequence of length spaces is
geodesic.

Proof. If Xn is a sequence of length spaces, then for any sequence of
pairs xn, yn ∈ Xn there is a sequence of 1

n -midpoints zn.
Let xn → xω, yn → yω and zn → zω as n → ω. Note that zω is a

midpoint of xω and yω in Xω.
By 6.9, Xω is complete. Applying Menger’s lemma (1.27), we get

the statement.

6.11. Exercise. Show that an ultralimit of metric trees is a metric
tree.

6.12. Exercise. Suppose that X∞ and X1,X2, . . . are compact metric
spaces. Assume Xn

GH−−→ X∞. Show that Xω
iso
== X∞.

Pointed limit. If diamXn → ∞ as n → ω, then the metric on Xω

takes value ∞; so Xω has at least two metric components.
To specify a metric component in Xω, we may choose a sequence

of marked points pn in Xn, and pass to the metric component of its
ω-limit pω in Xω. The obtained metric component Z = (Xω)pω with
marked pω is called the pointed ω - l imit of (Xn, pn). Note that Z is
a genuine metric space.

If, in the definition of ultralimit, we consider only sequences xn ∈
∈ Xn with such that |pn − xn| is bounded, then arrive at Z.

For proper metric spaces, there is a relation between the pointed
ultralimit and the pointed Gromov–Hausdorff limit introduced in 5H.
Namely, if (X∞, p∞) and (X1, p1), (X2, p2), . . . are proper pointed met-
ric spaces such that (Xn, pn)

GH−−→ (X∞, p∞) as defined in 5H, then
(X∞, p∞) is isometric to the pointed ω-limit of (Xn, pn). The proof is
the same as for 6.12.

E Ultrapower
If all the metric spaces in the sequence are identical Xn = X , its ω-
limit limn→ω Xn is denoted by Xω and called ω -power of X (also
known as ω -completion).

6.13. Exercise. For any point x ∈ X , consider the constant sequence
xn = x and set ι(x) = limn→ω xn ∈ Xω.



E. ULTRAPOWER 71

(a) Show that ι : X → Xω is distance-preserving embedding. (So we
can and will consider X as a subset of Xω.)

(b) Show that ι is onto if and only if X is compact.
(c) Show that if X is proper, then ι(X ) forms a metric component

of Xω; that is, a subset of Xω that lies at a finite distance from
a given point.

If X is a genuine metric space, then the metric component of X in
Xω is also called the ultrapower of X ; if needed, we may call it the
small ultrapower, and the whole space Xω could be called the big
ultrapower of X . Note that the small ultrapower of genuine metric
space is a genuine metric space. Further, according to (c), proper
metric space is isometric to its small ultrapower.

Note that (b) implies that the inclusion X ↪→ Xω is not onto if
the space X is not compact. However, the spaces X and Xω might be
isometric; here is an example:

6.14. Exercise. Let X be an infinite countable set with discrete
metric; that is |x− y|X = 1 if x ̸= y. Show that
(a) Xω is not isometric to X , but
(b) Xω is isometric to (Xω)ω.

6.15. Exercise. Given a nonprincipal ultrafilter ω, construct an ul-
trafilter ω1 such that

Xω1
iso
== (Xω)ω

for any metric space X .

6.16. Observation. Let X be a complete metric space. Then Xω is
geodesic space if and only if X is a length space.

Proof. The if part follows from 6.10; it remains to prove the only-if
part

Assume Xω is geodesic. Then any pair of points x, y ∈ X has a
midpoint zω ∈ Xω. Fix a sequence of points zn ∈ X such that zn → zω
as n→ ω.

Note that |x − zn|X → 1
2 ·|x − y|X and |y − zn|X → 1

2 ·|x − y|X as
n → ω. In particular, for any ε > 0, the point zn is an ε-midpoint
of x and y for ω-almost all n. It remains to apply Menger’s lemma
(1.27).

6.17. Exercise. Assume X is a complete length space and p, q ∈ X
cannot be joined by a geodesic in X . Show that there is at least a
continuum of distinct geodesics between p and q in the ultrapower Xω.

6.18. Exercise. Construct a proper metric space X such that its big
ultrapower Xω is not locally compact.
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F Tangent and asymptotic spaces
Choose a space X and a sequence λn of positive numbers. Consider
the sequence of rescal ings Xn = λn ·X = (X , λn ·|∗ − ∗|X ).

Choose a point p ∈ X and denote by pn the corresponding point
in Xn. Consider the ω-limit Xω of Xn (one may denote it by λω ·X );
set pω to be the ω-limit of pn.

If λn → ∞ as n → ω, then the metric component of pω in Xω

is called λω -tangent space at p and denoted by Tλω
p X (or Tω

pX if
λn = n).

If λn → 0 as n→ ω, then the metric component of pω is called λω -
asymptotic space1 and denoted by AsymX or Asymλω X . Note
that the space AsymX and its point pω do not depend on the choice
of p ∈ X .

The following exercise states that the constructions above depend
on the sequence λn and a nonprincipal ultrafilter ω.

6.19. Exercise. Construct a metric space X with a point p such that
the tangent space Tλω

p X (or its asymptotic cone Asymλω X ) depends
on the sequence λn and/or ultrafilter ω.

For nice spaces, different choices of the sequence of coefficients and
ultrafilter may give the same space; some examples are given in the
following exercise.

6.20. Exercise. Let T = AsymL, where L is one of the following
spaces

(i) Lobachevsky plane,
(ii) Lobachevsky space, or
(iii) 3-regular metric tree; that is, the degree of any vertex. Assume

that each edge has unit length.
(a) Show that T is a complete metric tree.
(b) Show that T is one-point-homogeneous; that is, given two points

s, t ∈ T there is an isometry of T that maps s to t.
(c) Show that T has continuum degree at any point; that is, for

any point t ∈ T the set of connected components of the comple-
ment T \ {t} has cardinality continuum.

6.21. Exercise. Consider the cylinder S1 × [0, 1] with the standard
metric. Let X be the quotient space S1 × [0, 1]/S1 × {0}; that is,

|(u1, t1)− (u2, t2)|X := min{ |(u1, t1)− (u2, t2)|S1×[0,1], t1 + t2 }.

Describe the ultratangent space Tω
oX , where o ∈ X is the point that

corresponds to S1 × {0}.
1Often it is called an asymptotic cone despite that it is not a cone in general;

this name is used since in good cases it has a cone structure.
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G Remarks
A nonprincipal ultrafilter ω is called selective if for any partition of
N into sets {Cα}α∈A such that ω(Cα) = 0 for each α, there is a set
S ⊂ N such that ω(S) = 1 and S ∩ Cα is a one-point set for each
α ∈ A.

The existence of a selective ultrafilter follows from the continuum
hypothesis [120].

If needed, we may assume that the chosen ultrafilter ω is selective.
In this case, the subsequence (xn)n∈S in 6.3 can be chosen so that
ω(S) = 1.
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Part II

Alexandrov geometry
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Lecture 7

Introduction

A Manifesto
Alexandrov geometry can use “back to Euclid” as a slogan. Alexan-
drov spaces are defined via axioms similar to those given by Euclid,
but certain equalities are changed to inequalities. Depending on the
sign of the inequalities, we get Alexandrov spaces with curvature
bounded above or curvature bounded below. The definitions
of the two classes of spaces are similar, but their properties and known
applications are quite different.

Consider the space M4 of all isometry classes of 4-point metric
spaces. Each element in M4 can be described by 6 numbers — the
distances between all 6 pairs of its points, say ℓi,j for 1 ⩽ i < j ⩽ 4
modulo permutations of the index set (1, 2, 3, 4). These 6 numbers are
subject to 12 triangle inequalities; that is,

ℓi,j + ℓj,k ⩾ ℓi,k

holds for all i, j and k, where we assume that ℓj,i = ℓi,j and ℓi,i = 0.
The space M4 comes with topology. It can defined as a quotient of

the cone in R6 by permutations of the 4 points of the space. And, the
same topology is induced on M4 by the Gromov–Hausdorff metric.

M4

E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4 P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4P4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4

Consider the subset E4 ⊂ M4 of all isome-
try classes of 4-point metric spaces that admit
isometric embeddings into Euclidean space.

7.1. Claim. The complement M4 \ E4 has
two connected components.

A proof of the claim can be extracted
from 7.7.

77
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The definition of Alexandrov spaces is based on this claim. Let
us denote one of the components by P4 and the other by N4. Here P
and N stand for posit ive and negative curvature because spheres
have no quadruples of type N4 and hyperbolic space has no quadruples
of type P4.

A metric space, with length metric, that has no quadruples of
points of type P4 or N4 respectively is called an Alexandrov space
with non-positive (CAT(0)) or non-negative curvature (CBB(0)).

Let us describe the subdivision into P4, E4,
and N4 intuitively. Imagine that you move out
of E4 — your path is a one-parameter family
of 4-point metric spaces. The last thing you
see in E4 is one of the two plane configurations
shown on the diagram. If you see the left configuration then you move
into N4; if it is the one on the right, then you move into P4. More
degenerate pictures can be avoided; for example, a triangle with a
point on a side. From such a configuration one may move in N4 and
P4 (as well as come back to E4).

Here is an exercise, solving which would force you to rebuild a
considerable part of Alexandrov geometry. It might be helpful to spend
some time thinking about this exercise before proceeding.

7.2. Advanced exercise. Assume X is a complete metric space with
length metric, containing only quadruples of type E4. Show that X is
isometric to a convex set in a Hilbert space.

In the definition above, instead of Euclidean space one can take hy-
perbolic space of curvature −1. In this case, one obtains the definition
of spaces with curvature bounded above or below by −1 (CAT(−1) or
CBB(−1)).

To define spaces with curvature bounded above or below by 1
(CAT(1) or CBB(1)), one has to take the unit 3-sphere and specify
that only the quadruples of points such that each of the four triangles
has perimeter less than 2·π are checked. The latter condition could
be considered as a part of the spherical tr iangle inequality.

B Triangles, hinges and angles

Let X be a metric space.

Triangles. For a triple of points p, q, r ∈ X , a choice of a triple of
geodesics ([qr], [rp], [pq]) will be called a triangle; we will use the
short notation [pqr] = [pqr]X = ([qr], [rp], [pq]).
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Given a triple p, q, r ∈ X there may be no triangle [pqr] simply
because one of the pairs of these points cannot be joined by a geodesic.
Also, many different triangles with these vertices may exist, any of
which can be denoted by [pqr]. However, if we write [pqr], it means
that we have made a choice of such a triangle; that is, we have fixed a
choice of the geodesics [qr], [rp], and [pq].

The value
|p− q| + |q − r| + |r − p|

will be called the perimeter of the triangle [pqr].

Model triangles.Given three points p, q, r in a metric space X , let
us define the model triangle [p̃q̃r̃] (briefly, [p̃q̃r̃] = △̃(pqr)E2) to be
a triangle in the Euclidean plane E2 such that

|p̃− q̃|E2 = |p− q|X ,
|q̃ − r̃|E2 = |q − r|X ,
|r̃ − p̃|E2 = |r − p|X .

In the same way we can define the hyperbol ic and the spher-
ical model triangles △̃(pqr)H2 , △̃(pqr)S2 in the hyperbolic plane
H2 and the unit sphere S2. In the latter case the model triangle is said
to be defined if in addition

|p− q| + |q − r| + |r − p| < 2·π.

In this case, the model triangle again exists and is unique up to an
isometry of S2.

Model angles. If [p̃q̃r̃] = △̃(pqr)E2 and |p− q|, |p− r| > 0, the angle
measure of [p̃q̃r̃] at p̃ will be called the model angle of the triple p, q,
r and will be denoted by ∡̃(p q

r)E2 . In the same way we define ∡̃(p q
r)H2

and ∡̃(p q
r)S2 ; in the latter case we assume in addition that the model

triangle △̃(pqr)S2 is defined.
We may use the notation ∡̃(p q

r) if it is evident which of the model
spaces H2, E2 or S2 is meant.

Hinges. Let p, x, y ∈ X be a triple of points such that p is distinct
from x and y. A pair of geodesics ([px], [py]) will be called a hinge
and will be denoted by [p x

y ] = ([px], [py]).

x

y
ȳ

x̄

p

Angles. Given a hinge [p x
y ], we define its angle as

the limit

➊ ∡[p x
y ] := lim

x̄,ȳ→p
∡̃(p x̄

ȳ),
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where x̄ ∈ ]px] and ȳ ∈ ]py]. The angle ∡[p x
y ] is

defined if the limit exists.
It is straightforward to check that in ➊, one can use ∡̃(p x̄

ȳ)S2 or
∡̃(p x̄

ȳ)H2 or ∡̃(p x̄
ȳ)E2 , the result will be the same.

7.3. Exercise. Give an example of a hinge [p x
y ] in a metric space

with undefined angle ∡[p x
y ].

7.4. Exercise. Suppose that for three geodesics [px], [py], and [pz]
in a metric space, the angles α = ∡[p x

y ], β = ∡[p y
z ], and γ = ∡[p z

x]
are defined. Show that α, β and γ satisfy all triangle inequalities:

α ⩽ β + γ, β ⩽ γ + α, γ ⩽ α+ β,

C Definitions

Curvature bounded above. Given a quadruple of points p, q, x, y
in a metric space X , consider two model triangles [p̃x̃ỹ] = △̃(pxy)E2

and [q̃x̃ỹ] = △̃(qxy)E2 with common side [x̃ỹ].

x̃

ỹ
z̃

p̃

q̃If the inequality

|p− q|X ⩽ |p̃− z̃|E2 + |z̃ − q̃|E2

holds for any point z̃ ∈ [x̃ỹ], then we say that the
quadruple p, q, x, y satisfies CAT(0) comparison.

If we do the same for spherical model triangles [p̃x̃ỹ] = △̃(pxy)S2
and [q̃x̃ỹ] = △̃(qxy)S2 , then we arrive at the definition of CAT(1)
comparison. If one of the spherical model triangles is undefined,1 then
it is assumed that CAT(1) comparison automatically holds for this
quadruple.

We can do the same for the model plane of curvature κ; that is,
a sphere if κ > 0, Euclidean plane if κ = 0 and Lobachevsky plane if
κ < 0. In this case, we arrive at the definition of CAT(κ) comparison.
However we will mostly consider CAT(0) comparison and occasionally
CAT(1) comparison; so, if you see CAT(κ), you can assume that κ is
0 or 1.

1That is, if

|p− x| + |p− y| + |x− y| ⩾ 2·π or |q − x| + |q − y| + |x− y| ⩾ 2·π.
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If all quadruples in a metric space X satisfy CAT(κ) comparison,
then we say that the space X is CAT(κ) (we use CAT(κ) as an adjec-
tive).

Here CAT is an acronym for Cartan, Alexandrov, and Toponogov,
but usually pronounced as “cat” in the sense of “miauw”. The term
was coined by Mikhael Gromov in 1987. Originally, Alexandrov called
these spaces Rκ domain; this term is still in use.

7.5. Exercise. Show that a metric space X is CAT(0) if and only if
for any quadruple of points p, q, x, y in X there is a quadruple p̃, q̃, x̃, ỹ
in E2 such that

|p̃− q̃| = |p− q|, |x̃− ỹ| = |x− y|,
|p̃− x̃| ⩽ |p− x|, |p̃− ỹ| ⩽ |p− y|,
|q̃ − x̃| ⩽ |q − x|, |q̃ − ỹ| ⩽ |q − y|.

Curvature bounded below. If the inequality

∡̃(p x
y)E2 + ∡̃(p y

z)E2 + ∡̃(p z
x)E2 ⩽ 2·π

holds for points p, x, y, z in a metric space X , then we say that the
quadruple p, x, y, z satisfies CBB(0) comparison.

If we do the same for spherical or hyperbolic model angles, then
we arrive at the definition of CBB(1) or CBB(−1) comparison. Here
CBB(κ) is an abbreviation of curvature bounded below by κ.
If one of one of the model angles is undefined, then we assume that
CBB(1) comparison automatically holds for this quadruple.

We can do the same for the model plane of curvature κ. In this case
we arrive at the definition of CAT(κ) comparison. But we will mostly
consider CBB(0) comparison and occasionally CBB(1) comparison; so,
if you see CBB(κ), you can assume that κ is 0 or 1.

If all quadruples in a metric space X satisfy CBB(κ) comparison,
then we say that the space X is CBB(κ). (Again — CBB(κ) is an
adjective.)

7.6. Exercise. Show that a metric space X is CBB(0) if and only
if for any quadruple of points p, x, y, z ∈ X , there is a quadruple of
points p̃, x̃, ỹ, z̃ ∈ E2 such that

|p− x|X = |p̃− x̃|E2 , |p− y|X = |p̃− ỹ|E2 , |p− z|X = |p̃− z̃|E2 ,

|x− y|X ⩽ |x̃− ỹ|E2 , |y − z|X ⩽ |ỹ − z̃|E2 , |z − x|X ⩽ |z̃ − x̃|E2

for all i and j.
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7.7. Exercise. Suppose that a quadruple of points satisfies CAT(0)
and CBB(0) for all labeling. Show that the quadruple is isometric to
a subset of Euclidean space.

Observe that in order to check CAT(κ) or CBB(κ) comparison, it
is sufficient to know the 6 distances between all pairs of points in the
quadruple. This observation implies the following.

7.8. Proposition. Any Gromov–Hausdorff limit (as well as ultra
limit) of a sequence of CAT(κ) or CBB(κ) spaces is CAT(κ) or CBB(κ)
respectively.

In the proposition above, it does not matter which definition of con-
vergence for metric spaces you use, as long as any quadruple of points
in the limit space can be arbitrarily well approximated by quadruples
in the sequence of metric spaces.

D Products and cones

Given two metric spaces U and V, the product space U×V is defined
as the set of all pairs (u, v) where u ∈ U and v ∈ V with the metric
defined by formula

|(u1, v1)− (u2, v2)|U×V =
√
|u1 − u2|2U + |v1 − v2|2V .

7.9. Proposition. Let U and V be CAT(0) spaces. Then the product
space U × V is CAT(0).

Proof. Fix a quadruple in U × V:

p = (p1, p2), q = (q1, q2), x = (x1, x2), y = (y1, y2).

For the quadruple p1, q1, x1, y1 in U , construct two model triangles
[p̃1x̃1ỹ1] = △̃(p1x1y1)E2 and [q̃1x̃1ỹ1] = △̃(q1x1y1)E2 . Similarly, for
the quadruple p2, q2, x2, y2 in V construct two model triangles [p̃2x̃2ỹ2]
and [q̃2x̃2ỹ2].

Consider four points in E4 = E2 × E2

p̃ = (p̃1, p̃2), q̃ = (q̃1, q̃2), x̃ = (x̃1, x̃2), ỹ = (ỹ1, ỹ2).

Note that the triangles [p̃x̃ỹ] and [q̃x̃ỹ] in E4 are isometric to the model
triangles △̃(pxy)E2 and △̃(qxy)E2 .
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If z̃ = (z̃1, z̃2) ∈ [x̃ỹ], then z̃1 ∈ [x̃1ỹ1] and z̃2 ∈ [x̃2ỹ2] and

|z̃ − p̃|2E4 = |z̃1 − p̃1|2E2 + |z̃2 − p̃2|2E2 ,

|z̃ − q̃|2E4 = |z̃1 − q̃1|2E2 + |z̃2 − q̃2|2E2 ,

|p− q|2U×V = |p1 − q1|2U + |p2 − q2|2V .

Therefore CAT(0) comparison for the quadruples p1, q1, x1, y1 in U
and p2, q2, x2, y2 in V implies CAT(0) comparison for the quadruples
p, q, x, y in U × V.

7.10. Exercise. Assume U and V are CBB(0) spaces. Show that the
product space U × V is CBB(0).

The cone V = ConeU over a metric space U is defined as the
metric space whose underlying set consists of equivalence classes in
[0,∞) × U with the equivalence relation “∼” given by (0, p) ∼ (0, q)
for any points p, q ∈ U , and whose metric is given by the cosine rule

|(p, s)− (q, t)|V =
√
s2 + t2 − 2·s·t· cosα,

where α = min{π, |p− q|U}.
The point in the cone V formed by the equivalence class of 0×U is

called the tip of the cone and is denoted by 0 or 0V . The distance
|0−v|V is called the norm of v and is denoted by |v| or |v|V . The space
U can be identified with the subset x ∈ V such that |x| = 1.

The points in the cone V can be multiplied by a real number λ ⩾ 0;
namely, if x = (x′, r), then λ·x := (x′, λ·r).

7.11. Proposition. Let U be a metric space. Then ConeU is CAT(0)
if and only if U is CAT(1).

Proof; if part. Given a point x ∈ ConeU , denote by x′ its projection
to U and by |x| the distance from x to the tip of the cone; if x is the
tip, then |x| = 0 and we can take any point of U as x′.

Let p, q, x, y be a quadruple in ConeU . Assume that the spherical
model triangles [p̃′x̃′ỹ′]S2 = △̃(p′x′y′)S2 and [q̃′x̃′ỹ′]S2 = △̃(q′x′y′)S2
are defined. Consider the following points in E3 = ConeS2:

p̃ = |p|·p̃′, q̃ = |q|·q̃′, x̃ = |x|·x̃′, ỹ = |y|·ỹ′.

Note that [p̃x̃ỹ]E3
iso
== △̃(pxy)E2 and [q̃x̃ỹ]E3

iso
== △̃(qxy)E2 . Further

note that if z̃ ∈ [x̃ỹ]E3 , then z̃′ = z̃/|z̃| lies on the geodesic [x̃′ỹ′]S2 .
Therefore the CAT(1) comparison for |p′−q′| with z̃′ ∈ [x̃′ỹ′]S2 implies
the CAT(0) comparison for |p− q| with z̃ ∈ [x̃ỹ]E3 .
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If at least one of the model triangles △̃(p′x′y′)S2 and △̃(q′x′y′)S2
is undefined, then the statement follows from the triangle inequalities

|p′ − x′|U + |q′ − x′|U ⩾ |p′ − q′|U
|p′ − y′|U + |q′ − y′|U ⩾ |p′ − q′|U

This case is left as an exercise.

Only-if part. Suppose that p̃′, q̃′, x̃′, ỹ′ are defined as above. Assume
all these points lie in a half-space of E3 = Cone S2 with origin at its
boundary. Then we can choose positive values a, b, c, and d such
that the points a·p̃′, b·q̃′, c·x̃′, d·ỹ′ lie in one plane. Consider the
corresponding points a·p′, b·q′, c·x′, d·y′ in ConeU . Applying the
CAT(0) comparison for these points leads to CAT(1) comparison for
the quadruple p′, q′, x′, y′ in U .

It remains to consider the case when p̃′, q̃′, x̃′, ỹ′ do not in a half-
space. Fix z̃′ ∈ [x̃′ỹ′]S2 . Observe that

|p̃′ − x̃′|S2 + |q̃′ − x̃′|S2 ⩽ |p̃′ − z̃′|S2 + |q̃′ − z̃′|S2

or

|p̃′ − ỹ′|S2 + |q̃′ − ỹ′|S2 ⩽ |p̃′ − z̃′|S2 + |q̃′ − z̃′|S2 .

That is, in this case, the CAT(1) comparison follows from the triangle
inequality.

E Geodesics

7.12. Proposition. Let X be a complete length CAT(0) space. Then
any two points in X are joint by a unique geodesic.

Proof. Fix two points x, y ∈ X . Choose a sequence of approximate
midpoints pn for x and y; that is,

➊ |x− pn| → 1
2 ·|x− y| and |y − pn| → 1

2 ·|x− y|

as n→ ∞.
Consider model triangles [p̃nx̃ỹ] = △̃(pnxy). Let z̃ be the midpoint

of x̃ and ỹ. By ➊, we have that

|p̃n − z̃| → 0

as n→ ∞.
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By CAT(0) comparison,

|pn − pm|X ⩽ |p̃n − z̃| + |p̃m − z̃|.

Therefore |pn−pm| → 0 as m,n→ ∞; that is, (pn) is Cauchy. Clearly
the limit of the sequence pn is a midpoint of x and y. Applying 1.27b,
we get that X is geodesic.

It remains to prove uniqueness. Suppose there are two geodescics
between x and y. Then we can choose two points p ̸= q on these
geodesics such that |x− p| = |x− q| and therefore |y − p| = |y − q|.

Observe that the model triangles [p̃x̃ỹ] = △̃(pxy) and [q̃x̃ỹ] =
= △̃(qxy) are degenerate and moreover p̃ = q̃. Applying CAT(0)
comparison with z̃ = p̃ = q̃, we get that |p−q| = 0, a contradiction.

The following exercise is an analogous statement for CBB spaces.
In general complete length CBB(0) space might fail to be geodesic and
uniqueness of geodesic usually does not hold.

7.13. Exercise. Let X be a complete length CBB(0) space. Show
that if two geodesics from x to y share yet another point z, then they
coincide.

F Alexandrov’s lemma

7.14. Lemma. Let p, x, y, z be distinct points in a metric space
such that z ∈ ]xy[. Then the following expressions for the Euclidean
model angles have the same sign:
(a) ∡̃(x p

y)− ∡̃(x p
z),

(b) ∡̃(z p
x) + ∡̃(z p

y)− π.

x

y

z

p

Moreover,

∡̃(p x
y) ⩾ ∡̃(p x

z ) + ∡̃(p z
y),

with equality if and only if the expressions in (a)
and (b) vanish.

The same holds for the hyperbolic and spherical
model angles, but in the latter case one has to assume in addition that

|p− z| + |p− y| + |x− y| < 2·π.

Proof. Consider the model triangle [x̃p̃z̃] = △̃(xpz). Take a point ỹ on
the extension of [x̃z̃] beyond z̃ so that |x̃− ỹ| = |x− y| (and therefore
|x̃− z̃| = |x− z|).
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x̃

ỹ

ỹ′

z̃

p̃

Since increasing the opposite side in a
plane triangle increases the corresponding an-
gle, the following expressions have the same
sign:

(i) ∡[x̃ p̃
ỹ]− ∡̃(x p

y),
(ii) |p̃− ỹ| − |p− y|,
(iii) ∡[z̃ p̃

ỹ]− ∡̃(z p
y).

Since
∡[x̃ p̃

ỹ] = ∡[x̃ p̃
z̃] = ∡̃(x p

z)

and
∡[z̃ p̃

ỹ] = π − ∡[z̃ x̃
p̃ ] = π − ∡̃(z x

p),

the first statement follows.
For the second statement, construct a model triangle [p̃z̃ỹ′] =

= △̃(pzy)E2 on the opposite side of [p̃z̃] from [x̃p̃z̃]. Note that

|x̃− ỹ′| ⩽ |x̃− z̃| + |z̃ − ỹ′| =
= |x− z| + |z − y| =
= |x− y|.

Therefore

∡̃(p x
z ) + ∡̃(p z

y) = ∡[p̃ x̃
z̃ ] + ∡[p̃ z̃

ỹ′ ] =

= ∡[p̃ x̃
ỹ′ ] ⩽

⩽ ∡̃(p x
y).

Equality holds if and only if |x̃− ỹ′| = |x− y|, as required.

x

y
ȳ

x̄

p

7.15. Exercise. Given [p x
y ] in a metric space X ,

consider the function

f : (|p− x̄|, |p− ȳ|) 7→ ∡̃(p x̄
ȳ),

where x̄ ∈ ]px] and ȳ ∈ ]py].
(a) Suppose X is CAT(0). Show that f is nonde-

creasing in each argument.
(b) Suppose X is CBB(0). Show that f is nonincreasing in each

argument.
Conclude that any hinge in a CAT(0) or CBB(0) space has defined

angle.

7.16. Exercise. Fix a point p in a be a complete length CAT(0)
space X . Given a point x ∈ X , denote by γx a (necessarily unique)
geodesic path from p to x.
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Show that the family of maps ht : X → X defined by

ht(x) = γx(t)

is a homotopy; it is called geodesic homotopy. Conclude that X is
contractible.

The geodesic homotopy introduced in the previous exercise should
help to solve the next one.

7.17. Exercise. Let X be a complete length CAT(0) space. Assume
X is a topological manifold. Show that any geodesic in X can be ex-
tended as a two-side infinite geodesic.

G Thin and fat triangles
Recall that a triangle [xyz] in a space X is a triple of minimizing
geodesics [xy], [yz] and [zx]. Consider the model triangle [x̃ỹz̃] =
△̃(xyz)E2 in the Euclidean plane. The natural map [x̃ỹz̃] → [xyz]
sends a point p̃ ∈ [x̃ỹ] ∪ [ỹz̃] ∪ [z̃x̃] to the corresponding point p ∈
[xy] ∪ [yz] ∪ [zx]; that is, if p̃ lies on [ỹz̃], then p ∈ [yz] and |ỹ −
− p̃| = |y − p| (and therefore |z̃ − p̃| = |z − p|).

In the same way, the natural map can be defined for the spherical
model triangle △̃(xyz)S2 .

7.18. Definition. A triangle [xyz] in the metric space X is called
thin (or fat) if the natural map △̃(xyz)E2 → [xyz] is distance nonin-
creasing (or respectively distance nondecreasing).

Analogously, a triangle [xyz] is called spherical ly thin or
spherical ly fat if the natural map from the spherical model triangle
△̃(xyz)S2 to [xyz] is distance nonincreasing or nondecreasing.

7.19. Proposition. A geodesic space is CAT(0) (CAT(1)) if and only
if all its triangles are thin (respectively, all its triangles of perimeter
< 2·π are spherically thin).

Proof; if part. Apply the triangle inequality and thinness of triangles
[pxy] and [qxy], where p, q, x, and y are as in the definition of CAT(κ)
comparison (7C).

Only-if part. Applying CAT(0) comparison to a quadruple p, q, x, y
with q ∈ [xy] shows that any triangle satisfies point-s ide compari-
son, that is, the distance from a vertex to a point on the opposite side
is no greater than the corresponding distance in the Euclidean model
triangle.
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Now consider a triangle [xyz] and let p ∈ [xy] and q ∈ [xz]. Let
p̃, q̃ be the corresponding points on the sides of the model triangle
△̃(xyz)E2 . Applying 7.15a, we get that

∡̃(x y
z)E2 ⩾ ∡̃(x p

q)E2 .

Therefore |p̃− q̃|E2 ⩾ |p− q|.
The CAT(1) argument is the same.

7.20. Exercise. Show that any triangle is a CBB(0) space is fat.

7.21. Exercise. Suppose γ1, γ2 : [0, 1] → U be two geodesic paths in
a complete length CAT(0) space U . Show that

t 7→ |γ1(t)− γ2(t)|U

is a convex function.

7.22. Exercise. Let A be a convex closed set in a proper length
CAT(0) space U ; that is, if x, y ∈ A, then [xy] ⊂ A. Show that
for any r > 0 the closed r-neighborhood of A is convex; that is, the set

Ar = {x ∈ U : distAx ⩽ r }

is convex.

7.23. Exercise. Let U be a proper length CAT(0) space and K ⊂ U
be a closed convex set. Show that:
(a) For each point p ∈ U there is a unique point p∗ ∈ K that mini-

mizes the distance |p− p∗|.
(b) The closest-point projection p 7→ p∗ defined by (a) is short.

Recall that a set A in a metric space U is called local ly convex
if for any point p ∈ A there is an open neighborhood U ∋ p such that
any geodesic in U with ends in A lies in A.

7.24. Exercise. Let U be a proper length CAT(0) space. Show that
any closed, connected, locally convex set in U is convex.

H Other descriptions
In this section, we will list few ways to describe CAT(0) and CBB(0)
spaces. We do not give proofs of these statements, altho they are not
hard [see 5, and the references therein].

These conditions will not be used in the sequel, but they might
help to build right intuition.
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Convexity of function. The following condition might help to adapt
intuition from real analysis.

Let X be a metric space and λ ∈ R. A function f : X → R is called
λ-convex (λ -concave) if the real-to-real function

t 7→ f ◦ γ(γ)− λ
2 ·t

2

is convex (respectively concave) for any geodesic γ : I → R.
The λ-convex and λ-concave functions can be thought as functions

satisfying inequalities f ′′ ⩾ λ and respectively f ′′ ⩽ λ in a generalized
sense. Note that a smooth real-to-real function f is λ-convex (λ-
concave) if it satisfies inequality f ′′ ⩾ λ (respectively f ′′ ⩽ λ).

7.25. Proposition. Let X be a geodesic space. Then X is CAT(0)
(respectively CBB(0)) if and only if for any point p ∈ X the function

f(x) = 1
2 ·|p− x|2X

is 1-convex (respectively 1-concave).

Angle comparison. The following condition might help to adapt
intuition from Euclidean geometry.

Recall that in CAT(0) and CBB(0) spaces any hinge has defined
angle; see 7.15.

7.26. Proposition. Let X be a geodesic space such that any hinge
in X has defined angle. Then
(a) X is CAT(0) if and only if

∡[p x
y ] ⩽ ∡̃(p x

y).

(b) X is CBB(0) if and only if

∡[p x
y ] ⩾ ∡̃(p x

y)

and
∡[p x

y ] + ∡[p x
z ] = π

for any adjacent hinges [p x
y ] and [p x

z ]; that is, the union of
the sides [px] and [pz] of the hinges form a geodesic [xy].

It is unknown if the condition on adjacent hinges in (b) can be
removed (even in the two-dimesional case).

Kirszbraun property. We include the following condition only be-
cause it is beautiful.

The following theorem was proved by Mojżesz Kirszbraun [84] and
rediscovered later by Frederick Valentine [135].
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7.27. Theorem. Let A ⊂ Em. Then any short map f : A → En

admits a short extension f : Em → En.

The conclusion of the theorem holds for some other metric spaces
instead of Em and En. For example, instead of En one might take
any injective space (3.2) and instead of Em one may take any compact
ultrametric space (3.33). On the other hand, the existence of extension
to/from a Euclidean space is a much weaker condition than in 3.2 and
3.33. As the following theorems state, these conditions are closely
related to the CBB(0) and CAT(0) conditions.

7.28. Theorem. Let X be a complete length space and n ⩾ 2.
Then X is CBB(0) if and only if for any set A ⊂ X , any short map
f : A→ En admits a short extension F : X → En.

7.29. Theorem. Let Y be a metric space with and m ⩾ 2. Assume
any two points in Y are joint by unique geodesic. Then Y is CAT(0)
if and only if for any set A ⊂ Em, any short map f : Em → Y admits
a short extension F : Em → Y.

I History
The idea that the essence of curvature lies in a condition on quadruples
of points apparently originated with Abraham Wald. It is found in his
publication on “coordinate-free differential geometry” [137] written un-
der the supervision of Karl Menger; the story of this discovery can be
found in [97]. In 1941, similar definitions were rediscovered indepen-
dently by Alexandr Danilovich Alexandrov [8]. In Alexandrov’s work
the first fruitful applications of this approach were given. Mainly:

⋄ Alexandrov’s embedding theorem — metrics of non-negative cur-
vature on the sphere, and only they, are isometric to closed con-
vex surfaces in Euclidean 3-space.

⋄ Gluing theorem, which tells when the sphere obtained by gluing
of two discs along their boundaries has non-negative curvature
in the sense of Alexandrov.

These two results together gave a very intuitive geometric tool for
studying embeddings and bending of surfaces in Euclidean space, and
changed this subject dramatically. They formed the foundation of the
branch of geometry now called Alexandrov geometry.

The study of spaces with curvature bounded above started later.
The first paper on the subject was written by Alexandrov [9]. It was
based on work of Herbert Busemann [41], who studied spaces satisfying
a weaker condition.



Lecture 8

Gluing and billiards

A Inheritance lemma

The inheritance lemma 8.2 proved below plays a central role in the
theory of CAT(κ) spaces.

A curve γ : I → X is called a local geodesic if for any t ∈ I there
is a neighborhood U of t in I such that the restriction γ|U is a geodesic.

8.1. Proposition. Suppose U is a proper length CAT(0) space. Then
any local geodesic in U is a geodesic.

Analogously, if U is a proper length CAT(1) space, then any local
geodesic in U which is shorter than π is a geodesic.

γ(0)

γ(a)
γ(b)

Proof. Suppose γ : [0, ℓ] → U is a local geodesic that
is not a geodesic. Choose a to be the maximal value
such that γ is a geodesic on [0, a]. Further choose
b > a so that γ is a geodesic on [a, b].

Since the triangle [γ(0)γ(a)γ(b)] is thin and
|γ(0)− γ(b)| < b we have

|γ(a− ε)− γ(a+ ε)| < 2·ε

for all small ε > 0. That is, γ is not length-minimizing on the interval
[a− ε, a+ ε] for any ε > 0, a contradiction.

The spherical case is done in the same way.

Now let us formulate the main result of this section.

91
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x

y

z

p

8.2. Inheritance lemma. Assume that a trian-
gle [pxy] in a metric space is decomposed into two
triangles [pxz] and [pyz]; that is, [pxz] and [pyz]
have a common side [pz], and the sides [xz] and
[zy] together form the side [xy] of [pxy].

If both triangles [pxz] and [pyz] are thin, then
the triangle [pxy] is also thin.

Analogously, if [pxy] has perimeter < 2·π and both triangles [pxz]
and [pyz] are spherically thin, then triangle [pxy] is spherically thin.

ẋ

ẏ

ż

ṗ

ẇ

Proof. Construct the model triangles [ṗẋż] =
= △̃(pxz)E2 and [ṗẏż] = △̃(pyz)E2 so that ẋ
and ẏ lie on opposite sides of [ṗż].

Let us show that

➊ ∡̃(z p
x) + ∡̃(z p

y) ⩾ π.

If not, then for some point ẇ ∈ [ṗż], we have

|ẋ− ẇ| + |ẇ − ẏ| < |ẋ− ż| + |ż − ẏ| = |x− y|.

Let w ∈ [pz] correspond to ẇ; that is, |z − w| = |ż − ẇ|. Since [pxz]
and [pyz] are thin, we have

|x− w| + |w − y| < |x− y|,

contradicting the triangle inequality.
Denote by Ḋ the union of two solid triangles [ṗẋż] and [ṗẏż]. Fur-

ther, denote by D̃ the solid triangle [p̃x̃ỹ] = △̃(pxy)E2 . By ➊, there is
a short map F : D̃ → Ḋ that sends

p̃ 7→ ṗ, x̃ 7→ ẋ, z̃ 7→ ż, ỹ 7→ ẏ.

x̃ ỹ
z̃

z̃x z̃y

p̃

Indeed, by Alexandrov’s lemma
(7.14), there are nonoverlapping
triangles

[p̃x̃z̃x]
iso
== [ṗẋż]

and
[p̃ỹz̃y]

iso
== [ṗẏż]

inside the triangle [p̃x̃ỹ].
Connect the points in each pair (z̃, z̃x), (z̃x, z̃y) and (z̃y, z̃) with

arcs of circles centered at ỹ, p̃, and x̃ respectively. Define F as follows:
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⋄ Map Conv[p̃x̃z̃x] isometrically onto Conv[ṗẋż]; similarly map
Conv[p̃ỹz̃y] onto Conv[ṗẏż].

⋄ If x is in one of the three circular sectors, say at distance r from
its center, set F (x) to be the point on the corresponding segment
[pz], [xz] or [yz] whose distance from the left-hand endpoint of
the segment is r.

⋄ Finally, if x lies in the remaining curvilinear triangle z̃z̃xz̃y, set
F (x) = z.

By construction, F satisfies the conditions.
By assumption, the natural maps [ṗẋż] → [pxz] and [ṗẏż] → [pyz]

are short. By composition, the natural map from [p̃x̃ỹ] to [pyz] is
short, as claimed.

The spherical case is done along the same lines.

B Reshetnyak’s gluing

Suppose U1 and U2 are proper length spaces with isometric closed
convex sets Ai ⊂ U i and let ι : A1 → A2 be an isometry. Consider
the space W of all equivalence classes in U1 ⊔U2 with the equivalence
relation given by a ∼ ι(a) for any a ∈ A1.

It is straightforward to see that W is a proper length space when
equipped with the following metric

|x− y|W := |x− y|Ui

if x, y ∈ U i, and

|x− y|W := min
{
|x− a|U1 + |y − ι(a)|U2 : a ∈ A1

}
if x ∈ U1 and y ∈ U2.

Abusing notation, we denote by x and y the points in U1 ⊔ U2 and
their equivalence classes in U1 ⊔ U2/∼.

The space W is called the gluing of U1 and U2 along ι. If one
applies this construction to two copies of one space U with a set A ⊂ U
and the identity map ι : A→ A, then the obtained space is called the
double of U along A.

We can (and will) identify U i with its image in W; this way both
subsets Ai ⊂ U i will be identified and denoted further by A. Note
that A = U1 ∩ U2 ⊂ W, therefore A is also a convex set in W.

8.3. Reshetnyak gluing. Suppose U1 and U2 are proper length
CAT(0) spaces with isometric closed convex sets Ai ⊂ U i, and ι : A1 →
→ A2 is an isometry. Then the gluing of U1 and U2 along ι is a
CAT(0) proper length space.
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Proof. By construction of the gluing space, the statement can be
reformulated in the following way:

8.4. Reformulation of 8.3. Let W be a proper length space that
has two closed convex sets U1,U2 ⊂ W such that U1 ∪ U2 = W and
U1, U2 are CAT(0). Then W is CAT(0).

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
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It suffices to show that any triangle
[xyz] in W is thin. This is obviously
true if all three points x, y, z lie in one
of U i. Thus, without loss of generality,
we may assume that x ∈ U1 and y, z ∈
∈ U2.

Choose points a, b ∈ A = U1 ∩
∩ U2 that lie respectively on the sides
[xy], [xz]. Note that

⋄ the triangle [xab] lies in U1,
⋄ both triangles [yab] and [ybz] lie in U2.

In particular, each triangle [xab], [yab], and [ybz] is thin.
Applying the inheritance lemma (8.2) twice, we get that [xyb] and

consequently [xyz] is thin.

8.5. Exercise. Suppose U is a geodesic space and A ⊂ U is a closed
subset. Assume that the doubling of U in A is CAT(0). Show that A
is a convex set of U .

C Puff pastry
In this section, we introduce the notion of Reshetnyak puff pastry.
This construction will be used in the next section to prove the collision
theorem (8.16).

Let A = (A1, . . . , AN ) be an array of convex closed sets in the
Euclidean space Em. Consider an array of N+1 copies of Em. Assume
that the space R is obtained by gluing successive pairs of spaces along
A1, . . . , AN respectively.

The resulting space R will be called the Reshetnyak puff pas-
try for array A. The copies of Em in the puff pastry R will be called
levels; they will be denoted by R0, . . . ,RN . The point in the k-th
level Rk that corresponds to x ∈ Em will be denoted by xk.

Given x ∈ Em, any point xk ∈ R is called a l i ft ing of x. The
map x 7→ xk defines an isometry Em → Rk; in particular, we can talk
about liftings of subsets in Em.

Note that:
⋄ The intersection A1 ∩ · · · ∩AN admits a unique lifting in R.
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A B

R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0R0

R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1

R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2

R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3R3

Puff pastry for (A,B,A).

⋄ Moreover, xi = xj for some i < j if and only if

x ∈ Ai+1 ∩ · · · ∩Aj .

⋄ The restriction Rk → Em of the natural projection xk 7→ x is an
isometry.

8.6. Observation. Any Reshetnyak puff pastry is a proper length
CAT(0) space.

Proof. Apply Reshetnyak gluing theorem (8.3) recursively for the con-
vex sets in the array.

8.7. Proposition. Assume (A1, . . . , AN ) and (Ǎ1, . . . , ǍN ) are two
arrays of convex closed sets in Em such that Ak ⊂ Ǎk for each k. Let
R and Ř be the corresponding Reshetnyak puff pastries. Then the map
R → Ř defined by xk 7→ x̌k is short.

Moreover, if

➊ |xi − yj |R = |x̌i − y̌j |Ř

for some x, y ∈ Em and i, j ∈ {0, . . . , n}, then the unique geodesic
[x̌iy̌j ]Ř is the image of the unique geodesic [xiyj ]R under the map
xi 7→ x̌i.

Proof. The first statement in the proposition follows from the con-
struction of Reshetnyak puff pastries.

By Observation 8.6, R and Ř are proper length CAT(0) spaces;
hence [xiyj ]R and [x̌iy̌j ]Ř are unique. By ➊, since the map R → Ř is
short, the image of [xiyj ]R is a geodesic of Ř joining x̌i to y̌j . Hence
the second statement follows.

8.8. Definition. Consider a Reshetnyak puff pastry R with the levels
R0, . . . ,RN . We say that R is end-to-end convex if R0 ∪RN , the
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union of its lower and upper levels forms a convex set in R; that is, if
x, y ∈ R0 ∪RN , then [xy]R ⊂ R0 ∪RN .

Note that if R is the Reshetnyak puff pastry for an array of convex
sets A = (A1, . . . , AN ), then R is end-to-end convex if and only if the
union of the lower and the upper levels R0 ∪ RN is isometric to the
double of Em along the nonempty intersection A1 ∩ · · · ∩AN .

8.9. Observation. Let Ǎ and A be arrays of convex bodies in Em.
Assume that array A is obtained by inserting in Ǎ several copies of
the bodies which were already listed in Ǎ.

For example, if Ǎ = (A,C,B,C,A), by placing B in the second
place and A in the fourth place, we obtain A = (A,B,C,A,B,C,A).

Denote by Ř and R the Reshetnyak puff pastries for Ǎ and A
respectively.

If Ř is end-to-end convex, then so is R.

Proof. Without loss of generality, we may assume that A is obtained
by inserting one element in Ǎ, say at the place number k.

Note that Ř is isometric to the puff pastry for A with Ak replaced
by Em. It remains to apply Proposition 8.7.

p XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Let X be a convex set in a Euclidean space.
By a dihedral angle, we understand an in-
tersection of two half-spaces; the intersection of
corresponding hyperplanes is called the edge of
the angle. We say that a dihedral angle D sup-
ports X at a point p ∈ X if D contains X and
the edge of D contains p.

8.10. Lemma. Let A and B be two convex sets in Em. Assume that
any dihedral angle supporting A∩B has angle measure at least α. Then
the Reshetnyak puff pastry for the array

(A,B,A, . . .︸ ︷︷ ︸
⌈ π
α ⌉ + 1 times

).

is end-to-end convex.

The proof of the lemma is based on a partial case, which we for-
mulate as a sublemma.

8.11. Sublemma. Let Ä and B̈ be two half-planes in E2, where Ä∩B̈
is an angle with measure α. Then the Reshetnyak puff pastry for the
array

(Ä, B̈, Ä, . . .︸ ︷︷ ︸
⌈ π
α ⌉ + 1 times

)
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is end-to-end convex.

α

α

α

π
−

α

π
−

α

Proof. Note that the puff pastry R̈ is isomet-
ric to the cone over the space glued from the
unit circles as shown on the diagram.

All the short arcs on the diagram have
length α; the long arcs have length π−α, so
making a circuit along any path will take 2·π.

The end-to-end convexity of R̈ is equiv-
alent to the fact that any geodesic shorter
than π with the ends on the inner and the
outer circles lies completely in the union of
these two circles.

The latter holds if the zigzag line in the picture has length at
least π. This line is formed by ⌈π

α⌉ arcs with length α each. Hence
the sublemma.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

x
y

z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0

In the proof of 8.10, we will use the following
exercise in convex geometry:

8.12. Exercise. Let A and B be two closed convex
sets in Em and A ∩ B ̸= ∅. Given two points
x, y ∈ Em let f(z) = |x− z| + |y − z|.

Let z0 ∈ A∩B be a point of minimum of f |A∩B.
Show that there are half-spaces Ȧ and Ḃ such

that Ȧ ⊃ A and Ḃ ⊃ B and z0 is also a point of
minimum of the restriction f |Ȧ∩Ḃ.

Proof of 8.10. Fix arbitrary x, y ∈ Em. Choose a point z ∈ A ∩B for
which the sum

|x− z| + |y − z|

is minimal. To show the end-to-end convexity of R, it is sufficient to
prove the following:

➋ The geodesic [x0yN ]R contains z0 = zN ∈ R.

Without loss of generality, we may assume that z ∈ ∂A ∩ ∂B.
Indeed, since the puff pastry for the 1-array (B) is end-to-end convex,
Proposition 8.7 together with Observation 8.9 imply ➋ in case z lies
in the interior of A. In the same way we can treat the case when z lies
in the interior of B.

Note that Em admits an isometric splitting Em−2 × E2 such that

Ȧ = Em−2 × Ä

Ḃ = Em−2 × B̈
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where Ä and B̈ are half-planes in E2.
Using Exercise 8.12, let us replace each A by Ȧ and each B by Ḃ

in the array, to get the array

(Ȧ, Ḃ, Ȧ, . . .︸ ︷︷ ︸
⌈ π
α ⌉ + 1 times

).

The corresponding puff pastry Ṙ splits as a product of Em−2 and a
puff pastry, call it R̈, glued from the copies of the plane E2 for the
array

(Ä, B̈, Ä, . . .︸ ︷︷ ︸
⌈ π
α ⌉ + 1 times

).

Note that the dihedral angle Ȧ ∩ Ḃ is at least α. Therefore the
angle measure of Ä∩B̈ is also at least α. According to Sublemma 8.11
and Observation 8.9, R̈ is end-to-end convex.

Since Ṙ iso
== Em−2×R̈, the puff pastry Ṙ is also end-to-end convex.

It follows that the geodesic [ẋ0ẏN ]Ṙ contains ż0 = żN ∈ Ṙ. By
Proposition 8.7, the image of [ẋ0ẏN ]Ṙ under the map ẋk 7→ xk is the
geodesic [x0yN ]R. Hence Claim ➋, and the lemma follow.

D Wide corners
We say that a closed convex set A ⊂ Em has ε -wide corners for
given ε > 0 if together with each point p, the set A contains a small
right circular cone with the tip at p and aperture ε; that is, ε is the
maximum angle between two generating lines of the cone.

For example, a plane polygon has ε-wide corners if all its interior
angles are at least ε.

We will consider finite collections of closed convex setsA1, . . . , An ⊂
⊂ Em such that for any subset F ⊂ {1, . . . , n}, the intersection

⋂
i∈F A

i

has ε-wide corners. In this case, we may say briefly all intersections
of Ai have ε-wide corners.

8.13. Exercise. Assume A1, . . . , An ⊂ Em are compact, convex sets
with a common interior point. Show that all intersections of Ai have
ε-wide corners for some positive ε.

8.14. Exercise. Assume A1, . . . , An ⊂ Em are convex sets with
nonempty interiors that have a common center of symmetry. Show
that all intersections of Ai have ε-wide corners for some positive ε.

The proof of the following proposition is based on Lemma 8.10;
this lemma is essentially the case n = 2 in the proposition.
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8.15. Proposition. Given ε > 0 and a positive integer n, there is
an array of integers jε(n) = (j1, . . . , jN ) such that:
(a) For each k we have 1 ⩽ jk ⩽ n, and each number 1, . . . , n appears

in jε at least once.
(b) If A1, . . . , An is a collection of closed convex sets in Em with a

common point and all their intersections have ε-wide corners,
then the puff pastry for the array (Aj1 , . . . , AjN ) is end-to-end
convex.

Moreover we can assume that N ⩽ (⌈π
ε ⌉+ 1)n.

Proof. The array jε(n) = (j1, . . . , jN ) is constructed recursively. For
n = 1, we can take jε(1) = (1).

Assume that jε(n) is constructed. Let us replace each occurrence
of n in jε(n) by the alternating string

n, n+ 1, n, . . .︸ ︷︷ ︸
⌈π

ε ⌉ + 1 times

.

Denote the obtained array by jε(n+ 1).
By Lemma 8.10, end-to-end convexity of the puff pastry for jε(n+

+1) follows from end-to-end convexity of the puff pastry for the array
where each string

An, An+1, An, . . .︸ ︷︷ ︸
⌈π

ε ⌉ + 1 times

is replaced by Q = An ∩ An+1. End-to-end convexity of the lat-
ter follows by the assumption on jε(n), since all the intersections of
A1, . . . , An−1, Q have ε-wide corners.

The upper bound on N follows directly from the construction.

E Billiards
Let A1, A2, . . . An be a finite collection of closed convex sets in Em.
Assume that for each i the boundary ∂Ai is a smooth hypersurface.

Consider the billiard table formed by the closure of the complement

T = Em \
⋃
i

Ai.

The sets Ai will be called walls of the table T and the billiards de-
scribed above will be called bil l iards with convex walls.

A billiard tra jectory on the table is a unit-speed broken line γ
that follows the standard law of billiards at the breakpoints on ∂Ai
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— in particular, the angle of reflection is equal to the angle of inci-
dence. The breakpoints of the trajectory will be called col l is ions.
We assume the trajectory meets only one wall at a time.

Recall that the definition of sets with ε-wide corners is given in 8D.

8.16. Collision theorem. Assume T ⊂ Em is a billiard table with
n convex walls. Assume that the walls of T have a common interior
point and all their intersections have ε-wide corners. Then the number
of collisions of any trajectory in T is bounded by a number N which
depends only on n and ε.

As we will see from the proof, the value N can be found explicitly;
N = (⌈π

ε ⌉+ 1)n
2

will do.
The collision theorem was proved by Dmitri Burago, Serge Fer-

leger, and Alexey Kononenko [35]; we present their proof with minor
improvements.

Let us formulate and prove a corollary of the collision theorem; it
answers a question formulated by Yakov Sinai [60].

8.17. Corollary. Consider n homogeneous hard balls moving freely
and colliding elastically in R3. Every ball moves along a straight line
with constant speed until two balls collide, and then the new velocities
of the two balls are determined by the laws of classical mechanics. We
assume that only two balls can collide at the same time.

Then the total number of collisions cannot exceed some number
N that depends on the radii and masses of the balls. If the balls are
identical, then N depends only on n.

8.18. Exercise. Show that in the case of identical balls in the one-
dimensional space (in R) the total number of collisions cannot exceed
N = n·(n−1)

2 .

The proof below admits a straightforward generalization to all di-
mensions.

Proof. Denote by ai = (xi, yi, zi) ∈ R3 the center of the i-th ball.
Consider the corresponding point in R3·N

a = (a1, a2, . . . , an) =

= (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn).

The i-th and j-th balls intersect if

|ai − aj | ⩽ Ri +Rj ,

where Ri denotes the radius of the i-th ball. These inequalities define
n·(n−1)

2 cylinders

Ci,j =
{
(a1, a2, . . . , an) ∈ R3·n : |ai − aj | ⩽ Ri +Rj

}
.
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The closure of the complement

T = R3·n \
⋃
i<j

Ci,j

is the configuration space of our system. Its points correspond to valid
positions of the system of balls.

The evolution of the system of balls is described by the motion
of the point a ∈ R3·n. It moves along a straight line at a constant
speed until it hits one of the cylinders Ci,j ; this event corresponds to
a collision in the system of balls.

Consider the norm of a = (a1, . . . , an) ∈ R3·n defined by

∥a∥ =
√
M1 ·|a1|2 + · · ·+Mn ·|an|2,

where |ai| =
√
x2i + y2i + z2i and Mi denotes the mass of the i-th ball.

In the metric defined by ∥∗∥, the collisions follow the standard law of
billiards.

By construction, the number of collisions of hard balls that we need
to estimate is the same as the number of collisions of the corresponding
billiard trajectory on the table with Ci,j as the walls.

Note that each cylinder Ci,j is a convex set; it has smooth bound-
ary, and it is centrally symmetric around the origin. By Exercise 8.14,
all the intersections of the walls have ε-wide corners for some ε > 0
that depend on the radiuses Ri and the masses Mi. It remains to
apply the collision theorem (8.16).

Now we present the proof of the collision theorem (8.16) based on
the results developed in the previous section.

Proof of 8.16. Let us apply induction on n.

Base: n = 1. The number of collisions cannot exceed 1. Indeed, by
the convexity of A1, if the trajectory is reflected once in ∂A1, then it
cannot return to A1.

Step. Assume γ is a trajectory that meets the walls in the order
Ai1 , . . . , AiN for a large integer N .

Consider the array

Aγ = (Ai1 , . . . , AiN ).

The induction hypothesis implies:

➊ There is a positive integer M such that any M consecutive elements
of Aγ contain each Ai at least once.

Let Rγ be the Reshetnyak puff pastry for Aγ .
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Consider the lift of γ to Rγ , defined by γ̄(t) = γk(t) ∈ Rγ for any
moment of time t between the k-th and (k + 1)-th collisions. Since γ
follows the standard law of billiards at breakpoints, the lift γ̄ is locally
a geodesic in Rγ . By Observation 8.6, the puff pastry Rγ is a proper
length CAT(0) space. Therefore γ̄ is a geodesic.

Since γ does not meet A1 ∩ · · · ∩ An, the lift γ̄ does not lie in
R0

γ ∪RN
γ . In particular, Rγ is not end-to-end convex.

Let
B = (Aj1 , . . . , AjK )

be the array provided by Proposition 8.15; so B contains each Ai at
least once and the puff pastry RB for B is end-to-end convex. If N is
sufficiently large, namely N ⩾ K ·M , then ➊ implies that Aγ can be
obtained by inserting a finite number of Ai’s in B.

By Observation 8.9, Rγ is end-to-end convex, a contradiction.

F Comments
The gluing theorem (8.3) was proved by Yuri Reshetnyak [117]. It
can be extended to the class of geodesic CAT(0) spaces, which by
7.12 includes all complete length CAT(0) spaces. It also admits a
natural generalization to length CAT(κ) spaces; see the book of Martin
Bridson and André Haefliger [31] and our book [5] for details.

Puff pastry is used to bound topological entropy of the billiard flow
and to approximate the shortest billiard path that touches given lines
in a given order; see the papers of Dmitri Burago with Serge Ferleger
and Alexey Kononenko [36], and with Dimitri Grigoriev and Anatol
Slissenko [37]. The lecture of Dmitri Burago [33] gives a short survey
on the subject.

Note that the interior points of the walls play a key role in the proof
despite the fact that trajectories never go inside the walls. In a similar
fashion, puff pastry was used by Stephanie Alexander and Richard
Bishop [2] to find the upper curvature bound for warped products.

Joel Hass [69] constructed an example of a Riemannian metric
on the 3-ball with negative curvature and concave boundary. This
example might decrease your appetite for generalizing the collision
theorem — while locally such a 3-ball looks as good as the billiards
table in the theorem, the number of collisions is obviously infinite.

It was shown by Dmitri Burago and Sergei Ivanov [38] that the
number of collisions that may occur between n identical balls in R3

grows at least exponentially in n; the two-dimensional case is open so
far.



Lecture 9

Globalization

This lecture is nearly a copy of [4, Sections 3.1–3.3]; here we introduce
locally CAT(0) spaces and prove the globalization theorem that pro-
vides a sufficient condition for locally CAT(0) spaces to be globally
CAT(0).

A Locally CAT spaces

We say that a space U is lo cal ly CAT(0) (or local ly CAT(1)) if a
small closed ball centered at any point p in U is CAT(0) (or CAT(1),
respectively).

For example, the circle S1 = R/Z is locally isometric to R, and
so S1 is locally CAT(0). On the other hand, S1 is not CAT(0), since
closed local geodesics in S1 are not geodesics, so S1 does not satisfy
Proposition 8.1.

If U is a proper length space, then it is locally CAT(0) (or locally
CAT(1)) if and only if each point p ∈ U admits an open neighborhood
Ω that is geodesic and such that any triangle in Ω is thin (or spherically
thin, respectively).

B Space of local geodesic paths

A constant-speed parameterization of a local geodesic by the unit in-
terval [0, 1] is called a local geodesic path.

In this section, we will study behavior of local geodesics in locally
CAT(κ) spaces. The results will be used in the proof of the globaliza-
tion theorem (9.6).
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Recall that a path is a curve parametrized by [0, 1]. The space of
paths in a metric space U comes with the natural metric

➊ |α− β| = sup { |α(t)− β(t)|U : t ∈ [0, 1] } .

9.1. Proposition. Let U be a proper length, locally CAT(κ) space.
Assume γn : [0, 1] → U is a sequence of local geodesic paths con-

verging to a path γ∞ : [0, 1] → U . Then γ∞ is a local geodesic path.
Moreover

length γn → length γ∞

as n→ ∞.

Proof; CAT(0) case. Fix t ∈ [0, 1]. Let R > 0 be sufficiently small, so
that B[γ∞(t), R] forms a proper length CAT(0) space.

Assume that a local geodesic σ is shorter than R/2 and intersects
the ball B(γ∞(t), R/2). Then σ cannot leave the ball B[γ∞(t), R].
Hence, by Proposition 8.1, σ is a geodesic. In particular, for all suffi-
ciently large n, any arc of γn of length R/2 or less containing γn(t) is
a geodesic.

Since B = B[γ∞(t), R] is a proper length CAT(0) space, by 7.12,
geodesic segments in B depend uniquely on their endpoint pairs. Thus
there is a subinterval I of [0, 1], that contains a neighborhood of t in
[0, 1] and such that the arc γn|I is minimizing for all large n. It follows
that γ∞|I is a geodesic, and therefore γ∞ is a local geodesic.

The CAT(1) case is done in the same way, but one has to assume
in addition that R < π.

The following lemma and its proof were suggested to us by Alexan-
der Lytchak. This lemma allows a local geodesic path to be moved
continuously so that its endpoints follow given trajectories. This
statement was originally proved by Stephanie Alexander and Richard
Bishop [3] using a different method.

9.2. Patchwork along a geodesic. Let U be a proper length, lo-
cally CAT(0) space, and γ : [0, 1] → U be a locally geodesic path.

Then there is a proper length CAT(0) space N , an open set Ω̂ ⊂ N ,
and a geodesic path γ̂ : [0, 1] → Ω̂, such that there is an open locally
distance-preserving map Φ: Ω̂ ↬ U satisfying Φ ◦ γ̂ = γ.

If length γ < π, then the same holds in the CAT(1) case. Namely
we assume that U is a proper length, locally CAT(1) space and con-
struct a proper length CAT(1) space N with the same property as
above.

Proof. Fix r > 0 so that for each t ∈ [0, 1], the closed ball B[γ(t), r]
forms a proper length CAT(0) space.
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Choose a partition 0 = t0 < t1 < · · · < tn = 1 such that

B(γ(ti), r) ⊃ γ([ti−1, ti])

for all n > i > 0. Set Bi = B[γ(ti), r]. We can assume in addition that
Bi−1 ∩ Bi+1 ⊂ Bi if 0 < i < n.

Consider the disjoint union
⊔

i Bi = { (i, x) : x ∈ Bi } with the
minimal equivalence relation ∼ such that (i, x) ∼ (i − 1, x) for all i.
Let N be the space obtained by gluing the Bi along ∼.

Note that Ai = Bi ∩ Bi−1 is convex in Bi and in Bi−1. Applying
the Reshetnyak gluing theorem (8.3) n times, we conclude that N is
a proper length CAT(0) space.

For t ∈ [ti−1, ti], define γ̂(t) as the equivalence class of (i, γ(t))
in N . Let Ω̂ be the ε-neighborhood of γ̂ in N , where ε > 0 is chosen
so that B(γ(t), ε) ⊂ Bi for all t ∈ [ti−1, ti].

Define Φ: Ω̂ → U by sending the equivalence class of (i, x) to x. It
is straightforward to check that Φ, γ̂, and Ω̂ ⊂ N satisfy the conclusion
of the lemma.

The CAT(1) case is proved in the same way.

The following two corollaries follow from: (1) patchwork (9.2), (2)
Proposition 8.1, which states that local geodesics are geodesics in any
CAT(0) space, and (3) Proposition 7.12 on uniqueness of geodesics.

9.3. Corollary. If U is a proper length, locally CAT(0) space, then
for any pair of points p, q ∈ U , the space of all local geodesic paths
from p to q is discrete; that is, for any local geodesic path γ connecting
p to q, there is ε > 0 such that for any other local geodesic path δ from
p to q we have |γ(t)− δ(t)|U > ε for some t ∈ [0, 1].

Analogously, if U is a proper length, locally CAT(1) space, then for
any pair of points p, q ∈ U , the space of all local geodesic paths shorter
than π from p to q is discrete.

9.4. Corollary. If U is a proper length, locally CAT(0) space, then
for any path α there is a choice of local geodesic path γα connecting
the ends of α such that the map α 7→ γα is continuous, and if α is a
local geodesic path then γα = α.

Analogously, if U is a proper length, locally CAT(1) space, then for
any path α shorter than π, there is a choice of local geodesic path γα
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shorter than π connecting the ends of α such that the map α 7→ γα is
continuous, and if α is a local geodesic path then γα = α.

Proof of 9.4. We do the CAT(0) case; the CAT(1) case is analogous.
Consider the maximal interval I ⊂ [0, 1] containing 0 such that

there is a continuous one-parameter family of local geodesic paths γt
for t ∈ I connecting α(0) to α(t), with γt(0) = γ0(t) = α(0) for any t.

By Proposition 9.1, I is closed, so we may assume I = [0, s] for
some s ∈ [0, 1].

Applying patchwork (9.2) to γs, we find that I is also open in [0, 1].
Hence I = [0, 1]. Set γα = γ1.

By construction, if α is a local geodesic path, then γα = α.
Moreover, from Corollary 9.3, the construction α 7→ γα produces

close results for sufficiently close paths in the metric defined by ➊;
that is, the map α 7→ γα is continuous.

Given a path α : [0, 1] → U , we denote by ᾱ the same path traveled
in the opposite direction; that is,

ᾱ(t) = α(1− t).

The product of two paths will be denoted with “∗”; if two paths α
and β connect the same pair of points, then the product ᾱ ∗ β is a
closed curve.

9.5. Exercise. Assume U is a proper length, locally CAT(1) space.
Consider the construction α 7→ γα provided by Corollary 9.4.

Assume that α and β are two paths connecting the same pair of
points in U , where each is shorter than π and the product ᾱ ∗ β is
null-homotopic in the class of closed curves shorter than 2·π. Show
that γα = γβ.

C Globalization

9.6. Globalization theorem. If a proper length, locally CAT(0)
space is simply connected, then it is CAT(0).

Analogously, if U is a proper length, locally CAT(1) space such that
any closed curve γ : S1 → U shorter than 2·π is null-homotopic in the
class of closed curves shorter than 2·π. Then U is CAT(1).

The surface on the diagram is an example of a simply connected
space that is locally CAT(1) but not CAT(1). To contract the marked
curve one has to increase its length to 2·π or more; in particular, the
surface does not satisfy the assumption of the globalization theorem.
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The proof of the globalization theorem relies on the following the-
orem, which is essentially [6, Satz 9].

9.7. Patchwork globalization theorem. A proper length, locally
CAT(0) space U is CAT(0) if and only if all pairs of points in U are
joined by unique geodesics, and these geodesics depend continuously on
their endpoint pairs.

Analogously, a proper length, locally CAT(1) space U is CAT(1) if
and only if all pairs of points in U at distance less than π are joined
by unique geodesics, and these geodesics depend continuously on their
endpoint pairs.

The proof uses a thin-triangle decomposition with the inheritance
lemma (8.2) and the following construction:

9.8. Line-of-sight map. Let p be a point and α be a curve of finite
length in a length space X . Let α̊ : [0, 1] → U be the constant-speed
parametrization of α. If γt : [0, 1] → U is a geodesic path from p to
α̊(t), we say

[0, 1]× [0, 1] → U : (t, s) 7→ γt(s)

is a l ine-of-sight map from p to α.

Proof of the patchwork globalization theorem (9.7). Note that the im-
plication “only if” follows from 7.12 and 7.21; it remains to prove the
“if” part.

Fix a triangle [pxy] in U . We need to show that [pxy] is thin.
By the assumptions, the line-of-sight map (t, s) 7→ γt(s) from p to

[xy] is uniquely defined and continuous.
Fix a partition

0 = t0 < t1 < . . . < tN = 1,

and set xi,j = γti(t
j). Since the line-of-sight map is continuous and U

is locally CAT(0), we may assume that the triangles

[xi,jxi,j+1xi+1,j+1] and [xi,jxi+1,jxi+1,j+1]

are thin for each pair i, j.
Now we show that the thin property propagates to [pxy] by re-

peated application of the inheritance lemma (8.2):
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p = x0,0 = · · · = xN,0

y = xN,Nx0,N = x

x0,1 xN,1

x1,N
. . .

. .
. . . .

⋄ For fixed i, sequentially applying the lemma shows that the tri-
angles [pxi,1xi+1,2], [pxi,2xi+1,2], [pxi,2xi+1,3], and so on are thin.

In particular, for each i, the long triangle [pxi,Nxi+1,N ] is thin.
⋄ By the same lemma the triangles [px0,Nx2,N ], [px0,Nx3,N ], and

so on, are thin.
In particular, [pxy] = [px0,NxN,N ] is thin.

Proof of the globalization theorem; CAT(0) case. Let U be a proper
length, locally CAT(0) space that is simply connected. Given a path
α in U , denote by γα the local geodesic path provided by 9.4. Since
the map α 7→ γα is continuous, by 9.3 we have γα = γβ for any pair
of paths α and β homotopic relative to the ends.

Since U is simply connected, any pair of paths with common ends
are homotopic. In particular, if α and β are local geodesics from p
to q, then α = γα = γβ = β by Corollary 9.4. It follows that any
two points p, q ∈ U are joined by a unique local geodesic that depends
continuously on (p, q).

Since U is geodesic, it remains to apply the patchwork globalization
theorem (9.7).

CAT(1) case. The proof goes along the same lines, but one needs to
use Exercise 9.5.

9.9. Corollary. Any compact length, locally CAT(0) space that con-
tains no closed local geodesics is CAT(0).

Analogously, any compact length, locally CAT(1) space that con-
tains no closed local geodesics shorter than 2·π is CAT(1).

Proof. By the globalization theorem (9.6), we need to show that the
space is simply connected. Assume the contrary. Fix a nontrivial
homotopy class of closed curves.
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Denote by ℓ the exact lower bound for the lengths of curves in
the class. Note that ℓ > 0; otherwise, there would be a closed noncon-
tractible curve in a CAT(0) neighborhood of some point, contradicting
7.16.

Since the space is compact, the class contains a length-minimizing
curve, which must be a closed local geodesic.

The CAT(1) case is analogous, one only has to consider a homotopy
class of closed curves shorter than 2·π.

9.10. Exercise. Prove that any compact length, locally CAT(0) space
X that is not CAT(0) contains a geodesic circle; that is, a simple
closed curve γ such that for any two points p, q ∈ γ, one of the arcs of
γ with endpoints p and q is a geodesic.

Formulate and prove the analogous statement for CAT(1) spaces.

9.11. Advanced exercise. Let U be a proper length CAT(0) space.
Assume Ũ → U is a metric double cover branching along a geodesic.
(For example, 3-dimensional Euclidean space admits a double cover
branching along a line.)

Show that Ũ is CAT(0).

D Remarks
Riemannian manifolds with nonpositive sectional curvature are locally
CAT(0). The original formulation of the globalization theorem, or
Hadamard–Cartan theorem, states that if M is a complete Riemann-
ian manifold with sectional curvature at most 0, then the exponential
map at any point p ∈ M is a covering ; in particular, it implies that
the universal cover of M is diffeomorphic to the Euclidean space of the
same dimension.

In this generality, this theorem appeared in the lectures of Elie
Cartan [45]. This theorem was proved for surfaces in Euclidean 3-
space by Hans von Mangoldt [94] and a few years later independently
for two-dimensional Riemannian manifolds by Jacques Hadamard [68].

Formulations for metric spaces of different generality were proved
by Herbert Busemann [41], Willi Rinow [118], Mikhael Gromov [63,
p. 119]. A detailed proof of Gromov’s statement was given by Werner
Ballmann [15] when U is proper, and by Stephanie Alexander and
Richard Bishop [3] in more generality.

For proper CAT(1) spaces, the globalization theorem was proved
by Brian Bowditch [29].

The globalization theorem holds for complete length spaces (not
necessarily proper spaces) [5].
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The patchwork globalization (9.7) is proved by Alexandrov [6, Satz
9]. For proper spaces one can remove the continuous dependence from
the formulation; it follows from uniqueness. For complete spaces, the
later is not true [31, Chapter I, Exercise 3.14].

For spaces with curvature bounded below globalization requires no
additional condition. Namely the following theorem holds [see 5, and
the references therein].

9.12. Globalization theorem. Any complete length locally CBB(κ)
space is CBB(κ).



Lecture 10

Polyhedral spaces

This lecture is nearly a copy of [4, Sections 1.7, 3.4, and 3.5]; here we
give a condition for polyhedral spaces that grantees that it is CAT(0).

A Space of directions and tangent space

In this section, we introduce a metric analog of (unit) tangent bundle
that makes sense in Alexandrov geometry.

Let X be a metric space with defined angles for all hinges; by 7.15
it holds for any CBB(κ) or CAT(κ) space. Fix a point p ∈ X .

Consider the set Sp of all nontrivial geodesics that start at p. By
7.4, the triangle inequality holds for ∡ on Sp, so (Sp,∡) forms a semi-
metric space; that is, ∡ satisfies all the conditions of a metric on
Sp, except that the angle between distinct geodesics might vanish.

The metric space corresponding to (Sp,∡) is called the space of
geodesic directions at p, denoted by Σ′

p or Σ′
pX . Elements of

Σ′
p are called geodesic directions at p. Each geodesic direction is

formed by an equivalence class of geodesics in Sp for the equivalence
relation

[px] ∼ [py] ⇐⇒ ∡[p x
y ] = 0.

The completion of Σ′
p is called the space of directions at p and

is denoted by Σp or ΣpX . Elements of Σp are called directions at p.
The Euclidean cone ConeΣp over the space of directions Σp is

called the tangent space at p and is denoted by Tp or TpX .

10.1. Exercise. Assume U is a proper length CAT(0) space with
extendable geodesics; that is, any geodesic is an arc in a local geodesic
R → U .

111
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Show that the space of geodesic directions at any point in U is
complete.

Does the statement remain true if U is complete, but not required
to be proper?

The tangent space Tp could also be defined directly, without in-
troducing the space of directions. To do so, consider the set Tp of all
geodesics with constant-speed parametrizations starting at p. Given
α, β ∈ Tp, set

➊ |α− β|Tp
= lim

ε→0

|α(ε)− β(ε)|X
ε

Since the angles in X are defined, ➊ defines a semimetric on Tp.
The corresponding metric space admits a natural isometric identi-

fication with the cone T′
p = ConeΣ′

p. The elements of T′
p are equiva-

lence classes for the relation

α ∼ β ⇐⇒ |α(t)− β(t)|X = o(t).

The completion of T′
p is therefore naturally isometric to Tp.

Elements of Tp will be called tangent vectors at p, regardless of
the fact that Tp is only a metric cone and need not be a vector space.
Elements of T′

p will be called geodesic tangent vectors at p.

10.2. Exercise. Let X be a complete length CAT(0) space. Show that
for any point p ∈ X the tangent space TpX is isometric to a subset of
the ultra-tangent space Tω

pX (defined in 6F).
Use 7.8 to conclude that TpX is CAT(0).

10.3. Exercise. Let X be a complete length CAT(0) space. Show
that for any point p ∈ X the tangent space TpX is a length space.

B Suspension
Suspension is a spherical analog of cone construction (7D).

The suspension V = SuspU over a metric space U is defined as
the metric space whose underlying set consists of equivalence classes
in [0, π]× U with the equivalence relation “∼” given by (0, p) ∼ (0, q)
and (π, p) ∼ (π, q) for any points p, q ∈ U , and whose metric is given
by the spherical cosine rule

cos |(p, s)− (q, t)|SuspU = cos s· cos t− sin s· sin t· cosα,

where α = min{π, |p− q|U}.
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The points in V formed by the equivalence classes of 0 × U and
π × U are called the north and the south poles of the suspension.

10.4. Exercise. Let U be a metric space. Show that the spaces

R× ConeU and Cone[SuspU ]

are isometric.

The following statement is a direct analog of 7.11 and it can be
proved along the same lines.

10.5. Proposition. Let U be a metric space. Then SuspU is CAT(1)
if and only if U is CAT(1).

C Definitions

10.6. Definition. A length space P is called a (spherical) polyhe-
dral space if it admits a finite triangulation τ such that every simplex
in τ is isometric to a simplex in a Euclidean space (or respectively a
unit sphere) of appropriate dimension.

By a triangulation of a polyhedral space we will always un-
derstand a triangulation as above.

Note that according to the above definition, all polyhedral spaces
are compact. However, most of the statements below admit straight-
forward generalizations to local ly polyhedral spaces; that is, com-
plete length spaces, any point of which admits a closed neighborhood
isometric to a polyhedral space. The latter class of spaces includes in
particular infinite covers of polyhedral spaces.

The dimension of a polyhedral space P is defined as the maximal
dimension of the simplices in one (and therefore any) triangulation
of P.

Links. Let P be a polyhedral space and σ be a simplex in a triangu-
lation τ of P.

The simplices that contain σ form an abstract simplicial complex
called the l ink of σ, denoted by Linkσ. If m is the dimension of σ,
then the set of vertices of Linkσ is formed by the (m + 1)-simplices
that contain σ; the set of its edges is formed by the (m+ 2)-simplices
that contain σ; and so on.

The link Linkσ can be identified with the subcomplex of τ formed
by all the simplices σ′ such that σ ∩ σ′ = ∅ but both σ and σ′ are
faces of a simplex of τ .

The points in Linkσ can be identified with the normal directions to
σ at a point in its interior. The angle metric between directions makes
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Linkσ into a spherical polyhedral space. We will always consider the
link with this metric.

Tangent space and space of directions. Let P be a polyhedral
space (Euclidean or spherical) and τ be its triangulation. If a point
p ∈ P lies in the interior of a k-simplex σ of τ then the tangent space
Tp = TpP is naturally isometric to

Ek × (ConeLinkσ).

Equivalently, the space of directions Σp = ΣpP can be isometrically
identified with the k-times iterated suspension over Linkσ; that is,

Σp
iso
== Suspk(Linkσ).

If P is an m-dimensional polyhedral space, then for any p ∈ P the
space of directions Σp is a spherical polyhedral space of dimension at
most m− 1.

In particular, for any point p in σ, the isometry class of Linkσ
together with k = dimσ determines the isometry class of Σp, and the
other way around — Σp and k determines the isometry class of Linkσ.

A small neighborhood of p is isometric to a neighborhood of the
tip of ConeΣp. (If P is a spherical polyhedral space, then a small
neighborhood of p is isometric to a neighborhood of the north pole
in SuspΣp.) In fact, if this property holds at any point of a compact
length space P, then P is a polyhedral space [90].

D CAT test
The following theorem provides a combinatorial description of polyhe-
dral spaces with curvature bounded above.

10.7. Theorem. Let P be a polyhedral space and τ be its triangula-
tion. Then P is locally CAT(0) if and only if the link of each simplex
in τ has no closed local geodesic shorter than 2·π.

Analogously, let P be a spherical polyhedral space and τ be its tri-
angulation. Then P is CAT(1) if and only if neither P nor the link of
any simplex in τ has a closed local geodesic shorter than 2·π.

Proof. The “only if” part follows from 8.1, 10.5, and 7.11.
To prove the “if” part, we apply induction on dimP. The base case

dimP = 0 is evident. Let us start with the CAT(1) case.

Step. Assume that the theorem is proved in the case dimP < m.
Suppose dimP = m.
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Fix a point p ∈ P. A neighborhood of p is isometric to a neighbor-
hood of the north pole in the suspension over the space of directions Σp.

Note that Σp is a spherical polyhedral space, and its links are
isometric to links of P. By the induction hypothesis, Σp is CAT(1).
Thus, by the second part of Exercise 7.11, P is locally CAT(1).

Applying the second part of Corollary 9.9, we get the statement.
The CAT(0) case is done in exactly the same way except we need

to use the first part of Exercise 7.11 and the first part of Corollary 9.9
on the last step.

10.8. Exercise. Let P be a polyhedral space such that any two points
can be connected by a unique geodesic. Show that P is CAT(0).

10.9. Advanced exercise. Construct a Euclidean polyhedral metric
on S3 such that the total angle around each edge in its triangulation is
at least 2·π.

E Flag complexes

10.10. Definition. A simplicial complex S is called f lag if whenever
{v0, . . . , vk} is a set of distinct vertices of S that are pairwise joined
by edges, then the vertices v0, . . . , vk span a k-simplex in S.

If the above condition is satisfied for k = 2, then we say that S
satisfies the no-triangle condit ion.

Note that every flag complex is determined by its one-skeleton.
Moreover, for any graph, its cl iques (that is, complete subgraphs)
define a flag complex. For that reason, flag complexes are also called
cl ique complexes.

10.11. Exercise. Show that the barycentric subdivision of any sim-
plicial complex is a flag complex.

Use the flag condition (see 10.14 below) to conclude that any finite
simplicial complex is homeomorphic to a proper length CAT(1) space.

10.12. Proposition. A simplicial complex S is flag if and only if
S as well as all the links of all its simplices satisfy the no-triangle
condition.

From the definition of flag complex, we get the following.

10.13. Observation. Any link of any simplex in a flag complex is
flag.
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Proof of 10.12. By Observation 10.13, the no-triangle condition holds
for any flag complex and the links of all its simplices.

Now assume that a complex S and all its links satisfy the no-
triangle condition. It follows that S includes a 2-simplex for each
triangle. Applying the same observation for each edge we get that S
includes a 3-simplex for any complete graph with 4 vertices. Repeating
this observation for triangles, 4-simplices, 5-simplices, and so on, we
get that S is flag.

All-right triangulation. A triangulation of a spherical polyhedral
space is called an all-r ight triangulation if each simplex of the
triangulation is isometric to a spherical simplex all of whose angles are
right. Similarly, we say that a simplicial complex is equipped with an
all-r ight spherical metric if it is a length metric and each simplex
is isometric to a spherical simplex all of whose angles are right.

Spherical polyhedral CAT(1) spaces glued from right-angled sim-
plices admit the following characterization discovered by Mikhael Gro-
mov [63, p. 122].

10.14. Flag condition. Assume that a spherical polyhedral space P
admits an all-right triangulation τ . Then P is CAT(1) if and only if
τ is flag.

Proof; only-if part. Assume there are three vertices v1, v2 and v3 of
τ that are pairwise joined by edges but do not span a triangle. Note
that in this case

∡[v1 v2

v3 ] = ∡[v2 v3

v1 ] = ∡[v3 v1

v2 ] = π.

Equivalently,

➊ The product of the geodesics [v1v2], [v2v3] and [v3v1] forms a locally
geodesic loop in P of length 3

2 ·π.

Now assume that P is CAT(1). Then by 10.7, Linkσ P is CAT(1)
for every simplex σ in τ .

Each of these links is an all-right spherical complex and by 10.7,
none of these links can contain a geodesic circle shorter than 2·π.

Therefore Proposition 10.12 and ➊ imply the “only if” part.

If part. By 10.13 and 10.7, it is sufficient to show that any closed local
geodesic γ in a flag complex S with all-right metric has length at least
2·π.

Recall that the closed star of a vertex v (briefly Starv) is formed
by all the simplices containing v. Similarly, Starv, the open star of v, is
the union of all simplices containing v with faces opposite v removed.



E. FLAG COMPLEXES 117

Choose a vertex v such that Starv contains a point γ(t0) of γ.
Consider the maximal arc γv of γ that contains the point γ(t0) and
runs in Starv. Note that the distance |v − γv(t)|P behaves in exactly
the same way as the distance from the north pole in S2 to a geodesic
in the north hemisphere; that is, there is a geodesic γ̃v in the north
hemisphere of S2 such that for any t we have

|v − γv(t)|P = |n− γ̃v(t)|S2 ,

where n denotes the north pole of S2. In particular,

length γv = π;

that is, γ spends time π on every visit to Starv.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv v′

γvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγvγv

StarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarvStarv

Starv′

After leaving Starv, the local geo-
desic γ has to enter another simplex,
say σ′. Since τ is flag, the simplex σ′

has a vertex v′ not joined to v by an
edge; that is,

Starv ∩Starv′ = ∅

The same argument as above shows that γ spends time π on every
visit to Starv′ . Therefore the total length of γ is at least 2·π.

10.15. Exercise. Assume that a spherical polyhedral space P ad-
mits a triangulation τ such that all edge lengths of all simplices are at
least π

2 . Show that P is CAT(1) if τ is flag.

10.16. Exercise. Let P be a convex polyhedron in E3 with n faces
F1, . . . , Fn. Suppose that each face of P has only obtuse or right angles.
Let us take 2n copies of P indexed by an n-bit array. Glue two copies
of P along Fi if their arrays differ only in i-th bit. Show that the
obtained space is a locally CAT(0) topological manifold.

The space of trees. The following construction is given by Louis
Billera, Susan Holmes, and Karen Vogtmann [22].

Let Tn be the set of all metric trees with n end vertices labeled
by a1, . . . , an. To describe one tree in Tn we may fix a topological
tree t with end vertices a1, . . . , an , and all other vertices of degree 3,
and prescribe the lengths of 2·n − 3 edges. If the length of an edge
vanishes, we assume that this edge degenerates; such a tree can be
also described using a different topological tree t′. The subset of Tn
corresponding to the given topological tree t can be identified with the
octant {

(x1, . . . , x2·n−3) ∈ R2·n−3 : xi ⩾ 0
}
.
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Equip each such subset with the metric induced from R2·n−3 and con-
sider the length metric on Tn induced by these metrics.

10.17. Exercise. Show that Tn with the described metric is CAT(0).

F Remarks
Let us formulate a test for spaces with lower curvature bound.

10.18. Theorem. Let P be a polyhedral space and τ be a triangula-
tion of P. Then P is CBB(0) if and only if the following conditions
hold.
(a) τ is pure; that is, any simplex in τ is a face of some simplex of

dimension exactly m.
(b) The link of any simplex of dimension m− 1 is formed by single

point or two points.
(c) The link of any simplex of dimension ⩽ m− 2 is connected.
(d) Any link of any simplex of dimension m − 2 has diameter at

most π.

The proof relies on 9.12. The condition (c) can be reformulated in
the following way:
(c)′ Any path γ in P is a limit of paths that cross only simplexes of

dimension m and m− 1.
Further, modulo the other conditions, the condition (d) is equiva-

lent to the following:
(d)′ The link of any simplex of dimension m − 2 is isometric to a

circle of length ⩽ 2·π or a closed real interval of length ⩽ π.



Lecture 11

Exotic aspherical
manifolds

This lecture is nearly a copy of [4, Sections 3.6–3.8]; here we describe a
set of rules for gluing Euclidean cubes that produce a locally CAT(0)
space and use these rules to construct exotic examples of aspherical
manifolds.

A Cubical complexes

The definition of a cubical complex mostly repeats the definition of a
simplicial complex, with simplices replaced by cubes.

Formally, a cubical complex is defined as a subcomplex of the
unit cube in the Euclidean space RN of large dimension; that is, a
collection of faces of the cube such that together with each face it
contains all its sub-faces. Each cube face in this collection will be
called a cube of the cubical complex.

Note that according to this definition, any cubical complex is finite.
The union of all the cubes in a cubical complex Q will be called its

underlying space. A homeomorphism from the underlying space of
Q to a topological space X is called a cubulation of X .

The underlying space of a cubical complex Q will be always con-
sidered with the length metric induced from RN . In particular, with
this metric, each cube of Q is isometric to the unit cube of the corre-
sponding dimension.

It is straightforward to construct a triangulation of the underlying
space of Q such that each simplex is isometric to a Euclidean simplex.
In particular, the underlying space of Q is a Euclidean polyhedral
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space.
The link of a cube in a cubical complex is defined similarly to the

link of a simplex in a simplicial complex. It is a simplicial complex that
admits a natural all-right triangulation — each simplex corresponds to
an adjusted cube.

Cubical analog of a simplicial complex. Let S be a finite simpli-
cial complex and {v1, . . . , vN} be the set of its vertices.

Consider RN with the standard basis {e1, . . . , eN}. Denote by □N

the standard unit cube in RN ; that is,

□N =
{
(x1, . . . , xN ) ∈ RN : 0 ⩽ xi ⩽ 1 for each i

}
.

Given a k-dimensional simplex ⟨vi0 , . . . , vik⟩ in S, mark the (k+1)-
dimensional faces in □N (there are 2N−k of them) which are parallel
to the coordinate (k + 1)-plane spanned by ei0 , . . . , eik .

Note that the set of all marked faces of □N forms a cubical complex;
it will be called the cubical analog of S and will be denoted as □S .

11.1. Proposition. Let S be a finite connected simplicial complex
and Q = □S be its cubical analog. Then the underlying space of Q is
connected and the link of any vertex of Q is isometric to S equipped
with the spherical right-angled metric.

In particular, if S is a flag complex, then Q is a locally CAT(0),
and therefore its universal cover Q̃ is CAT(0).

Proof. The first part of the proposition follows from the construction
of □S .

If S is flag, then by the flag condition (10.14) the link of any cube
in Q is CAT(1). Therefore, by the cone construction (7.11) Q is locally
CAT(0). It remains to apply the globalization theorem (9.6).

From Proposition 11.1, it follows that the cubical analog of any flag
complex is aspherical. The following exercise states that the converse
also holds; see [52, 5.4].

11.2. Exercise. Show that a finite simplicial complex is flag if and
only if its cubical analog is aspherical.

B Construction
By 7.16, any complete length CAT(0) space is contractible. Therefore,
by the globalization theorem (9.6), all proper length, locally CAT(0)
spaces are aspherical; that is, they have contractible universal cov-
ers. This observation can be used to construct examples of aspherical
spaces.
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Let X be a proper topological space. Recall that X is called sim-
ply connected at infinity if for any compact set K ⊂ X there is
a bigger compact set K ′ ⊃ K such that X \K ′ is path-connected and
any loop which lies in X \K ′ is null-homotopic in X \K.

Recall that path-connected spaces are not empty by definition.
Therefore compact spaces are not simply connected at infinity.

The following example was constructed by Michael Davis [51].

11.3. Proposition. For any m ⩾ 4 there is a closed aspherical m-
dimensional manifold whose universal cover is not simply connected at
infinity.

In particular, the universal cover of this manifold is not homeo-
morphic to the m-dimensional Euclidean space.

The proof requires the following lemma.

11.4. Lemma. Let S be a finite flag complex, Q = □S be its cubical
analog and Q̃ be the universal cover of Q.

Assume Q̃ is simply connected at infinity. Then S is simply con-
nected.

Proof. Assume S is not simply connected. Equip S with an all-right
spherical metric. Choose a shortest noncontractible circle γ : S1 → S
formed by the edges of S.

Note that γ forms a one-dimensional subcomplex of S which is
a closed local geodesic. Denote by G the subcomplex of Q which
corresponds to γ.

Fix a vertex v ∈ G; let Gv be the connected component of v in G.
Let G̃ be a connected component of the inverse image of Gv in Q̃ for
the universal cover Q̃ → Q. Fix a point ṽ ∈ G̃ in the inverse image
of v.

ξ

ζ

e

Note that

➊ G̃ is a convex set in Q̃.

Indeed, according to Proposition 11.1, Q̃ is
CAT(0). By Exercise 7.24, it is sufficient to show
that G̃ is locally convex in Q̃, or equivalently, G is
locally convex in Q.

Note that the latter can only fail if γ contains two vertices, say ξ
and ζ in S, which are joined by an edge not in γ; denote this edge
by e.

Each edge of S has length π
2 . Therefore each of two circles formed

by e and an arc of γ from ξ to ζ is shorter than γ. Moreover, at least
one of them is noncontractible since γ is noncontractible. That is, γ
is not a shortest noncontractible circle, a contradiction. △
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Further, note that G̃ is homeomorphic to the plane since G̃ is a
two-dimensional manifold without boundary which by the above is
CAT(0) and hence is contractible.

Denote by CR the circle of radius R in G̃ centered at ṽ. All CR

are homotopic to each other in G̃ \ {ṽ} and therefore in Q̃ \ {ṽ}.
Note that the map Q̃ \ {ṽ} → S which returns the direction of [ṽx]

for any x ̸= ṽ, maps CR to a circle homotopic to γ. Therefore CR is
not contractible in Q̃ \ {ṽ}.

If R is large, the circle CR lies outside of any fixed compact set K ′

in Q̃. From above CR is not contractible in Q̃ \K if K ⊃ ṽ. It follows
that Q̃ is not simply connected at infinity, a contradiction.

The proof of the following exercise is analogous. It will be used
later in the proof of Proposition 11.6 — a more geometric version of
Proposition 11.3.

11.5. Exercise. Under the assumptions of Lemma 11.4, for any ver-
tex v in S the complement S \ {v} is simply connected.

Proof of 11.3. Let Σm−1 be an (m− 1)-dimensional smooth homology
sphere that is not simply connected, and bounds a contractible smooth
compact m-dimensional manifold W.

For m ⩾ 5, the existence of such (W,Σ) is proved by Michel Ker-
vaire [83]. For m = 4, it follows from construction of Barry Mazur [95].

Pick any triangulation τ of W and let S be the resulting subcom-
plex that triangulates Σ.

We can assume that S is flag; otherwise, pass to the barycentric
subdivision of τ and apply Exercise 10.11.

Let Q = □S be the cubical analog of S.
By Proposition 11.1, Q is a homology manifold. It follows that Q

is a piecewise linear manifold with a finite number of singularities at
its vertices.

Removing a small contractible neighborhood Vv of each vertex v
in Q, we can obtain a piecewise linear manifold N whose boundary is
formed by several copies of Σ.

Let us glue a copy of W along its boundary to each copy of Σ in
the boundary of N . This results in a closed piecewise linear manifold
M which is homotopically equivalent to Q.

Indeed, since both Vv and W are contractible, the identity map of
their common boundary Σ can be extended to a homotopy equivalence
Vv → W relative to the boundary. Therefore the identity map on N
extends to homotopy equivalences f : Q → M and g : M → Q.

Finally, by Lemma 11.4, the universal cover Q̃ of Q is not simply
connected at infinity.
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The same holds for the universal cover M̃ of M. The latter follows
since the constructed homotopy equivalences f : Q → M and g : M →
→ Q lift to proper maps f̃ : Q̃ → M̃ and g̃ : M̃ → Q̃; that is, for
any compact sets A ⊂ Q̃ and B ⊂ M̃, the inverse images g̃−1(A) and
f̃−1(B) are compact.

The following proposition was proved by Fredric Ancel, Michael
Davis, and Craig Guilbault [10]; it could be considered as a more
geometric version of Proposition 11.3.

11.6. Proposition. Given m ⩾ 5, there is a Euclidean polyhedral
space P such that:
(a) P is homeomorphic to a closed m-dimensional manifold.
(b) P is locally CAT(0).
(c) The universal cover of P is not simply connected at infinity.

Dale Rolfsen [119] has shown that there are no three-dimensional
examples of that type. Paul Thurston [128] conjectured that the same
holds in the four-dimensional case.

Proof. Apply Exercise 11.5 to the barycentric subdivision of the sim-
plicial complex S provided by Exercise 11.7.

11.7. Exercise. Given an integer m ⩾ 5, construct a finite (m− 1)-
dimensional simplicial complex S such that ConeS is homeomorphic
to Em and π1(S \ {v}) ̸= 0 for some vertex v in S.

C Remarks
As was mentioned earlier, the motivation for the notion of CAT(κ)
spaces comes from the fact that a Riemannian manifold is locally
CAT(κ) if and only if it has sectional curvature at most κ. This easily
follows from Rauch comparison for Jacobi fields and Proposition 7.19.

In the globalization theorem (9.6), properness can be weakened to
completeness [see 5, and the references therein].

The condition on polyhedral CAT(κ) spaces given in Theorem 10.7
might look easy to use, but in fact, it is hard to check even in very
simple cases. For example, the description of those coverings of S3
branching at three great circles which are CAT(1) requires quite a bit
of work [46] — try to guess the answer before reading.

Another example is the space Bn that is the universal cover of Cn

infinitely branching in complex hyperplanes zi = zj with the induced
length metric. So far it is not known if Bn is CAT(0) for any n ⩾ 4
[105]. Understanding this space could be helpful for studying the braid
group. This circle of questions is closely related to the generalization of
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the flag condition (10.14) to spherical simplices with few acute dihedral
angles.

The construction used in the proof of Proposition 11.3 admits a
number of interesting modifications, several of which are discussed in
a survey by Michael Davis [52].

A similar argument was used by Michael Davis, Tadeusz Januszkie-
wicz, and Jean-François Lafont [54]. They constructed a closed smooth
four-dimensional manifold M with universal cover M̃ diffeomorphic to
R4, such that M admits a polyhedral metric which is locally CAT(0),
but does not admit a Riemannian metric with nonpositive sectional
curvature. Another example of that type was constructed by Stephan
Stadler [125]. There are no lower-dimensional examples of this type —
the two-dimensional case follows from the classification of surfaces, and
the three-dimensional case follows from the geometrization conjecture.

It is noteworthy that any complete, simply connected Riemann-
ian manifold with nonpositive curvature is homeomorphic to the Eu-
clidean space of the same dimension. In fact, by the globalization
theorem (9.6), the exponential map at a point of such a manifold is
a homeomorphism. In particular, there is no Riemannian analog of
Proposition 11.6.

Recall that a triangulation of an m-dimensional manifold defines a
piecewise linear structure if the link of every simplex ∆ is homeomor-
phic to the sphere of dimension m− 1− dim∆. According to Stone’s
theorem [53, 126], the triangulation of P in Proposition 11.6 cannot
be made piecewise linear — despite the fact that P is a manifold, its
triangulation does not induce a piecewise linear structure.

The flag condition also leads to the so-called hyperbol ization
procedure, a flexible tool for constructing aspherical spaces; a good
survey on the subject is given by Ruth Charney and Michael Davis
[47].

The CAT(0) property of a cube complex admits interesting (and
useful) geometric descriptions if one exchanged the ℓ2-metric to a nat-
ural ℓ1 or ℓ∞ on each cube.

11.8. Theorem. The following three conditions are equivalent.
(a) A cube complex Q equipped with ℓ2-metric is CAT(0).
(b) A cube complex Q equipped with ℓ∞-metric is injective.
(c) A cube complex Q equipped with ℓ1-metric is median. The latter

means that for any three points x, y, z there is a unique point
m (it is called the median of x, y, and z) that lies on some
geodesics [xy], [xz] and [yz].

A very readable paper on the subject was written by Brian Bow-
ditch [30]; two easy parts of the theorem are included in the following
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exercise.

11.9. Exercise. Prove the implication (b)⇒(a) and/or (c)⇒(a) in
the theorem.

All the topics discussed in this lecture link Alexandrov geometry
with the fundamental group. The theory of hyperbol ic groups, a
branch of geometric group theory, introduced by Mikhael Gro-
mov [63], could be considered as a further step in this direction.

A striking result that connects this topic with injective envelopes
obtained by Urs Lang [88]. In particular, he proved that injective
envelope of word hyperbolic groups is finite dimensional.
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Lecture 12

Subsets

This lecture is nearly a copy of [4, Chapter 4]; here we give a partial
answer to the following question: Which subsets of Euclidean space,
equipped with their induced length-metrics, are CAT(0)?

A Motivating examples
Consider three subgraphs of different quadric surfaces:

A =
{
(x, y, z) ∈ E3 : z ⩽ x2 + y2

}
,

B =
{
(x, y, z) ∈ E3 : z ⩽ −x2 − y2

}
,

C =
{
(x, y, z) ∈ E3 : z ⩽ x2 − y2

}
.

12.1. Question. Which of the sets A, B and C, if equipped with the
induced length metric, are CAT(0) and why?

The answers are given below, but it is instructive to think about
these questions before reading further.

A. No, A is not CAT(0).
The boundary ∂A is the paraboloid described by z = x2 + y2; in

particular it bounds an open convex set in E3 whose complement is A.
The closest point projection of A → ∂A is short (Exercise 7.23). It
follows that ∂A is a convex set in A equipped with its induced length
metric.

Therefore if A is CAT(0), then so is ∂A. The latter is not true:
∂A is a smooth convex surface, and has strictly positive curvature by
the Gauss formula.

B. Yes, B is CAT(0).

127
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Evidently B is a convex closed set in E3. Therefore the length met-
ric on B coincides with the Euclidean metric and CAT(0) comparison
holds.

C. Yes, C is CAT(0), but the proof is not as easy as before. We give
a sketch here; a complete proof of a more general statement is given
in Section 12C.

Set ft(x, y) = x2 − y2 − 2·(x − t)2. Consider the one-parameter
family of sets

Vt =
{
(x, y, z) ∈ E3 : z ⩽ ft(x, y)

}
.

Each set Vt is a solid paraboloid tangent to ∂C
along the parabola y 7→ (t, y, t2 − y2). The set Vt is
closed and convex for any t, and

C =
⋃
t

Vt.

Further note that the function t 7→ ft(x, y) is concave for any fixed
x, y. Therefore

➊ if a < b < c, then Vb ⊃ Va ∩ Vc.

Consider the finite union

C ′ = Vt1 ∪ · · · ∪ Vtn .

The inclusion ➊ makes it possible to apply Reshetnyak gluing theorem
8.3 recursively and show that C ′ is CAT(0).

By approximation, the CAT(0) comparison holds for any 4 points
in C; hence C is CAT(0). More precisely, choose x1, x2, x3, x4 ∈ C and
6 geodesics [xixj ]C between them. Choose ε > 0, shift each [xixj ]C
down by ε, and reconnect it to xi and xj by vertical ε-segments. De-
note the obtained curve by γi,j ; note that

length γi,j = |xi − xj |C + 2·ε.

We may assume that C ′ contains all γi,j . It follows that

|xi − xj |C ⩽ |xi − xj |C′ ⩽ |xi − xj |C + 2·ε

Since and C ′ is CAT(0), ε > 0 is arbitrary, so is C.

Remark. The set C is not convex, but it is two-convex as defined in
the next section. As you will see, two-convexity is closely related to
the inheritance of an upper curvature bound by a subset.
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B Two-convexity

12.2. Definition. We say that a subset K ⊂ Em is two-convex if
the following condition holds for any plane W ⊂ Em: If γ is a simple
closed curve in W ∩ K that is null-homotopic in K, then it is null-
homotopic in W ∩ K, and in particular the disc in W bounded by γ
lies in K.

Note that two-convex sets do not have to be connected or simply
connected. The following two propositions follow immediately from
the definition.

12.3. Proposition. Any subset in E2 is two-convex.

12.4. Proposition. The intersection of an arbitrary collection of
two-convex sets in Em is two-convex.

12.5. Proposition. Show that the interior of any two-convex set in
Em is a two-convex set.

Proof. Fix a two-convex set K ⊂ Em and a 2-plane W ; denote by
IntK the interior of K. Let γ be a closed simple curve in W ∩ IntK
that is contractible in the interior of K.

Since K is two-convex, the plane disc D bounded by γ lies in K.
The same holds for the translations of D by small vectors. Therefore
D lies in IntK; that is, IntK is two-convex.

12.6. Definition. Given a subset K ⊂ Em, define its two-convex
hull (briefly, Conv2K) as the intersection of all two-convex subsets
containing K.

Note that by Proposition 12.4, the two-convex hull of any set is
two-convex. Further, by 12.5, the two-convex hull of an open set is
open.

The next proposition describes closed two-convex sets with smooth
boundary.

12.7. Proposition. Let K ⊂ Em be a closed subset.
Assume that the boundary of K is a smooth hypersurface S. Con-

sider the unit normal vector field ν on S that points outside of K.
Denote by k1 ⩽ . . . ⩽ km−1 the principal curvature functions of S
with respect to ν (note that if K is convex, then k1 ⩾ 0).

Then K is two-convex if and only if k2(p) ⩾ 0 for any point p ∈ S.
Moreover, if k2(p) < 0 at some point p, then Definition 12.2 fails for
some curve γ forming a triangle in an arbitrary small neighborhood
of p.



130 LECTURE 12. SUBSETS

The following proof was given by Mikhael Gromov [64, §½], but we
added a few details. The proof uses a straightforward modification
of the Morse theory for manifolds with boundary; the paper of Sergei
Vakhrameev [134] contains all the necessary lemmas.

Proof; only-if part. If k2(p) < 0 for some p ∈ S, consider the plane
W containing p and spanned by the first two principal directions at p.
Choose a small triangle in W which surrounds p and move it slightly in
the direction of ν(p). We get a triangle [xyz] which is null-homotopic
in K, but the solid triangle ∆ = Conv{x, y, x} bounded by [xyz] does
not lie in K completely. Therefore K is not two-convex. (See figure
in the “only if” part of the smooth two-convexity theorem (12.10).)

If part. Recall that a smooth function f : Em → R is called strongly
convex if its Hessian is positive definite at each point.

Suppose f : Em → R is a smooth strongly convex function such that
the restriction f |S is a Morse function. Note that a generic smooth
strongly convex function f : Em → R has this property.

For a critical point p of f |S , the outer normal vector ν(p) is parallel
to the gradient ∇pf ; we say that p is a posit ive crit ical point if
ν(p) and ∇pf point in the same direction, and negative otherwise. If
f is generic, then we can assume that the sign is defined for all critical
points; that is, ∇pf ̸= 0 for any critical point p of f |S .

Since k2 ⩾ 0 and the function f is strongly convex, the negative
critical points of f |S have index at most 1.

Given a real value s, set

Ks = {x ∈ K : f(x) < s } .

Assume φ0 : D → K is a continuous map of the disc D such that
φ0(∂D) ⊂ Ks.

Note that by the Morse lemma, there is a homotopy φt : D → K
rel ∂D such that φ1(D) ⊂ Ks.

Indeed, we can construct a homotopy φt : D → K that decreases
the maximum of f ◦ φ on D until the maximum occurs at a critical
point p of f |S . This point cannot be negative; otherwise, its index
would be at least 2. If this critical point is positive, then it is easy to
decrease the maximum a little by pushing the disc from S into K in
the direction of −∇fp.

Consider a closed curve γ : S1 → K that is null-homotopic in K.
Note that the distance function

f0(x) = |Conv γ − x|Em

is convex. Therefore f0 can be approximated by smooth strongly con-
vex functions f in general position. From above, there is a disc in
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K with boundary γ that lies arbitrarily close to Conv γ. Since K is
closed, the statement follows.

Note that the “if” part proves a somewhat stronger statement.
Namely, any plane curve γ (not necessary simple) which is contractible
in K is also contractible in the intersection of K with the plane of γ.
The latter condition does not hold for the complement of two planes
in E4, which is two-convex by Proposition 12.4; see also Exercise 12.18
below. The following proposition shows that there are no such exam-
ples in E3.

12.8. Proposition. Let Ω ⊂ E3 be an open two-convex subset. Then
for any plane W ⊂ E3, any closed curve in W ∩ Ω that is null-
homotopic in Ω is also null-homotopic in W ∩ Ω.

This statement is intuitively obvious, but the proof is not trivial;
it use the following classical result. An alternative definition of two-
convexity using homology instead of homotopy is mentioned in the last
section. For this definition the proof is simpler.

12.9. Loop theorem. Let M be a three-dimensional manifold with
nonempty boundary ∂M . Assume f : (D, ∂D) → (M,∂M) is a continu-
ous map from the disc D such that the boundary curve f |∂D is not null-
homotopic in ∂M . Then there is an embedding h : (D, ∂D) → (M,∂M)
with the same property.

The theorem is due to Christos Papakyriakopoulos [a proof can be
found in 70].

Proof of 12.8. Fix a closed plane curve γ in W ∩ Ω that is null-
homotopic in Ω. Suppose γ is not contractible in W ∩ Ω.

Let φ : D → Ω be a map of the disc with the boundary curve γ.
Since Ω is open we can first change φ slightly so that φ(x) /∈W for

1 − ε < |x| < 1 for some small ε > 0. By further changing φ slightly
we can assume that it is transversal to W on IntD and agrees with
the previous map near ∂D.

This means that φ−1(W ) ∩ IntD consists of finitely many simple
closed curves which cut D into several components. Consider one of
the “innermost” components c′; that is, c′ is a boundary curve of a
disc D′ ⊂ D, φ(c′) is a closed curve in W and φ(D′) completely lies in
one of the two half-spaces with boundary W . Denote this half-space
by H.

If φ(c′) is not contractible inW∩Ω, then applying the loop theorem
to M3 = H ∩ Ω we conclude that there exists a simple closed curve
γ′ ⊂ Ω ∩W which is not contractible in Ω ∩W but is contractible in
Ω ∩H. This contradicts two-convexity of Ω.
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Hence φ(c′) is contractible in W ∩Ω. Therefore φ can be changed
in a small neighborhood U of D′ so that the new map φ̂ maps U to one
side of W . In particular, the set φ̂−1(W ) consists of the same curves
as φ−1(W ) with the exception of c′.

Repeating this process several times we reduce the problem to the
case where φ−1(W ) ∩ IntD = ∅. This means that φ(D) lies entirely
in one of the half-spaces bounded by W .

Again applying the loop theorem, we obtain a simple closed curve
in W ∩Ω which is not contractible in W ∩Ω but is contractible in Ω.
This again contradicts two-convexity of Ω. Hence γ is contractible in
W ∩ Ω as claimed.

C Sets with smooth boundary

In this section, we characterize the subsets with smooth boundary in
Em that form CAT(0) spaces.

12.10. Smooth two-convexity theorem. Let K be a closed, sim-
ply connected subset in Em equipped with the induced length metric.
Assume K is bounded by a smooth hypersurface. Then K is CAT(0)
if and only if K is two-convex.

This theorem is a baby case of a result of Stephanie Alexander,
David Berg, and Richard Bishop [1], which is briefly discussed at the
end of the lecture. The proof below is based on the argument in Section
12A.

Proof. Denote by S and by Ω the boundary and the interior of K re-
spectively. Since K is connected and S is smooth, Ω is also connected.

Denote by k1(p) ⩽ . . . ⩽ km−1(p) the principal curvatures of S
at p ∈ S with respect to the normal vector ν(p) pointing out of K.
By Proposition 12.7, K is two-convex if and only if k2(p) ⩾ 0 for any
p ∈ S.

Only-if part. Assume K is not two-convex. Then by Proposition 12.7,
there is a triangle [xyz] in K which is null-homotopic in K, but the
solid triangle ∆ = Conv{x, y, z} does not lie in K completely. Evi-
dently the triangle [xyz] is not thin in K. Hence K is not CAT(0).

If part. Since K is simply connected, by the globalization theorem
(9.6) it suffices to show that any point p ∈ K admits a CAT(0) neigh-
borhood.

If p ∈ IntK, then it admits a neighborhood isometric to a CAT(0)
subset of Em. Fix p ∈ S. Assume that k2(p) > 0. Fix a sufficiently
small ε > 0 and set K ′ = K ∩ B[p, ε]. Let us show that
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➊ K ′ is CAT(0).

Consider the coordinate system with the origin at p and the prin-
cipal directions and ν(p) as the coordinate directions. For small ε > 0,
the set K ′ can be described as a subgraph

K ′ =
{
(x1, . . . , xm) ∈ B[p, ε] : xm ⩽ f(x1, . . . , xm−1

}
.

Fix s ∈ [−ε, ε]. Since ε is small and k2(p) > 0, the restriction f |x1=s

is concave in the (m− 2)-dimensional cube defined by the inequalities
|xi| < 2·ε for 2 ⩽ i ⩽ m− 1.

Fix a negative real value λ < k1(p). Given s ∈ (−ε, ε), consider
the set

Vs =
{
(x1, . . . , xm) ∈ K ′ : xm ⩽ f(x1, . . . , xm−1) + λ·(x1 − s)2

}
.

Note that the function

(x1, . . . , xm−1) 7→ f(x1, . . . , xm−1) + λ·(x1 − s)2

is concave near the origin. Since ε is small, we can assume that the Vs
are convex subsets of Em.

Further note that
K ′ =

⋃
s∈[−ε,ε]

Vs.

Also, the same argument as in 12.1 shows that

➋ If a < b < c, then Vb ⊃ Va ∩ Vc.

Given an array of values s1 < · · · < sk in [−ε, ε], set V i = Vsi and
consider the unions

W i = V 1 ∪ · · · ∪ V i

equipped with the induced length metric.
Note that the array (sn) can be chosen in such a way that W k is

arbitrarily close to K ′ in the sense of Hausdorff.
By Proposition 7.8, in order to prove ➊, it is sufficient to show the

following:

➌ All W i are CAT(0).

This claim is proved by induction. Base: W 1 = V 1 is CAT(0) as a
convex subset in Em.

Step: Assume that W i is CAT(0). According to ➋,

V i+1 ∩W i = V i+1 ∩ V i.
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Moreover, this is a convex set in Em and therefore it is a convex set in
W i and in V i+1. By the Reshetnyak gluing theorem, W i+1 is CAT(0).
Hence the claim follows. △

Note that we have proved the following:

➍ K ′ is CAT(0) if K is strongly two-convex, that is, k2(p) > 0
at any point p ∈ S.

It remains to show that p admits a CAT(0) neighborhood in the
case k2(p) = 0.

Choose a coordinate system (x1, . . . , xm) as above, so that the
(x1, . . . , xm−1)-coordinate hyperplane is the tangent subspace to S
at p.

Fix ε > 0 so that a neighborhood of p in S is the graph

xm = f(x1, . . . , xm−1)

of a function f defined on the open ball B of radius ε centered at
the origin in the (x1, . . . , xm−1)-hyperplane. Fix a smooth positive
strongly convex function φ : B → R+ such that φ(x) → ∞ as x ap-
proaches the boundary of B. Note that for δ > 0, the subgraph Kδ

defined by the inequality

xm ⩽ f(x1, . . . , xm−1)− δ ·φ(x1, . . . , xm−1)

is strongly two-convex. By ➍, Kδ is CAT(0).
Finally as δ → 0, the closed ε-neighborhoods of p in Kδ converge

to the closed ε-neighborhood of p in K. By Proposition 7.8, the ε-
neighborhood of p is CAT(0).

D Open plane sets
In this section, we consider inheritance of upper curvature bounds by
subsets of the Euclidean plane.

12.11. Theorem. Let Ω be an open simply connected subset of E2.
Equip Ω with its induced length metric and denote its completion by K.
Then K is CAT(0).

The assumption that the set Ω is open is not critical; instead one
can assume that the induced length metric takes finite values at all
points of Ω. We sketch the proof given by Richard Bishop [26] and
leave the details to be finished as an exercise. A generalization of
this result is proved by Alexander Lytchak and Stefan Wenger [93,
Proposition 12.1]; this paper also contains a far-reaching application.
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Sketch of proof. It is sufficient to show that any triangle in K is thin,
as defined in 7.18.

Note that K admits a length-preserving map to E2 that extends
the embedding Ω ↪→ E2. Therefore each triangle [xyz] in K can be
mapped to the plane in a length-preserving way. Since Ω is simply
connected, any open region, say ∆, that is surrounded by the image
of [xyz] lies completely in Ω.

x
y

zNote that in each triangle [xyz] in K, the
sides [xy], [yz] and [zx] intersect each other
along a geodesic starting at a common ver-
tex, possibly a one-point geodesic. In other
words, every triangle in K looks like the one
in the diagram.

Indeed, assuming the contrary, there will
be a lune in K bounded by two minimizing geodesics with common
ends but no other common points. The image of this lune in the plane
must have concave sides, since otherwise one could shorten the sides
by pushing them into the interior. Evidently, there is no plane lune
with concave sides, a contradiction.

Note that it is sufficient to consider only simple triangles [xyz],
that is, triangles whose sides [xy], [yz] and [zx] intersect each other
only at the common vertices. If this is not the case, chopping the
overlapping part of sides reduces to the injective case (this is formally
stated in Exercise 12.12).

Again, the open region, say ∆, bounded by the image of [xyz] has
concave sides in the plane, since otherwise one could shorten the sides
by pushing them into Ω. It remains to solve Exercise 12.13.

12.12. Exercise. Assume that [pq] is a common part of the two sides
[px] and [py] of the triangle [pxy]. Consider the triangle [qxy] whose
sides are formed by arcs of the sides of [pxy]. Show that if [qxy] is
thin, then so is [pxy].

12.13. Exercise. Assume S is a closed plane region whose boundary
is a plane triangle T with concave sides. Equip S with the induced
length metric. Show that the triangle T is thin in S.

Here is a spherical analog of Theorem 12.11, which can be proved
along the same lines. It will be used in the next section.

12.14. Proposition. Let Θ be an open connected subset of the unit
sphere S2 that does not contain a closed hemisphere. Equip Θ with the
induced length metric. Let Θ̃ be a metric cover of Θ such that any
closed curve in Θ̃ shorter than 2·π is contractible.
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Show that the completion of Θ̃ is CAT(1).

12.15. Exercise. Prove the following partial case of the proposition:
Let K be closed subset of the unit sphere S2 that does not contain

a closed hemisphere. Suppose K is simply connected and bounded by
a simple Lipschitz curve. Show that K with induced length metric is
CAT(1).

E Shefel’s theorem
In this section, we will formulate our version of a theorem of Samuel
Shefel (12.17) and prove a couple of its corollaries.

It seems that Shefel was very intrigued by the survival of metric
properties under affine transformation. To describe an instance of such
phenomena, note that two-convexity survives under affine transforma-
tions of a Euclidean space. Therefore, as a consequence of the smooth
two-convexity theorem (12.10), the following holds.

12.16. Corollary. Let K be closed connected subset of Euclidean
space equipped with the induced length metric. Assume K is CAT(0)
and bounded by a smooth hypersurface. Then any affine transforma-
tion of K is also CAT(0).

By Corollary 12.19, an analogous statement holds for sets bounded
by Lipschitz surfaces in the three-dimensional Euclidean space. In
higher dimensions this is no longer true.

12.17. Two-convexity theorem. Let Ω be a connected open set
in E3. Equip Ω with the induced length metric and denote by K̃ the
completion of the universal metric cover of Ω. Then K̃ is CAT(0) if
and only if Ω is two-convex.

The proof of this statement will be given in the following three
sections. First we prove its polyhedral analog, then we prove some
properties of two-convex hulls in three-dimensional Euclidean space
and only then do we prove the general statement.

The following exercise shows that the analogous statement does
not hold in higher dimensions.

12.18. Exercise. Let Π1,Π2 be two planes in E4 intersecting at a
single point. Let K̃ be the completion of the universal metric cover of
E4 \ (Π1 ∪Π2).

Show that K̃ is CAT(0) if and only if Π1 ⊥ Π2.

Before coming to the proof of the two-convexity theorem, let us
formulate a few corollaries. The following corollary is a generalization
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of the smooth two-convexity theorem (12.10) for three-dimensional
Euclidean space.

12.19. Corollary. Let K be a closed subset in E3 bounded by a Lips-
chitz hypersurface. Then K with the induced length metric is CAT(0)
if and only if the interior of K is two-convex and simply connected.

Proof. Set Ω = IntK. Since K is simply connected and bounded by a
surface, Ω is also simply connected.

Apply the two-convexity theorem to Ω. Note that the completion
of Ω equipped with the induced length metric is isometric to K with
the induced length metric. Hence the result.

Note that the Lipschitz condition is used just once to show that
the completion of Ω is isometric to K with the induced length metric.
This property holds for a wider class of hypersurfaces; for instance
Alexander horned ball might have CAT(0) induced length metric.

Let U be an open set in R2. A continuous function f : U → R is
called saddle if for any linear function ℓ : R2 → R, the difference f−ℓ
does not have local maxima or local minima in U . Equivalently, the
open subgraph and epigraph of f{

(x, y, z) ∈ E3 : z < f(x, y), (x, y) ∈ U
}
,{

(x, y, z) ∈ E3 : z > f(x, y), (x, y) ∈ U
}

are two-convex.

12.20. Theorem. Let f : D → R be a Lipschitz function which is
saddle in the interior of the closed unit disc D. Then the graph

Γ =
{
(x, y, z) ∈ E3 : z = f(x, y)

}
,

equipped with induced length metric is CAT(0).

Proof. Since the function f is Lipschitz, its graph Γ with the induced
length metric is bi-Lipschitz equivalent to D with the Euclidean metric.

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

Kn
Consider the sequence of sets

Kn =
{
(x, y, z) ∈ E3 : z ≶ f(x, y)± 1

n , (x, y) ∈ D
}
.

Note that each Kn is closed and simply connected.
By definition K is also two-convex. Moreover the boundary of Kn is
a Lipschitz surface.

Equip Kn with the induced length metric. By Corollary 12.19, Kn

is CAT(0). It remains to note that Kn → Γ in the sense of Gromov–
Hausdorff, and apply Proposition 7.8.
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F Polyhedral case
Now we are back to the proof of the two-convexity theorem (12.17).

Recall that a subset P of Em is called a polytope if it can be
presented as a union of a finite number of simplices. Similarly, a
spherical polytope is a union of a finite number of simplices in Sm.

Note that any polytope admits a finite triangulation. Therefore any
polytope equipped with the induced length metric forms a Euclidean
polyhedral space as defined in 10.6.

12.21. Lemma. The two-convexity theorem (12.17) holds if the set
Ω is the interior of a polytope.

The statement might look obvious, but there is a hidden obstacle
in the proof that is related to the following. Let P be a polytope
and Ω its interior, both considered with the induced length metrics.
Typically, the completion K of Ω is isometric to P — in this case, the
lemma follows easily from 10.7.

However in general we only have a locally distance-
preserving map K → P ; it does not have to be onto
and it may not be injective. An example can be guessed
from the picture. Nevertheless, is easy to see that K
is always a polyhedral space.

The proof uses the following two exercises.

12.22. Exercise. Show that any closed path of length < 2·π in the
units sphere S2 lies in an open hemisphere.

12.23. Exercise. Assume Ω is an open subset in E3 that is not two-
convex. Show that there is a plane W such that the complement W \Ω
contains an isolated point and a small circle around this point in W
is contractible in Ω.

Proof of 12.21. The “only if” part can be proved in the same way as
in the smooth two-convexity theorem (12.10) with additional use of
Exercise 12.23.

If part. Assume that Ω is two-convex. Denote by Ω̃ the universal
metric cover of Ω. Let K̃ and K be the corresponding completions of
Ω̃ and Ω.

The main step is to show that K̃ is CAT(0).
Note that K is a polyhedral space and the covering Ω̃ → Ω extends

to a covering map K̃ → K which might be branching at some vertices.1

1For example, if K =
{

(x, y, z) ∈ E3 : |z| ⩽ |x| + |y| ⩽ 1
}

and p is the origin,
then Σp, the space of directions at p, is not simply connected and K̃ → K branches
at p.
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Fix a point p̃ ∈ K̃ \ Ω̃; denote by p the image of p̃ in K. Note that
K̃ is a ramified cover of K and hence is locally contractible. Thus,
any loop in K̃ is homotopic to a loop in Ω̃ which is simply connected.
Therefore K̃ is simply connected too.

Thus, by the globalization theorem (9.6), it is sufficient to show
that

➊ a small neighborhood of p̃ in K̃ is CAT(0).

Recall that Σp̃ = Σp̃K̃ denotes the space of directions at p̃. Note
that a small neighborhood of p̃ in K̃ is isometric to an open set in the
cone over Σp̃K̃. By Exercise 7.11, ➊ follows once we can show that

➋ Σp̃ is CAT(1).

By rescaling, we can assume that every face of K which does not
contain p lies at distance at least 2 from p. Denote by S2 the unit
sphere centered at p, and set Θ = S2 ∩Ω. Note that ΣpK is isometric
to the completion of Θ and Σp̃K̃ is the completion of the regular metric
covering Θ̃ of Θ induced by the universal metric cover Ω̃ → Ω.

By 12.14, it remains to show the following:

➌ Any closed curve in Θ̃ shorter than 2·π is contractible.

Fix a closed curve γ̃ of length < 2·π in Θ̃. Its projection γ in
Θ ⊂ S2 has the same length. Therefore, by Exercise 12.22, γ lies in an
open hemisphere. Then for a plane Π passing close to p, the central
projection γ′ of γ to Π is defined and lies in Ω. By construction of Θ̃,
the curve γ and therefore γ′ are contractible in Ω. From two-convexity
of Ω and Proposition 12.8, the curve γ′ is contractible in Π ∩ Ω.

It follows that γ is contractible in Θ and therefore γ̃ is contractible
in Θ̃.

G Two-convex hulls

The following proposition describes a construction which produces the
two-convex hull Conv2 Ω of an open set Ω ⊂ E3. This construction is
very close to the one given by Samuel Shefel [122].

12.24. Proposition. Let Π1,Π2 . . . be an everywhere dense sequence
of planes in E3. Given an open set Ω, consider the recursively defined
sequence of open sets Ω = Ω0 ⊂ Ω1 ⊂ . . . such that Ωn is the union of
Ωn−1 and all the bounded components of E3 \ (Πn ∪ Ωn−1). Then

Conv2 Ω =
⋃
n

Ωn.
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Proof. Set

➊ Ω′ =
⋃
n

Ωn.

Note that Ω′ is a union of open sets; in particular, Ω′ is open.
Let us show that

➋ Conv2 Ω ⊃ Ω′.

Suppose we already know that Conv2 Ω ⊃ Ωn−1. Fix a bounded com-
ponent C of E3\(Πn∪Ωn−1). It is sufficient to show that C ⊂ Conv2 Ω.

By 12.5, Conv2 Ω is open. Therefore, if C ̸⊂ Conv2 Ω, then there is
a point p ∈ C \ Conv2 Ω lying at maximal distance from Πn. Denote
by Wp the plane containing p which is parallel to Πn.

Note that p lies in a bounded component of Wp \ Conv2 Ω. In
particular p can be surrounded by a simple closed curve γ in Wp ∩
∩ Conv2 Ω. Since p lies at maximal distance from Πn, the curve γ is
null-homotopic in Conv2 Ω. Therefore p ∈ Conv2 Ω, a contradiction.

By induction, Conv2 Ω ⊃ Ωn for each n. Therefore ➊ implies ➋.
It remains to show that Ω′ is two-convex. Assume the contrary;

that is, there is a plane Π and a simple closed curve γ : S1 → Π ∩ Ω′

which is null-homotopic in Ω′, but not null-homotopic in Π ∩ Ω′.
By approximation we can assume that Π = Πn for a large n, and

that γ lies in Ωn−1. By the same argument as in the proof of Propo-
sition 12.8 using the loop theorem, we can assume that there is an
embedding φ : D → Ω′ such that φ|∂D = γ and φ(D) lies entirely in
one of the half-spaces bounded by Π. By the n-step of the construction,
the entire bounded domain U bounded by Πn and φ(D) is contained
in Ω′ and hence γ is contractible in Π ∩ Ω′, a contradiction.

12.25. Key lemma. The two-convex hull of the interior of a polytope
in E3 is also the interior of a polytope.

Proof. Fix a polytope P in E3. Set Ω = IntP . We may assume that
Ω is dense in P (if not, redefine P as the closure of Ω). Denote by
F1, . . . , Fm the facets of P . By subdividing Fi if necessary, we may
assume that all Fi are convex polygons.

Set Ω′ = Conv2 Ω and let P ′ be the closure of Ω′. Further, for each
i, set F ′

i = Fi \ Ω′. In other words, F ′
i is the subset of the facet Fi

which remains on the boundary of P ′.
From the construction of the two-convex hull (12.24) we have:

➌ F ′
i is a convex subset of Fi.

Further, since Ω′ is two-convex we obtain the following:

➍ Each connected component of the complement Fi \ F ′
i is convex.
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Indeed, assume a connected component A of Fi \F ′
i

fails to be convex. Then there is a supporting line
ℓ to F ′

i touching F ′
i at a single point in the interior

of Fi. Then one could rotate the plane of Fi slightly
around ℓ and move it parallelly to cut a “cap” from
the complement of Ω. The latter means that Ω is not
two-convex, a contradiction. △

From ➌ and ➍, we conclude

➎ F ′
i is a convex polygon for each i.

Consider the complement E3 \Ω equipped with the length metric.
By construction of the two-convex hull (12.24), the complement L =
= E3 \ (Ω′ ∪ P ) is locally convex; that is, any point of L admits a
convex neighborhood.

Summarizing: (1) Ω′ is a two-convex open set, (2) the boundary
∂Ω′ contains a finite number of polygons F ′

i and the remaining part
S of the boundary is locally concave. It remains to show that (1) and
(2) imply that S and therefore ∂Ω′ are piecewise linear.

12.26. Exercise. Prove the last statement.

H Proof of Shefel’s theorem

Proof of 12.17. The “only if” part can be proved in the same way as
in the smooth two-convexity theorem (12.10) with the additional use
of Exercise 12.23.

If part. Suppose Ω is two-convex. We need to show that K̃ is CAT(0).
Fix a quadruple of points x1, x2, x3, x4 ∈ Ω̃. Let us show that

CAT(0) comparison holds for this quadruple.
Fix ε > 0. Choose six broken lines in Ω̃ connecting all pairs of

points x1, x2, x3, x4, where the length of each broken line is at most ε
bigger than the distance between its ends in the length metric on Ω̃.
Denote by X the union of these broken lines. Choose a polytope P
in Ω such that its interior IntP contains the projections of all six
broken lines and discs which contract all the loops created by them (it
is sufficient to take 3 discs).

Denote by Ω′ the two-convex hull of the interior of P . According
to the key lemma (12.25), Ω′ is the interior of a polytope.

Equip Ω′ with the induced length metric. Consider the universal
metric cover Ω̃′ of Ω′. (The covering Ω̃′ → Ω′ might be nontrivial —
even if IntP is simply connected, its two-convex hull Ω′ might not be
simply connected.) Denote by K̃ ′ the completion of Ω̃′.
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By Lemma 12.21, K̃ ′ is CAT(0).
By construction of IntP , the embedding IntP ↪→ Ω′ admits a lift

ι : X ↪→ K̃ ′. By construction, ι almost preserves the distances between
the points x1, x2, x3, x4; namely

|ι(xi)− ι(xj)|L ≶ |xi − xj |IntP ± ε.

Since ε > 0 is arbitrary and CAT(0) comparison holds in K̃ ′, we
get that CAT(0) comparison holds in Ω for x1, x2, x3, x4.

The statement follows since the quadruple x1, x2, x3, x4 ∈ Ω̃ is
arbitrary.

12.27. Exercise. Assume K ⊂ Em is a closed set bounded by a
Lipschitz hypersurface. Equip K with the induced length metric. Show
that if K is CAT(0), then K is two-convex.

I Remarks

Under the name (n− 2) -convex sets, two-convex sets in En were
introduced by Mikhael Gromov [64]. In addition to the inheritance of
upper curvature bounds by two-convex sets discussed in this lecture,
these sets appear as the maximal open sets with vanishing curvature
in Riemannian manifolds with non-negative or non-positive sectional
curvature [see Lemma 5.8 in 42, 11 and 104].

Two-convex sets could be defined using homology instead of homo-
topy, as in Gromov’s formulation of the Leftschetz theorem [64, §½].
Namely, we can say that K is two-convex if the following condition
holds: if a one-dimensional cycle z has support in the intersection of
K with a plane W and bounds in K, then it bounds in K ∩W .

The resulting definition is equivalent to the one used above. But
unlike our definition it can be generalized to define k-convex sets in
Em for k > 2. With this homological definition one can also avoid the
use of the loop theorem, whose proof is quite involved. Nevertheless,
we chose the definition using homotopies since it is easier to visualize.

Both definitions work well for open sets; for general sets one should
be able to give a similar definition using an appropriate homotopy/ho-
mology theory.

In [1], Stephanie Alexander, David Berg and Richard Bishop gave
the exact upper bound on Alexandrov’s curvature for the Riemannian
manifolds with boundary. This theorem includes the smooth two-
convexity theorem (12.10) as a partial case. Namely they show the
following.
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12.28. Theorem. Let M be a Riemannian manifold with bound-
ary ∂M . A direction tangent to the boundary will be called concave if
there is a short geodesic in this direction which leaves the boundary and
goes into the interior of M . A sectional direction (that is, a 2-plane)
tangent to the boundary will be called concave if all the directions in
it are concave.

Denote by κ an upper bound of sectional curvatures of M and sec-
tional curvatures of ∂M in the concave sectional directions. Then M
is locally CAT(κ).

12.29. Corollary. Let M be a Riemannian manifold with bound-
ary ∂M . Assume that all the sectional curvatures of M and ∂M are
bounded above by κ. Then M is locally CAT(κ).

Theorem 12.20 is from Shefel’s original paper [123]. It is related to
Alexandrov’s theorem about ruled surfaces [7].

Let D be an embedded closed disc in E3. We say that D is saddle
if each connected component which any plane cuts from D contains a
point on the boundary ∂D. If D is locally described by a Lipschitz
embedding, then this condition is equivalent to saying that D is two-
convex.

12.30. Shefel’s conjecture. Any saddle surface in E3 equipped with
the length-metric is locally CAT(0).

The conjecture is open even for the surfaces described by a bi-
Lipschitz embedding of a disc. From another result of Samuel Shefel
[123], it follows that a saddle surface satisfies the isoperimetric inequal-
ity a ⩽ C ·ℓ2 where a is the area of a disc bounded by a curve of length
ℓ and C = 1

3·π . By a result of Alexander Lytchak and Stefan Wenger
[93], Shefel’s conjecture is equivalent to the isoperimetric inequality
with the optimal constant C = 1

4·π . [For more on the subject, see 111,
and the references therein.]
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Part III

Metric geometry on
manifolds
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Lecture 13

Besicovitch inequality

We will focus on Riemannian spaces — these are specially nice length
metrics on manifolds. These spaces are also most important in appli-
cations.

As it will be indicated in Section 13F, most of the statements of this
and the following lecture have counterparts for general length metrics
on manifolds.

A Riemannian spaces
Let M be a smooth connected manifold. A metric tensor on M is
a choice of positive definite quadratic forms gp on each tangent space
TpM that depends continuously on the point; that is, in any local
coordinates of M the components of g are continuous functions.

A Riemannian manifold (M, g) is a smooth manifold M with
a choice of metric tensor g on it.

The g - length of a Lipschitz curve γ : [a, b] →M is defined by

lengthg γ =

bw

a

√
g(γ′(t), γ′(t))·dt.

The g-length induces a metric metric onM ; it is defined as the greatest
lower bound to lengths of Lipschitz curves connecting two given points;
the distance between a pair of points x, y ∈M will be denoted by

|x− y|g or distx(y)g.

The corresponding metric space M will be called Riemannian.
The following exercise implies that isometry between Riemannian

spaces might be not induced by a diffeomorphism.

147



148 LECTURE 13. BESICOVITCH INEQUALITY

13.1. Exercise. Construct a continuous Riemannian metric g on R2

such that the corresponding Riemannian space admits an isometry to
the Euclidean palne but the induced map ι : R2 → R2 is not differen-
tiable at some point.

The exercise above shows that in general the smooth structure
is not uniquely defined on Riemannian space. Therefore in general
case one has to distinguish between Riemannian manifold and the
corresponding Riemannian space altho there is almost no difference.1

The following observation states the key property of Riemannian
spaces; it will be used to extend results from Euclidean space to Rie-
mannian spaces.

13.2. Observation. For any point p in a Riemannian space M and
any ε > 0 there is a e∓ε-bilipschitz chart s : W → V from an open
subset W of the n-dimensional Euclidean space to some neighborhood
V ∋ p.

Proof. Choose a chart s : U → M that covers p. Note that there is
a linear transformation L such that for the metric tensor in the chart
s ◦ L is coincides with the standard Euclidean tensor at the point
x = (s ◦ L)−1(p).

Since the metric tensor is continuous, the restriction of s ◦ L to a
small neighborhood of x is e∓ε-bilipschitz.

B Volume and Hausdorff measure
Let (M, g) be an n-dimensional Riemannian manifold. If a Borel set
R ⊂ M is covered by one chart ι : U → M , then its volume (briefly,
volR or volnR) is defined by

volR :=
w

ι−1(R)

√
det g.

In the general case we can subdivide R into a countable collection of
regions R1, R2 . . . such that each region Ri is covered by one chart
ιi : Ui →M and define

volR := volR1 + volR2 + . . .

1In fact a straightforward smoothing procedure shows that isometry between
Riemannian spaces can be approximated by diffeomorphisms between underlying
manifolds; in particular, these manifolds are diffeomorphic. Also, if the metric
tensor is smooth, then it is not hard to show that Riemannian space remembers
everything about the Riemannian manifold which includes its smooth structure; it
is a part of the so-called Myers–Steenrod theorem [101].
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The chain rule for multiple integrals implies that the right-hand side
does not depend on the choice of subdivision and the choice of charts.

Similarly, we define integral along (M, g). Any Borel function
u : M → R, can be presented as a sum u1 + u2 + · · · such that the
support of each function ui can be covered by one chart ιi : Ui → M
and set

w

p∈M

u(p) :=
∑
i

 w

x∈Ui

ui ◦ s(x)·
√
det g

 .
In particular

volR =
w

p∈R

1.

Let X be a metric space and R ⊂ X . The α -dimensional Haus-
dorff measure of R is defined by

hausαR := lim
ε→0

inf


∑
n∈N

(diamAn)
α :

diamAn < ε for
for each n, all An

are closed, and⋃
n∈N

An ⊃ R.


.

For properties of Hausdorff measure we refer to the classical book of
Herbert Federer [57]; in particular, hausα is indeed a measure and
hausα-measurable sets include all Borel sets.

The following observation follows from 13.2 and Rademacher’s the-
orem:

13.3. Observation. Suppose that a Borel set R in an n-dimensional
Riemannian space M is subdivided into a countable collection of sub-
sets Ri such that each Ri is covered by an e∓ε-bilipschitz charts si.
Then

volnR ≶ e±n·ε ·
∑
i

voln[s
−1
i (Ri)]

and

hausnR ≶ e±n·ε ·
∑
i

hausn[s
−1
i (Ri)]

According to Haar’s theorem, a measure on n-dimensional Eu-
clidean space that is invariant with respect to parallel translations is
proportional to volume. Observe that
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⋄ A ball in n-dimensional Euclidean space of diameter 1 has unit
Hausdorff measure.

⋄ A unit cube in n-dimensional Euclidean space has unit volume.
Therefore, for any Borel region R ⊂ En, we have

➊ volnR = ωn

2n ·hausnR,

where ωn denotes the volume of a unit ball in the n-dimensional Eu-
clidean space.

Applying ➊ together with 13.3, we get that the inequalities

volnR ≶ e±2·n·ε · ωn

2n ·hausnR

hold for any ε > 0. Since ε > 0 is arbitrary, we get that ➊ holds in
n-dimensional Riemannian spaces. More precisely:

13.4. Proposition. The identity

volnR = ωn

2n ·hausnR

holds for any Borel region R in an n-dimensional Riemannian space.

Since the Hausdorff measure is defined in pure metric terms, the
proposition gives another way to prove that the volume does not de-
pend on the choice of chars and subdivision of R.

The identity in this proposition will be used to define volume of any
dimension. Namely, given an integer k ⩾ 0, the k-volume is defined
by

volk := ωk

2k
·hausk.

By 13.4, if A is a subset of k-dimensional submanifold N ⊂ M, then
the two definitions of volk A agree; but the latter definition works for
a wider class of sets.

13.5. Exercise. Let f : M → N be a short volume-preserving map
between n-dimensional Riemannian spaces. Prove the following state-
ments and use them to conclude that f is locally distance-preserving.
(a) f is injective; that is, if f(x) = f(y), then x = y.
(b) For any c < 1, the map f is locally [c, 1]-bilipschitz; that is, for

any point in M there is a neighborhood Ω and ε > 0 such that
the inequality

c ⩽
|f(x)− f(y)|N

|x− y|M
⩽ 1

holds for any pair of distinct points x, y ∈ Ω.
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C Area and coarea formulas

Suppose that f : M → N is a Lipschitz map between n-dimensional
Riemannian spaces M and N . Then by Rademacher’s theorem
the differential dpf : TpM → Tf(p)N is defined at almost al l p ∈ M;
that is, the differential defined at all points p ∈ M with exception of
a subset with vanishing volume.

The differential is a linear map; it defines the Jacobian matrix
Jacpf in orthonormal frames of Tp and Tf(p)N . The determinant of
Jacpf will be denoted by jacp. Note that the absolute value |jacp| does
not depend on the choice of the orthonormal frames.

The identity in the following proposition is called area formula.

13.6. Proposition. Let f : M → N be a Lipschitz map between
n-dimensional Riemannian spaces M. Then for any Borel function
u : M → R the following equality holds:

w

p∈M

u(p)·|jacpf | =
w

q∈N

∑
p∈f−1(q)

u(p).

Proof. If M and N are isometric to the n-dimensional Euclidean
space, then the statement follows from the standard area formula [57,
3.2.3].

Note that Jacobian of a e∓ε-bilipschitz map between n-dimensional
Riemannian manifolds (if defined) has determinant in the range e∓n·ε.
Applying 13.3 and the area formula in En, we get the following ap-
proximate version of the needed identity for any u ⩾ 0:

w

p∈M

u(p)·|jacpf | ≶ e±3·n·ε
w

q∈N

∑
p∈f−1(q)

u(p).

Since ε > 0 is arbitrary, we get that the area formula holds if u ⩾ 0.
Finally, since both sides of the area formula are linear in u, it holds
for any u.

The following inequality is called area inequality:

13.7. Corollary. Let f : M → N be a locally Lipschitz map between
n-dimensional Riemannian spaces. Then

w

p∈A

|jacpf | ⩾ vol[f(A)]

for any Borel subset A ⊂M .
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In particular, if |jacpf | ⩽ 1 almost everywhere in A, then

volA ⩾ vol[f(A)].

Proof. Apply the area formula to the characteristic function of A.

Suppose that f : M → R is a Lipschitz function defined on an n-
dimensional Riemannian space M. Then by Rademacher’s theorem,
the differential dpf : TpM → R and the gradient ∇pf ∈ TpM are
defined at almost all p ∈ M.

The identity in the following proposition is a partial case of the
so-called coarea formula. (The general coarea formula deals with
the maps to the spaces of arbitrary dimension, not necessary 1.)

13.8. Proposition. Let f : M → R be a Lipschitz function defined
on an n-dimensional Riemannian space M. Suppose that the level sets
Lx := f−1(x) are equipped with (n− 1)-dimensional volume voln−1 :=
:= ωn−1

2n−1 ·hausn−1. Then for any Borel function u : M → R the follow-
ing equality holds

w

p∈M

u(p)·|∇pf | =
+∞w

−∞

 w

p∈Lx

u(p)

 ·dx.

The following corollary is a partial case of the so-called coarea
inequality;

13.9. Corollary. Let M, f , and Lx be as in 13.8.
Suppose that f is 1-Lipschitz. Then for any Borel subset A ⊂ M

we have

➊ volnA ⩾
w

x∈R

voln−1[A ∩ Lx]·dx.

The right-hand side in ➊ is called coarea of the restriction
f |A.

Instead of proof of 13.8 and 13.9. If M is isometric to Euclidean
space, then the statement follows from the standard coarea formula
[57, 3.2.12]. The reduction to the Euclidean space is done the same
way as in the proof of the area formula.

To prove the corollary, choose u to be the characteristic function
of A and apply the coarea formula.
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D Besicovitch inequality
A closed connected region in a Riemannian manifold bounded by hy-
persurface will be called Riemannian manifold with boundary.
We always assume that the hypersurface can be realized locally as a
graph of Lipschitz function in a suitable chart. In this case, one can
define g-length, g-distance, and g-volume the same way as we did for
usual Riemannian manifolds.

13.10. Exercise. Suppose that (M, g) is a compact Riemannian man-
ifold with boundary. Observe that the interior (M◦, g) of (M, g) is a
usual Riemannian manifold. Show that the space of (M, g) is isometric
to the completion of the space of (M◦, g).

13.11. Theorem. Let g be a continuous metric tensor on a unit n-
dimensional cube □. Suppose that the g-distances between the opposite
faces of □ are at least 1; that is, any Lipschitz curve that connects
opposite faces has g-length at least 1. Then

vol(□, g) ⩾ 1.

This is a partial case of the theorem proved by Abram Besicovitch
[21].

Proof. We will consider the case n = 2; the other cases are proved the
same way.

A

B

A′

B′

Denote by A, A′, and B, B′ the opposite
faces of the square □. Consider two functions

fA(x) := min{distA(x)g, 1 },
fB(x) := min{distB(x)g, 1 }.

Let f : □ → □ be the map with coordinate func-
tions fA and fB ; that is, f(x) := (fA(x), fB(x)).

➊ The map f sends each face of □ to itself.

Indeed,

x ∈ A =⇒ distA(x)g = 0 =⇒ fA(x) = 0 =⇒ f(x) ∈ A.

Similarly, if x ∈ B, then f(x) ∈ B. Further,

x ∈ A′ =⇒ distA(x)g ⩾ 1 =⇒ fA(x) = 1 =⇒ f(x) ∈ A′.

Similarly, if x ∈ B′, then f(x) ∈ B′.
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By ➊, it follows

ft(x) = t·x+ (1− t)·f(x)

defines a homotopy of maps of the pair of spaces (□, ∂□) from f to
the identity map; that is, (t, x) 7→ ft(x) is a continuous map and if
x ∈ ∂□, then ft(x) ∈ ∂□ for any t ∈ [0, 1].

It follows that deg f = 1; that is, f sends the fundamental class of
(□, ∂□) to itself.2 In particular, f is onto.

Suppose that Jacobian matrix Jacpf of f is defined at p ∈ □.
Choose an orthonormal frame in Tp with respect to g and the standard
frame in the target □. Observe that the differentials dpfA and dpfB
written in these frames are the rows of Jacpf . Evidently |dpfA| ⩽ 1
and |dpfB | ⩽ 1. Since the determinant of a matrix is the volume of
the parallelepiped spanned on its rows, we get

|jacpf | ⩽ |dpfA|·|dpfB | ⩽ 1.

Since f : □ → □ is a Lipschitz onto map, the area inequality (13.7)
implies that

vol(□, g) ⩾ vol□ = 1.

If the g-distances between the opposite sides are d1, . . . , dn, then
following the same lines one get that vol(□, g) ⩾ d1 · · · dn. Also note
that in the proof we use topology of the n-cube only once, to show
that the map f has degree one. Taking all this into account we get
the following generalization of 13.11:

13.12. Theorem. Let (M, g) be an n-dimensional Riemannian man-
ifold with coonected boundary ∂M . Suppose that there is a degree 1
map ∂M → ∂□; denote by d1, . . . , dn the g-distances between the in-
verse images of pairs of opposite faces of □ in M . Then

vol(M, g) ⩾ d1 · · · dn.

13.13. Exercise. Show that if equality holds in 13.12, then (M, g) is
isometric to the rectangle [0, d1]× · · · × [0, dn].

13.14. Exercise. Suppose g is a metric tensor on a regular hexagon
7 such that g-distances between the opposite sides are at least 1. Is
there a positive lower bound on area(7, g)?

13.15. Exercise. Let g be a Riemannian metric on the cylinder S1×
× [0, 1]. Suppose that

2Here and further, we assume that homologies are taken with the coefficients
in Z2, but you are welcome to play with other coefficients.
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⋄ g-distance between pairs of points on the opposite boundary cir-
cles S1 × {0} and S1 × {1} is at least 1, and

⋄ any curve γ in S1 × [0, 1] that is homotopic to S1 × {0} has g-
length at least 1.

(a) Use Besicovitch inequality to show that

area(S1 × [0, 1], g) ⩾ 1
2 .

(b) Modify the proof of Besicovitch inequality using coarea inequality
(13.9) to prove the optimal bound

area(S1 × [0, 1], g) ⩾ 1.

13.16. Exercise.
(a) Generalize 13.12 to noncontinuous metric tensor g described the

following way: there are two Riemannian metric tensors g1 and
g2 on M and a subset V ⊂ M bounded by a Lipschitz hypersur-
face Σ such that g = g1 at the points in V and g = g2 otherwise.

(b) Use part (a) to prove the following: Let V be a compact set in
the n-dimensional Euclidean space En bounded by a Lipschitz
hypersurface Σ. Suppose g is a Riemannian metric on V such
that

|p− q|g ⩾ |p− q|En

for any two points p, q ∈ Σ. Show that

vol(V, g) ⩾ vol(V )En .

13.17. Exercise. Suppose that sphere with Riemannian metric (S2, g)
admits an involution ι such that |x− ι(x)|g ⩾ 1.

Show that
area(S2, g) ⩾ 1

1000 .

Try to show that

area(S2, g) ⩾ 1
2 , area(S2, g) ⩾ 1, or area(S2, g) ⩾ 4

π

13.18. Advanced exercise. Construct a metric tensor g on S3 such
that (1) vol(S3, g) arbitrarily small and (2) there is an involution
ι : S3 → S3 such that |x− ι(x)|g ⩾ 1 for any x ∈ S3.

13.19. Exercise. Let g1, g2, . . . , and g∞ be metrics on a fixed com-
pact manifold M . Suppose that distgn uniformly converges to distg∞
as functions on M ×M → R. Show that

lim
n→∞

vol(M, gn) ⩾ vol(M, g∞).

Show that the inequality might be strict.
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E Systolic inequality
Let M be a compact Riemannian space. The systole of M (briefly
sysM) is defined to be the least length of a noncontractible closed
curve in M.

Let Λ be a class of closed n-dimensional Riemannian spaces. We
say that a systol ic inequality holds for Λ if there is a constant c
such that

sysM ⩽ c· n
√
volM

for any M ∈ Λ.

13.20. Exercise. Use 13.11 or 13.15 to show that a systolic inequal-
ity holds for any Riemannian metric on the 2-torus T2.

13.21. Exercise. Use 13.11 to show that a systolic inequality holds
for any Riemannian metric on the real projective plane RP2.

13.22. Exercise. Use 13.12 to show that systolic inequality holds for
any Riemannian metric on any closed surfaces of positive genus.

13.23. Exercise. Show that no systolic inequality holds for Riemann-
ian metrics on S2 × S1.

In the following lecture we will show that systolic inequality holds
for many manifolds, in particular for torus of arbitrary dimension.

F Generalization
The following proposition follows immediately from the definitions of
Hausdorff measure (Section 13B).

13.24. Proposition. Let X and Y be metric spaces, A ⊂ X and
f : X → Y be a L-Lipschitz map. Then

hausα[f(A)] ⩽ Lα ·hausαA

for any α.

The following exercise provides a weak analog of the Besicovitch
inequality that works for arbitrary metrics.

13.25. Exercise. Let M be manifold with boundary and ρ is a semi-
metric on M . Suppose ∂M admits a degree 1 map to the surface of
the n-dimensional cube □; denote by d1, . . . , dn the ρ-distances between
the inverse images of pairs of opposite faces of □ in M . Then

hausn(M,ρ) ⩾ d1 · · · dn.
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Recall that in n-dimensional Riemannian spaces we have

ωn

2n ·hausn = voln .

Note that ωn

2n < 1 if n ⩾ 2. Therefore, the conclusion in 13.25 is weaker
than in 13.12 (the assumptions are weaker as well).

One can redefine systolic inequality on n-dimensional manifolds us-
ing the Hausdorff measure hausn instead of the volume. It is straight-
forward to prove analogs of the exercises 13.20–13.23 with this defini-
tion.

13.26. Exercise. Suppose that two embedded n-disks ∆1,∆2 in a
metric space X have identical boundaries. Assume that X is con-
tractible and hausn+1X = 0. Show that ∆1 = ∆2.

G Remarks
The optimal constants in the systolic inequality are known only in the
following three cases:

⋄ For real projective plane RP2 the constant is
√
π/2 — the equal-

ity holds for a quotient of a round sphere by isometric involution.
The statement was proved by Pao Ming Pu [116].

⋄ For torus T2 the constant is
√
2/ 4

√
3 — the equality holds for a flat

torus obtained from a regular hexagon by identifying opposite
sides; this is the so-called Loewner’s torus inequality.

⋄ For the Klein bottle RP2#RP2 the constant is
√
π/23/4 — the

equality holds for a certain nonsmooth metric. The statement
was proved by Christophe Bavard [16].

The proofs of these results use the so-called uniformization theo-
rem available in the 2-dimensional case only. These proofs are beauti-
ful, but they are too far from metric geometry. A good survey on the
subject is written by Christopher Croke and Mikhail Katz [50].

An analog of Exercise 13.19 with Hausdorff measure instead of
volume does not hold for general metrics on a manifold. In fact there
is a nondecreasing sequence of metric tensors gn on M , such that (1)
vol(M, gn) < 1 for any n and (2) distgn converges to a metric on
M with arbitrary large Hausdorff measure of any given dimension;
such examples were constructed by Dmitri Burago, Sergei Ivanov, and
David Shoenthal [39].
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Lecture 14

Width and systole

This lecture is based on the paper of Alexander Nabutovsky [102].

A Partition of unity

14.1. Proposition. Let {Vi} be a finite open covering of a compact
metric space X . Then there are Lipschitz functions ψi : X → [0, 1]
such that (1) if ψi(x) > 0, then x ∈ Vi and (2) for any x ∈ X we have∑

i

ψi(x) = 1.

A collection of functions {ψi} that meets the conditions in 14.1 is
called a partit ion of unity subordinate to the covering {Vi}.

Proof. Denote by φi(x) the distance from x to the complement of Vi;
that is,

φi(x) = distX\Vi
(x).

Note φi is 1-Lipschitz for any i and φi(x) > 0 if and only if x ∈ Vi.
Since {Vi} is a covering, we have that

Φ(x) :=
∑
i

φi(x) > 0 for any x ∈ X .

Since X is compact, Φ > δ for some δ > 0. It follows that x 7→ 1
Φ(x) is

a bounded Lipschitz function.
Set

ψk(x) =
φk(x)

Φ(x)
.

159
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Observe that by construction the functions ψi meet the conditions in
the proposition.

B Nerves
Let {V1, . . . , Vk} be a finite open cover of a compact metric space X .
Consider an abstract simplicial complex N , with one vertex vi for each
set Vi such that a simplex with vertices vi1 , . . . , vim is included in N
if the intersection Vi1 ∩ · · · ∩Vim is nonempty. The obtained simplicial

V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1V1

V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2V2

V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3

V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4V4

V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5V5

V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6

V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7V7 v1

v2

v3

v4

v5

v6

v7

covering nerve

complex N is called the nerve of the covering {Vi}. Evidently N is
a finite simplicial complex — it is a subcomplex of a simplex with the
vertices {v1, . . . , vk}.

Note that the nerve N has dimension at most n if and only if the
covering {V1, . . . , Vk} has multipl ic ity at most n + 1; that is, any
point x ∈ X belongs to at most n+ 1 sets of the covering.

Suppose {ψi} is a partition of unity subordinate to the covering
{V1, . . . , Vk}. Choose a point x ∈ X . Note that the set

{vi1 , . . . , vin} = { vi : ψi(x) > 0 }

form vertices of a simplex in N . Therefore

ψ : x 7→ ψ1(x)·v1 + ψ2(x)·v2 + · · ·+ ψk(x)·vn.

describes a Lipschitz map from X to the nerve N of {Vi}. In other
words, ψ maps a point x to the point in N with barycentric coor-
dinates (ψ1(x), . . . , ψk(x)).

Recall that the star of a vertex vi (briefly Starvi) is defined as the
union of the interiors of all simplicies that have vi as a vertex. Recall
that ψi(x) > 0 implies x ∈ Vi. Therefore we get the following:

14.2. Proposition. Let N be a nerve of an open covering {V1, . . .
. . . , Vk} of a compact metric space X . Denote by vi the vertex of N
that corresponds to Vi.
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Then there is a Lipschitz map ψ : X → N such that ψ(Vi) ⊂ Starvi
for every i.

C Width
Suppose A is a subset of a metric space X . The radius of A (briefly
radA) is defined as the least upper bound on the values R > 0 such
that B(x,R) ⊃ A for some x ∈ X .

14.3. Definition. Let X be a metric space. The n-th width of X
(briefly widthn X ) is the least upper bound on values R > 0 such that
X admits a finite open covering {Vi} with multiplicity at most n + 1
and radVi < R for each i.

Remarks.
⋄ Observe that

width0 X ⩾ width1 X ⩾ width2 X ⩾ . . .

for any compact metric space X . Moreover, if X is connected,
then

width0 X = radX .
⋄ Usually width is defined using diameter instead of radius, but the

results differ at most twice. Namely, if r is the n-th radius-width
and d — the n-th diameter-width, then r ⩽ d ⩽ 2·r.

⋄ Note that Lebesgue covering dimension of X can be de-
fined as the least number n such that widthn X = 0.

⋄ Another closely related notion is the so-called macroscopic di-
mension on scale R; it is defined as the least number n such
that widthn X < R.

14.4. Exercise. Suppose X is a compact metric space such that any
closed curve γ in X can be contracted in its R-neighborhood. Show
that macroscopic dimension of X on scale 100·R is at most 1.

What about quasiconverse? That is, suppose a simply connected
compact metric space X has macroscopic dimension at most 1 on scale
R, is it true that any closed curve γ in X can be contracted in its
100·R-neighborhood?

The following exercise gives a good reason for the choice of term
width; it also can be used as an alternative definition.

14.5. Exercise. Suppose X is a compact metric space. Show that
widthn X < R if and only if there is a finite n-dimensional simplicial
complex N and a continuous map ψ : X → N such that

rad[ψ−1(s)] < R
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for any s ∈ N .

D Riemannian polyhedrons
A Riemannian polyhedron is defined as a finite simplicial com-
plex with a metric tensor on each simplex such that the restriction
of the metric tensor to a subsimplex coincides with the metric on the
subsimplex.

The dimension of a Riemannian polyhedron is defined as the
largest dimension in its triangulation. For Riemannian polyhedrons
one can define length of curves and volume the same way as for Rie-
mannian manifolds.

The obtained metric space will be called Riemannian polyhe-
dron as well. A triangulation of Riemannian polyhedron will always
be assumed to have the above property on the metric tensor.

Further we will apply the notion of width only to compact Rie-
mannian polyhedrons. If P is an n-dimensional Riemannian polyhe-
dron, then we suppose that

widthP := widthn−1 P.

Suppose that P is an n-dimensional Riemannian polyhedron; in
this case we will use short cut vol for voln. Let us define volume
profi le of P as a function returning largest volume of r-ball in P;
that is, the volume profile of P is a function VolProP : R+ → R+

defined by

VolProP(r) := sup { vol B(p, r) : p ∈ P } .

Note that r 7→ VolProP(r) is nondecreasing and

VolProP(r) ⩽ volP

for any r. Moreover, if P is connected, then the equality VolProP(r) =
= volP holds for r ⩾ radP.

Note that if P is a connected 1-dimensional Riemannian polyhe-
dron, then

widthP = width0 P = radP.

14.6. Exercise. Let P be a 1-dimensional Riemannian polyhedron.
Suppose that VolProP(R) < R for some R > 0. Show that

widthP < R.

Try to show that c = 1
2 is the optimal constant for which the following

inequality holds:
widthP < c·R.
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E Volume profile bounds width

14.7. Theorem. Let P be an n-dimensional Riemannian polyhedron.
If the inequality

R > n· n
√
VolProP(R)

holds for some R > 0, then

widthP ⩽ R.

Since VolProP(R) ⩽ volP for any R > 0, we get the following:

14.8. Corollary. For any n-dimensional Riemannian polyhedron P,
we have

widthP ⩽ n· n
√
volP.

The proof of 14.7 will be given at the very end of this section, after
discussing separating polyhedrons.

Let us start three technical statements. The first statement can be
obtained by modifying a smoothing procedure for functions defined on
Euclidean space.

A function f defined on a Riemannian polyhedron P is called
piecewise smooth if there is a triangulation of P such that restric-
tion of f to every simplex is smooth.

14.9. Smoothing procedure. Let P be a Riemannian polyhedron
and f : P → R be a 1-Lipschitz function. Then for any δ > 0 there is
a piecewise smooth 1-Lipschitz function f̃ : P → R such that

|f̃(x)− f(x)| < δ

for any x ∈ P.

The following statement can be proved by applying the classical
Sard’s theorem to each simplex of a Riemannian polyhedron.

14.10. Sard’s theorem. Let P be an n-dimensional Riemannian
polyhedron and f : P → R be a piecewise smooth function. Then for
almost all values a ∈ R, the inverse image f−1{a} is a Riemannian
polyhedron of dimension at most n − 1 (we assume that f−1{a} is
equipped with the induced length metric).

The following statement can be proved by applying the coarea in-
equality (13.9) to the restriction of f to each simplex of the polyhedron
and summing up the results.
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14.11. Coarea inequality. Let P be an n-dimensional Riemannian
polyhedron and f : P → R be a piecewise smooth 1-Lipschitz function.
Set v = voln(f

−1[r,R]) and a(t) = voln−1(f
−1{t}). Then

Rw

r

a(t)·dt ⩾ v.

In particular, there is a subset of positive measure S ⊂ [r,R] such that
the inequality

a(t) ⩾
v

R− r

holds for any t ∈ S.

Separating subpolyhedrons

14.12. Definition. Let P be an n-dimensional Riemannian polyhe-
dron. An (n− 1)-dimensional subpolyhedron Q ⊂ P is called R -sep-
arating if for each connected component U of the complement P \ Q
we have

radU < R.

14.13. Lemma. Let P be an n-dimensional Riemannian polyhedron.
Then given R > 0 and ε > 0 there is a R-separating subpolyhedron
Q ⊂ P such that for any r0 < r1 ⩽ R we have

VolProQ(r0) <
1

r1−r0
·VolProP(r1) + ε.

The proof reminds the proof of the following statement about min-
imal surfaces: if a point p lies on an compact area-minimizing surface
Σ and ∂Σ ∩ B(p, r) = ∅, then

area(Σ ∩ B(p, r)) ⩽ 1
2 · area S

2 ·r2.

Proof. Choose a small δ > 0. Applying the smoothing procedure
(14.9), we can exchange each distance function distp on P by δ-close
piecewise smooth 1-Lipschitz function, which will be denoted by d̃istp.

By Sard’s theorem (14.10), for almost all values c ∈ (r0+δ, r1−δ),
the level set

S̃c(p) =
{
x ∈ P : d̃istp(x) = c

}
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is a Riemannian polyhedron of dimension at most n − 1. Since δ is
small, the coarea inequality (14.11) implies that c can be chosen so
that in addition the following inequality holds:

voln−1 S̃c(p) ⩽ 1
r1−r0−2·δ · voln[B(p, r1)] <

< 1
r1−r0

·VolProP(r1) + ε
2 .

Suppose Q is an R-separating subpolyhedron in P with almost
minimal volume; say its volume is at most ε

2 -far from the greatest
lower bound. Note that cutting from Q everything inside S̃c(p) and
adding S̃c(p) produces a R-separating subpolyhedron, say Q′.1

Since Q has almost minimal volume, we have

voln−1[Q∩ B(p, r0)P ]− ε
2 ⩽ voln−1 Sc(p).

Therefore

➊ voln−1[Q∩ B(p, r0)P ] ⩽ 1
r1−r0

·VolProP(r1) + ε.

Recall that Q is equipped with the induced length metric; therefore
|p− q|Q ⩾ |p− q|P for any p, q ∈ Q; in particular,

B(p, r0)Q ⊂ Q ∩ B(p, r0)P

for any p ∈ Q and r0 ⩾ 0. Hence, ➊ implies the lemma.

14.14. Lemma. Let Q be an R-separating subpolyhedron in an n-
dimensional Riemannian polyhedron P. Then

widthQ ⩽ R =⇒ widthP ⩽ R.

Proof. Choose an open covering {V1, . . . , Vk} of Q as in the definition
of width (14.3); that is, it has multiplicity at most n and radVi < R
for any i.

Note that {V1, . . . , Vk} can be converted into an open covering of
a small neighbourhood of Q in P without increasing the multiplicity.
This can be done by setting

V ′
i =

⋃
x∈Vi

B(x, rx),

where rx := 1
10 · inf { |x− y| : y ∈ Q \ Vi }.

By adding to {V ′
i } all the components of P \ Q, we increase the

multiplicity by at most 1 and obtain a covering of P. The statement
follows since dimP = dimQ+ 1.

1If dim S̃c(p) < n − 1, then it might happen that dimQ′ < n − 1; so, by the
definition, Q′ is not separating. It can be fixed by adding a tiny (n−1)-dimensional
piece to Q′.
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Proof assembling

Proof of 14.7. We apply induction on the dimension n = dimP. The
base case n = 1 is given in 14.6.

Suppose that the (n− 1)-dimensional case is proved. Consider an
n-dimensional Riemannian polyhedron P and suppose

n· n
√
VolProP(R) < R

for some R > 0. Let Q be an R-separating subpolyhedron in P pro-
vided by 14.13 for a small ε > 0.

Applying 14.13 for r = n−1
n ·R and R, we have that

VolProQ(r) <
1

R− r
·VolProP(R) + ε <

<
n

R
·
(
R

n

)n

=

=

(
r

n− 1

)n−1

;

that is, (n − 1)· n−1
√
VolProQ(r) < r. Since dimQ = n − 1, by the

induction hypothesis, we get that

widthQ ⩽ r < R.

It remains to apply 14.14.

F Width bounds systole

Recall that a topological space K is called aspherical if any contin-
uous map Sk → K for k ⩾ 2 is null-homotopic.

14.15. Theorem. Suppose M is a compact aspherical n-dimensional
Riemannian manifold. Then

sysM ⩽ 6·widthM.

14.16. Lemma. Let K be an aspherical space and W a connected
CW-complex. Denote by Wk the k-skeleton of W. Then any continu-
ous map f : W2 → K can be extended to a continuous map f̄ : W → K

Moreover, if p ∈ W is a 0-cell and q ∈ K. Then a continuous
maps of pairs φ0, φ1 : (W, p) → (K, q) are homotopic if and only if
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φ0 and φ1 induce the same homomorphism on fundamental groups
π1(W, p) → π1(K, q).

Proof. Since K is aspherical, any continuous map ∂Dn → K for n ⩾ 3
is hull-homotopic; that is, it can be extended to a map Dn : → K.

It makes it possible to extend f to W3, W4, and so on. Therefore
f can be extended to whole W.

The only-if part of the second part of lemma is trivial; it remains
to show the if part.

Sine W is connected, we can assume that p forms the only 0-cell
in W; otherwise, we can collapse a maximal subtree of the 1-skeleton
in W to p. Therefore, W1 is formed by loops that generate π1(W, p).

By assumption, the restrictions of φ0 and φ1 to W1 are homotopic.
In other words the homotopy Φ: [0, 1]×W is defined on the 2-skeleton
of [0, 1] × W. It remains to apply the first part of the lemma to the
product [0, 1]×W.

14.17. Lemma. Suppose γ0, γ1 are two paths between points in a
Riemannian space M such that |γ0(t)− γ1(t)|M < r for any t ∈ [0, 1].
Let α be a shortest path from γ0(0) to γ1(0) and β be a shortest path
from γ0(1) to γ1(1). If 2·r < sysM, then there is a homotopy γt from
γ0 to γ1 such that α(t) ≡ γt(0) and β(t) ≡ γt(1).

Proof. Set s = sysM; since 2·r < s, we have that ε = 1
10 (s−2·r) > 0.

γ0

γ1

α β

Note that we can assume that γ0 and γ1
are rectifiable; if not we can homotopy each
into a broken geodesic line kipping the as-
sumptions true.

Choose a fine partition 0 = t0 < t1 < . . .
. . . < tn = 1. Consider a sequence of shortest
paths αi from γ0(ti) to γ1(ti). We can assume that α0 = α, αn = β,
and each arc γj |[ti−1,ti] has length smaller than ε. Therefore, every
quadrilateral formed by concatenation of αi−1, γ1|[ti−1,ti], reversed αi,
and reversed arc γ0|[ti−1,ti] has length smaller than s. It follows that
this curve is contractible. Applying this observation for each quadri-
lateral, we get the statement.

Proof of 14.15. Let N be the nerve of a covering {Vi} of M and
ψ : M → N be the map provided by 14.2. As usual, we denote by
vi the vertex of N that corresponds to Vi. Observe that dimN < n;
therefore, ψ kills the fundamental class of M.

Let us construct a continuous map f : N → M such that f ◦ ψ is
homotopic to the identity map on M. Note that once f is constructed,



168 LECTURE 14. WIDTH AND SYSTOLE

the theorem is proved. Indeed, since ψ kills the fundamental class [M]
of M, so does f ◦ψ. Therefore, [M] = 0 — a contradiction.

Set R = widthM and s = sysM. Assume we choose {Vi} as in
the definition of width (14.3). For each i choose a point pi ∈ M such
that Vi ⊂ B(pi, R).

Set f(vi) = pi for each i. It defines the map f on the 0-skeleton
N 0 of the nerve N . Further, f will be defined step by step on the
skeletons N 1,N 2, . . . of N .

Let us map each edge [vivj ] in N to a shortest path [pipj ]. It
defines f on N 1. Note that image of each edge is shorter than 2·R.

Suppose [vivjvk] is a triangle in N . Note that perimeter of the
triangle [pipjpk] can not exceed 6·R. Since 6·R < s, the contour of
[pipjpk] is contractible. Therefore, we can extend f to each triangle
of N . It defines the map f on N 2.

Finally, since M is aspherical, by 14.16, the map f can be extended
to N 3, N 4 and so on.

It remains to show that f ◦ ψ is homotopic to the identity map.
Choose a CW structure on M with sufficiently small cells, so that each
cell lies in one of Vi. Note that ψ is homotopic to a map ψ1 that sends
Mk to N k for any k. Moreover, we may assume that (1) if a 0-cell x
of M maps to a vi, then x ∈ Vi and (2) each 1-cell of M maps to an
edge or a vertex of N . Choose a 1-cell e in M; by the construction,
f ◦ ψ1 maps e to a shortest path [pipj ] and e lies B(pi, R). Observe
that [pipj ] is shorter than 2·R. It follows that the distance between
points on [pipj ] and e can not exceed 3·R. Choose a shortest path αi

from every 0 cell xi of M to pj = f ◦ψ1(xi). It defines a homotopy on
M0. Since 6·R < s, 14.17 implies that this homotopy can be extended
to M1. By 14.16, it can be extended to whole M.

14.18. Exercise. Analyze the proof of 14.15 and improve its inequal-
ity to

sysM ⩽ 4·widthM.

14.19. Exercise. Modify the proof of 14.15 to prove the following:
Suppose that M is a closed n-dimensional Riemannian manifold

with injectivity radius at least r; that is, if |p − q|M < r, then a
shortest path [pq]M is uniquely defined. Show that

widthM ⩾ r
2·(n+1) .

Use 14.8 to conclude that volM ⩾ εn ·rn for some εn > 0 that
depends only on n.
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The second statement in the exercise is a theorem of Marcel Ber-
ger [20]; an inequality with optimal constant (with equality for round
sphere) was obtained by Marcel Berger and Jerry Kazdan [19].

G Essential manifolds
To generalize 14.15 further, we need the following definition.

14.20. Definition. A closed manifold M is called essential if it
admits a continuous map ι : M → K to an aspherical CW-complex K
such that ι sends the fundamental class of M to a nonzero homology
class in K.

Note that any closed aspherical manifold is essential — in this case
one can take ι to be the identity map on M .

The real projective space RPn provides an interesting example of
an essential manifold which is not aspherical. Indeed, the infinite
dimensional projective space RP∞ is aspherical and for the natural
embedding RPn ↪→ RP∞ the image RPn does not bound in RP∞.
The following exercise provides more examples of that type:

14.21. Exercise. Show that the connected sum of an essential man-
ifold with any closed manifold is essential.

14.22. Exercise. Show that the product of two essential manifolds
is essential.

Assume that the manifold M is essential and ι : M → K as in the
definition. Following the proof of 14.15, we can homotope the map
f ◦ψ : M →M to the identity on the 2-skeleton of M ; further since K
is aspherical, we can homotope the composition ι◦f ◦ψ to ι. Existence
of this extension implies that ι kills the fundamental class of M — a
contradiction. So, taking 14.18 into account, we proved the following
generalization of 14.15:

14.23. Theorem. Suppose M is an essential Riemannian space.
Then

sysM ⩽ 4·widthM.

As a corollary from 14.23 and 14.8 we get the so-called Gromov’s
systol ic inequality:

14.24. Theorem. Suppose M is an essential n-dimensional Rie-
mannian space. Then

sysM ⩽ 4·n· n
√
volM.
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H Remarks
Theorem 14.24 was proved originally by Mikhael Gromov [62] with a
worse constant. The given proof is a result of a sequence of simplifi-
cations given by Larry Guth [67], Panos Papasoglu [106], Alexander
Nabutovsky and Roman Karasev [102].

The calculations could be done better; namely we could get

widthP ⩽ cn ·
n
√
volP,

where cn = n
√
n!/2 = n

e + o(n) [102]. As a result, we may get a
stronger statement in 14.24:

sysM ⩽ 4·cn ·
n
√
volM.

For any nonessential oriented manifold M there is a metric with
fixed volume and arbitrary small systole. This statement is proved by
Ivan Babenko [14].

A wide open conjecture says that for any n-dimensional essential
manifold we have

➊
sysM
n
√
volM

⩽
sysRPn

n
√
volRPn

,

where we assume that the n-dimensional real projective space RPn is
equipped with a canonical metric. In other words, the ratio in the
right-hand side of ➊ is the optimal constant in the Gromov’s systolic
inequality; this ratio grows as O(

√
n). (The ratio for n-dimensional

flat torus grows as O(
√
n) as well.)



Semisolutions

1.2. Add four triangle inequalities (1.1d).

1.4. Consider the function

f(x) =
distAx

distAx + distBx
,

where distAx := infa∈A |a− x|. Show that f is
continuous and satisfies the needed property.

1.5. Use 1.4 to construct an approximation of
the needed function and pass to a limit or find
a proof of the Tietze extension theorem.

1.6;(a). Note that if µ(A) = µ(B) = 0, then
|A − B| = 0. Therefore, 1.1b does not hold for
bounded closed subsets. It is straightforward to
check the remaining conditions in 1.1 hold true.

(b). Note that the distance from the empty set
to the whole plane is infinite; so the value |A−B|
might be infinite. It is straightforward to check
the remaining conditions in 1.1.

Remark. Metrics of the form |A−B| = µ(A△B)
are very special. In particular, they satisfy the
so-called hypermetric inequalit ies; that is,
for any sequence of sets A1, . . . , An and any se-
quence of integers b1, . . . , bn such that

∑
i bi = 1

we have ∑
i,j

bi ·bj ·|Ai −Aj | ⩽ 0.

Note that for n = 3 and b1 = b2 = −b3 = 1 we
get the usual triangle inequality. For more on
the subject, see [55].

1.7. Choose δ > 0 and an increasing linear
bijection ℓ : [a, b] → [c, d]. Show that ℓ has ar-
bitrarily close increasing piecewise-linear bijec-
tion s : [a, b] → [c, d] such that derivative at any
point is either < δ or > 1

δ
.

Start with the identity map [0, 1] → [0, 1];
iterate the above construction for smaller and

smaller δ and pass to the limit. This way we
obtain an increasing bijection x ↔ x′ from [0, 1]
to itself such that for any ε > 0 there is a par-
tition 0 = t0 < t1 < · · · < t2·n = 1 of [0, 1]
with

ε > |t0 − t1| + |t′1 − t′2| + |t2 − t3| + . . .

· · · + |t2·n−2 − t2·n−1| + |t′2·n−1 − t′2·n|.
Make a conclusion.

1.8. Assume the statement is wrong. Then for
any point x ∈ X , there is a point x′ ∈ X such
that

|x− x′| < ρ(x)

and

ρ(x′) ⩽
ρ(x)

1 + ε
.

Consider a sequence x1, x2, · · · ∈ X such that
xn+1 = x′

n. Show that this is a Cauchy se-
quence. Since X is complete, xn converges; de-
note its limit by x∞. Since ρ is a continuous
function we get

ρ(x∞) = lim
n→∞

ρ(xn) = 0.

The latter contradicts that ρ > 0.

1.9. Let X̄ be the completion of X . By the defi-
nition, for any y ∈ X̄ there is a Cauchy sequence
xn in X that converges to y.

Choose a Cauchy sequence ym in X̄ . From
above, we can choose points xn,m ∈ X such that
xn,m → ym for any m. Choose zm = xnm,m

such that |ym − zm| < 1
m

. Observe that zm is
Cauchy. Therefore, its limit z∞ lie in X̄ . Fi-
nally, show that xm → z∞.

1.13. A compact ε-net N in K contains a finite
ε net F . Show and use that F is a 2·ε-net of K.

1.15. Given a pair of points x0, y0 ∈ K, con-
sider two sequences x0, x1, . . . and y0, y1, . . .

171
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such that xn+1 = f(xn) and yn+1 = f(yn) for
each n.

Since K is compact, we can choose an in-
creasing sequence of integers nk such that both
sequences (xni )∞i=1 and (yni )∞i=1 converge. In
particular, both are Cauchy; that is,

|xni − xnj |K → 0 and |yni − ynj |K → 0

as min{i, j} → ∞.
Since f is distance-noncontracting,

|x0 − x|ni−nj || ⩽ |xni − xnj |

for any i and j. Therefore, there is a sequence
mi → ∞ such that

(∗) xmi → x0 and ymi → y0

as i → ∞.
Since f is distance-noncontracting, the se-

quence ℓn = |xn − yn|K is nondecreasing. By
(∗), ℓmi → ℓ0 as mi → ∞. It follows that

ℓ0 = ℓ1 = . . .

In particular,

|x0 − y0|K = ℓ0 = ℓ1 = |f(x0) − f(y0)|K

for any pair of points (x0, y0) in K. That is, the
map f is distance-preserving; hence f is injec-
tive. From (∗), we also get that f(K) is every-
where dense. Since K is compact f : K → K is
surjective — hence the result.

Remarks. This is a basic lemma in the introduc-
tion to Gromov–Hausdorff distance [see 7.3.30
in 34]. The presented proof is not quite stan-
dard, I learned it from Travis Morrison, a stu-
dent in my MASS class at Penn State, Fall 2011.

Note that this exercise implies that any sur-
jective non-expanding map from a compact met-
ric space to itself is an isometry.

1.16. Check an infinite set with a discrete met-
ric.

1.17. Set Bp = B(x, π
2

)S2 . The triangle in-
equality follows since

(∗) (Bx \By) ∪ (By \Bz) ⊇ Bx \Bz .

The remaining conditions in Definition 1.1 are
evident.

Observe that Bx \By does not overlap with
By \Bz and we get equality in (∗) if and only if
y lies on the great circle arc from x to z. There-
fore, the second statement follows.

Remarks. This construc-
tion is due to Aleksei
Pogorelov [114]. It is
closely related to the con-
struction given by David
Hilbert [73] which was the
motivating example for his
fourth problem. See also
the remark after the solu-
tion of 1.6.

1.18. We may assume that none of the points
p, x, y, z lies on a geodesic between the other
two.

Let K be the set in the tree covered by all
six geodesics with the endpoints p, x, y, z. Ob-
serve that K looks like an H or like an X; make
a conclusion.

Remarks.The value 1
2
·(|p−x|+ |p−y|− |x−y|)

is called Gromov’s product of x and y with
the origin at p; usually it is denoted by (x|y)p.

Note that a four-point metric space admits
an isometric embedding into a metric tree if and
only if one of these two equivalent conditions
holds. Moreover, a metric space admits an iso-
metric embedding into a metric tree if every its
four-point subspace admits such embedding.

1.19. Apply 1.18.

1.22. Note that P is complete. Choose ε > 0.
Use 1.21 to show that the set of paths of length
> 1 − ε is open in P; show that this set is also
dense in P. Apply Baire’s theorem (1.10).

Remark. You might find it surprising that most
of the short maps from the sphere to the plane
are length-preserving; that is, they preserve
lengths of all curves. The latter follows from the
result of Bernd Kirchheim, Emanuele Spadaro,
and László Székelyhidi [86]. (While most of the
maps have this property, it is not at all easy to
construct a single such example.)

1.24. Formally speaking, a one-point space is
a solution, but we will construct a nontrivial
example.

Recall that c0 ⊂ ℓ∞ denotes the space of all
real sequences converging to zero. Consider the
unit ball B in c0; denote by ρ0 the metric on B.

Let

φ(x) = 2 + 1
2
·x1 + 1

4
·x2 + 1

8
·x3 + . . . ,

where x = (x1, x2 . . . ) ∈ B. Consider another
length metric ρ1 on B that is different from ρ0
by the conformal factor φ; that is, if t 7→ x(t) for
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t ∈ [0, ℓ] is a curve parametrized by ρ0-length,
then its ρ1-length is defined by

lengthρ1
x :=

ℓw

0

φ ◦ x(t)·dt.

Note that the metric ρ1 is bilipschitz to ρ0.
Assume t 7→ x(t) and t 7→ x′(t) are two

curves parametrized by ρ0-length that differ
only in the m-th coordinate; denote them by
xm(t) and x′

m(t) respectively. Show that if
x′
m(t) ⩽ xm(t) for any t and the function

x′
m(t) is locally 1-Lipschitz at all t such that

x′
m(t) < xm(t), then

lengthρ1
x′ ⩽ lengthρ1

x.

Moreover, this inequality is strict if x′
m(t) <

< xm(t) for some t.
Fix a curve x(t), t ∈ [0, ℓ], parametrized by

ρ0-length. We can choose large m so that xm(t)
is sufficiently close to 0 for any t. In this case,
it is easy to construct a function t 7→ x′

m that
meets the above conditions. It follows that for
any curve x(t) in (B, ρ1), we can find a shorter
curve x′(t) with the same endpoints. In partic-
ular, (B, ρ1) has no geodesics.

Remark. This solution was suggested by Fedor
Nazarov [103].

1.25. Choose a sequence of positive numbers
εn → 0 and a finite εn-net Nn of K for each n.
We can assume that ε0 > diamK, and N0 is a
one-point set. If |x−y| < εk for some x ∈ Nk+1

and y ∈ Nk, then connect them by a curve of
length at most εk.

Let K′ be the union of all these curves
and K. Show that K′ is compact and path-
connected.

Source: This problem is due to Eugene
Bilokopytov [23].

1.26. Choose a Cauchy sequence xn in (X , ∥∗−
−∗∥); it is sufficient to show that a subsequence
of xn converges.

Observe that the sequence xn is Cauchy in
(X , | ∗ − ∗ |); denote its limit by x∞.

Passing to a subsequence, we can assume
that ∥xn − xn+1∥ < 1

2n
. It follows that there

is a 1-Lipschitz path γ in (X , ∥ ∗ − ∗ ∥) such
that xn = γ( 1

2n
) for each n and x∞ = γ(0).

Therefore,

∥x∞ − xn∥ ⩽ length γ|[0, 1
2n

] ⩽
1
2n

.

In particular, xn converges to x∞ in (X , ∥ ∗ −
− ∗ ∥).

Source: [74, Corollary]; see also [111, Lemma
2.3].

1.28. Choose two points x, y ∈ X ; let ℓ =
= |x − y|. Suppose f : E → X is a distance-
preserving map such that 0, ℓ ∈ E ⊂ [0, ℓ],
f(0) = x, and f(ℓ) = y.

Show that we can choose f so that E is
maximal; that is, f cannot be extended to a
distance-preserving map on a larger subset of
[0, ℓ].

Show that there is no open interval (a, b) in
the complement of E such that a, b ∈ E.

Apply the completeness of X to show that
E is closed. Conclude that E = [0, ℓ].

1.31. Let U be the ε-neighborhood of B(x,R)X .
By the triangle inequality, U ⊂ B(x,R + ε)X ;
this inclusion holds in any metric space.

Choose y ∈ B(x,R + ε)X , so |x − y|X <
< R + ε. Since X is a length space, there is a
curve γ from x to y with length less than R+ ε.
Show and use that γ contains a point m such
that |x−m|X < R and |y −m|X < ε.

1.32. Consider the following subset of R2

equipped with the induced length metric

X =
(
(0, 1] × {0, 1}

)
∪
(
{1, 1

2
, 1
3
, . . . } × [0, 1]

)
Note that X is locally compact and geodesic.

Its completion X̄ is isometric to the closure
of X equipped with the induced length metric.
Note that X̄ is obtained from X by adding two
points p = (0, 0) and q = (0, 1).

. . .

p

qObserve that p admits no
compact neighborhood in X̄
and there is no geodesic con-
necting p to q in X̄ .

Source: [31, I.3.6(4)].

1.33. Choose a point p ∈ X . Let r0 be
the least upper bound for radii r > 0 such
that the closed ball B[p, r] is compact. Sup-
pose B[p, r0] is not compact. Choose a sequence
of points xn ∈ B[p, r0] that has no converg-
ing subsequence. Consider geodesic paths γn
from p to xn. Pass to a subsequence of xn

so that γn(t) converges for any t ∈ [0, 1); let
γ∞ : [0, 1) → X be the limit curve. By the
assumption, γ∞ can be are extended to [0, 1].
Show that x∞ = γ∞(1) is a limit of xn and
arrive at a contradiction.
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Further argue as in the proof of the Hopf–
Rinow theorem.

Source: Communicated by Nina Lebedeva.

1.34. Suppose this number does not exist.
Show that there are two point-arrays (x1, . . .
. . . , xn) and (y1, . . . , ym) such that

(∗) min
z∈X

{ f(z) } > max
z∈X

{h(z) },

where

f(z) = 1
n
·
∑
i

|xi − z|X

and

h(z) = 1
m

·
∑
j

|yj − z|X .

Note that
1
m

·
∑
j

f(yj) = 1
m·n ·

∑
i,j

|xi − yj |X =

= 1
n
·
∑
i

h(xi);

that is, the average value of f(yj) coincides with
the average value of h(xi). The latter contra-
dicts (∗).

Remark. The value ℓ is uniquely defined; it is
called the rendezvous value of X . This is a
result of Oliver Gross [66].

2.2. By the Fréchet lemma (2.1) we can identify
K with a compact subset in ℓ∞.

Denote by L the closed convex hull of
K; that is, L is the minimal convex closed set
in ℓ∞ that contains K. (In other words, L is
the minimal closed set containing K such that
if x, y ∈ L, then t·x + (1 − t)·y ∈ L for any
t ∈ [0, 1].)

Observe that L is a length space. It remains
to show that L is compact.

By construction, L is a closed subset of ℓ∞;
in particular, it is complete. By 1.11c, it re-
mains to show that L is totally bounded.

Recall that Minkowski sum A + B of two
sets A and B in a vector space is defined by

A + B := { a + b : a ∈ A, b ∈ B } .

Observe that the Minkowski sum of two convex
sets is convex.

Denote by B̄ε the closed ε-ball in ℓ∞ cen-
tered at the origin. Choose a finite ε-net N in
K for some ε > 0. Note that P = ConvN is

a convex polyhedron; in particular, ConvN is
compact.

Observe that N + B̄ε is a closed ε-
neighborhood of N . It follows that N+B̄ε ⊃ K,
and therefore, P + B̄ε ⊃ L. In particular, P is
a 2·ε-net in L; since P is compact and ε > 0 is
arbitrary, L is totally bounded (see 1.13).

Remark. Alternatively, one may use that the in-
jective envelope of a compact space is compact ;
see 3.3b, 3.20, and 3.23.

2.3. Modify the proof of 2.1.

o

x0

x1

x2

x3

x4

2.8. Consider the metric
tree T shown on the dia-
gram; it is a half-line [0,∞)
with attached an interval of
length n + 1 to each inte-
ger n ⩾ 0. Denote by o the
origin of the half-line and
by xn the endpoint of nth interval.

Observe that if m ̸= n, then

|xm − xn|T ⩾ |o− xn|T + 1.

Show and use that for any binary sequence εn
there is an extension function f such that

f(xn) = |o− xn|T + εn.

Remark. An if-and-only-if condition on X
that have separable X∞ was found by Julien
Melleray [96, 2.8]. A similar condition was used
by Herbert Federer to describe metric spaces
where Besicovitch covering lemma holds [57,
2.8.9].

2.13. Choose a separable space X that has an
infinite number of geodesics between a pair of
points with the given distance between them;
say a square in R2 with ℓ∞-metric will do. Ap-
ply to X universality of Urysohn space (2.12).

2.14. First let us prove the following claim:

⋄ Suppose f : K → R is an extension func-
tion defined on a compact subset K of
the Urysohn space U . Then there is a
point p ∈ U such that |p − x| = f(x) for
any x ∈ K.

Without loss of generality, we may assume
that f > 0. Since K is compact, we may fix
ε > 0 such that f(x) > ε for any x ∈ K.

Consider the sequence εn = ε
100·2n . Choose

a sequence of εn-nets Nn ⊂ K. Applying the
universality of U recursively, we may choose a
point pn such that |pn − x| = f(x) for any
x ∈ Nn and |pn − pn−1| = 10·εn−1. Observe
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that the sequence pn is Cauchy and its limit p
meets |p− x| = f(x) for any x ∈ K.

Now, choose a sequence xn of points that
is dense in S. Applying the claim, we may ex-
tend the map from K to K ∪ {x1}, further to
K ∪ {x1, x2}, and so on. As a result, we extend
the distance-preserving map f to the whole se-
quence xn. It remains to extend it continuously
to the whole space S.

2.16. It is sufficient to show that any compact
subspace K of the Urysohn space U can be con-
tracted to a point.

Note that any compact space K can be ex-
tended to a contractible compact space K′; for
example, we may embed K into ℓ∞ and pass to
its convex hull, as it was done in 2.2.

By 2.20, there is an isometric embedding of
K′ that agrees with the inclusion K ↪→ U . Since
K is contractible in K′, it is contractible in U .

A better way. One can contract the whole Ury-
sohn space using the following construction.

Note that points in X∞ constructed in the
proof of 2.7 can be multiplied by t ∈ [0, 1] — sim-
ply multiply each function by t. That defines a
map

λt : X∞ → X∞

that rescales all distances by factor t. The map
λt can be extended to the completion of X∞,
which is isometric to Ud (or U).

Observe that the map λ1 is the identity and
λ0 maps the whole space to a single point, say
x0 — this is the only point of X0. Further, note
that (t, p) 7→ λt(p) is a continuous map; in par-
ticular, Ud and U are contractible.

As a bonus, observe that for any point
p ∈ Ud the curve t 7→ λt(p) is a geodesic path
from p to x0.

Source: [65, (d) on page 82].

2.18. Consider two infinite metric trees as on
the diagram.

. . .

. . .

. . .

. . .

X

Y

Remark. A more sophisticated example: X =
= ℓ∞ and Y = L∞([0, 1]). Try to prove that it
qualifies; see also [32].

2.19; (a) and (b). Observe that L and M sat-
isfy the definition of d-Urysohn space and apply
the uniqueness (2.17). Note that

ℓ = diamL = min{2·r, d}.

(c). Use (a), maybe twice.

2.21. Let p be the center of the sphere; with-
out loss of generality, we can assume that |p −
− x| ⩽ |p− y|.

Consider function f : {p, x, y} → R defined
by f(p) = 1, f(x) = 1 + |p − x|, and f(y) =
1 + |p − y| − ε. Suppose ε > 0 is sufficiently
small; show that f is an extension function on
{p, x, y}.

By the extension property, there is a point
z ∈ U such that |p − z| = f(p), |x − z| = f(x),
and |y − z| = f(y). Whence the statement fol-
lows.

Source: This problem is taken from a survey of
Julien Melleray [96, Prop. 4.3], where it was
attributed to Matatyahu Rubin.

2.22. Observe that the complement V = U \B
is complete. Show that it V satisfies the exten-
sion property. Conclude that V is an Urysohn
space and apply 2.17.

For the second part, observe that there is
an isometry ι : U → V. Moreover, if p is the
center of B, then we can assume that ι has a
fixed point x such that |p− x| > 2.

Consider the unit sphere S centered at x.
The restriction of ι to S is an isometry of S.
Use 2.21 to show that it cannot be extended to
an isometry of U .

Source: [96, Sec. 4.4].

2.23. Apply 2.17 and the construction in 2.11.

2.24; (a). The Euclidean plane is homogeneous
in every sense.

(b). The Hilbert space ℓ2 is finite-
set-homogeneous, but not compact-set-
homogeneous, nor countable-set-homogeneous.

(c). ℓ∞ is one-point-homogeneous, but not two-
point-homogeneous. Try to show that there is
no isometry of ℓ∞ such that

(0, 0, 0, . . . ) 7→ (0, 0, 0, . . . ),

(1, 1, 1, . . . ) 7→ (1, 0, 0, . . . ).
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(d). ℓ1 is one-point-homogeneous, but not two-
point-homogeneous. Try to show that there is
no isometry of ℓ∞ such that

(0, 0, 0, . . . ) 7→ (0, 0, 0, . . . ),

(2, 0, 0 . . . ) 7→ (1, 1, 0, . . . ).

2.25. Let T be a one-point-homogeneous met-
ric tree. Note that all points in T have the
same degree d; that is, for any point t ∈ T the
set of connected components of the complement
T \ {t} has the same cardinality d.

Show that if d = 0, then T is a one-point
space; there is no tree with d = 1, and if d = 2,
then T iso

== R.
Suppose d ⩾ 3. Choose a geodesic γ in T .

Show that the number of connected components
of T \γ has cardinality continuum. Observe and
use that one can choose a point pα in each con-
nected component such that |pα − pβ |T > 1 if
α ̸= β.

2.26. Assume FX is not an embedding. That
is, there is a sequence of points x1, x2, . . . and
a point x∞ such that fxn → fx∞ in C(X ,R) as
n → ∞, while |xn − x∞|X > ε for some fixed
ε > 0 and all n.

By 1.29, any pair of points x, y ∈ X can
be connected by a minimizing geodesic [xy].
Choose x̄n on a geodesic [x∞xn] such that
|x∞ − x̄n| = ε. Note that

fxn (x∞) − fxn (x̄n) = ε,

fx∞ (x∞) − fxn (x̄n) = −ε

for all n.
Since X is proper, we can pass to a subse-

quence of xn so that the sequence x̄n converges;
denote its limit by x̄∞. The above identities im-
ply that

fxn (x̄∞) ̸→ fx∞ (x̄∞) or
fxn (x∞) ̸→ fx∞ (x∞)

— a contradiction.
For the second part, take Y to be the set of

nonnegative integers with the metric ρ defined
by

ρ(m,n) = m + n

for m ̸= n.

Source: I learned this example from Linus
Kramer and Alexander Lytchak; it was also
mentioned in the lectures of Anders Karlsson
and attributed to Uri Bader [80, 2.3].

2.27. Suppose that our metric is
∑

aS ·δS with
aS ⩾ 0 for any S ⊂ F . Enumerate all the sub-
sets S1, . . . , S2n ; set Si = F for all i > 2n. Con-
sider the maps x 7→ (a1, a2, . . . ) where ai = 0
if x ∈ Si and otherwise ai = 1. Observe that it
defines a distance-preserving map F → ℓ1.

The if part is proved. For the only-if part,
check the statement for subsets of the real line,
and use it.

2.28. Show that for any proper subset S in the
vertex set there are three vertices x, y, z such
that |x−y|+ |y−z| = |x−z| and either x, z ∈ S
and y /∈ S, or x, z /∈ S and y ∈ S. Then apply
2.27.

2.29. For the first part, show and use that the
quotient of RP2 by the isotropy group of one
point is isometric to a line segment.

For the second part, choose three points on
a closed geodesic at equal distances from each
other. Show and use that there is an isometric
three-point set in RP2 that does not lie on a
closed geodesic.

Source: [40, V §2].

2.30. Denote by dim(x1, . . . , xm) the dimen-
sion of the minimal face of the cube that con-
tains all the points x1, . . . , xm ∈ Q. Show and
use that

dim(x1, . . . , xm) = dim(x′
1, . . . , x

′
m)

for any isometry x 7→ x′ of Q.

Source: [17, prop. 6 and 7].

3.1; only-if part. To check convexity, assume
that B is a two-point subset. For closeness, as-
sume that B is a countable set of A.

If part. Apply the Kirszbraun theorem together
with the closest-point projection.

3.3. Choose an injective space Y.
(a). Fix a Cauchy sequence xn in Y; we

need to show that it has a limit x∞ ∈ Y. Con-
sider metric on X = N ∪ {∞} defined by

|m− n|X := |xm − xn|Y ,

|m−∞|X := lim
n→∞

|xm − xn|Y .

Since the sequence is Cauchy, so is the sequence
ℓn = |xm − xn|Y for any m. Therefore, the last
limit is defined.

By construction, the map n 7→ xn is
distance-preserving on N ⊂ X . Since Y is injec-
tive, this map can be extended to ∞ as a short
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map; set ∞ 7→ x∞. Since |xn − x∞|Y ⩽ |n −
−∞|X and |n−∞|X → 0, we get that xn → x∞
as n → ∞.

(b). Applying the definition of injective
space, we get a midpoint for any pair of points
in Y. By (a), Y is a complete space. It remains
to apply Menger’s lemma (1.27b).

(c). Let k : Y ↪→ ℓ∞(Y) be the Kura-
towski embedding (2.4). Observe that ℓ∞(Y)
is contractible; in particular, there is a homo-
topy kt : Y ↪→ ℓ∞(Y) such that k0 = k and
k1 is a constant map. (In fact, one can take
kt = (1 − t)·k.)

Since k is distance-preserving and Y is in-
jective, there is a short map f : ℓ∞(Y) → Y such
that the composition f ◦ k is the identity map
on Y. The composition f ◦ kt : Y ↪→ Y provides
the needed homotopy.

3.4. By 2.4, the space Y can be considered as
a subset in ℓ∞(Y). Let r : ℓ∞(Y) → Y be the
short retraction provided by the definition of in-
jective space. Observe that m(x, y) := r(x+y

2
)

meets the condition.

Remark. The same argument can be used to
construct the so-called geodesic bicombing
on injective space — a useful tool introduced by
Urs Lang [88, 3.6].

3.5. Suppose that a short map f : A → Y
is defined on a subset A of a metric space X .
We need to construct a short extension F of f .
Without loss of generality, we may assume that
A ̸= ∅; otherwise, map the whole X to a sin-
gle point. By Zorn’s lemma, it is sufficient to
enlarge A by a single point x /∈ A.

(a). Suppose Y = R. Set

F (x) = inf { f(a) − |a− x| : a ∈ A } .

Observe that F is short and F (a) = f(a) for
any a ∈ A.

(b). Suppose Y is a complete metric tree. Fix
points p ∈ X and q ∈ Y. Given a point a ∈ A,
let xa ∈ B[f(a), |a − p|] be the point closest to
f(x). Note that xa ∈ [q f(a)] and either xa = q
or xa lies on distance |a− p| from f(a).

Note that the geodesics [q xa] are nested;
that is, for any a, b ∈ A we have either [q xa] ⊂
⊂ [q xb] or [q xb] ⊂ [q xa]. Moreover, in the first
case, we have |xb − f(a)| ⩽ |p − a| and in the
second |xa − f(b)| ⩽ |p− b|.

It follows that the closure of the union of all
geodesics [q xa] for a ∈ A is a geodesic. Denote

by x its endpoint; it exists since Y is complete.
It remains to observe that |x − f(a)| ⩽ |p − a|
for any a ∈ A; that is, one can take f(p) = x.

(c). Show and use that any ℓ∞-product of injec-
tive spaces is injective; in particular, if Y and
Z are injective, then so is the product Y × Z
equipped with the metric

|(y, z)−(y′, z′)|Y×Z = max{ |y−y′|Y , |z−z′|Z }.

3.6; (a). Let B = B[o,R]Y . Choose a metric
space X with a subset A. Given a short map
f : A → B we need to find its short extension
X → B.

Since diamB ⩽ 2·R, we may assume that
diamX ⩽ 2·R; if not pass to the metric defined
by |x− y| := max{ |x− y|X , 2·R }.

Let us add point w to X such that |w −
− x| = R for any x ∈ X ; denote the obtained
space X ′. Let f ′ : A∪{w} → B be an extension
of f by w 7→ o; note that f ′ is short.

Since Y is injective, there is a short exten-
sion F : X ′ → Y of f ′. Show and use that
F (X ′) ⊂ B.

(b). Try to modify the argument in (a). Namely,
let B =

⋂
α B[oα, Rα]Y . Note that one may as-

sume that diamX ⩽ 2· infα{Rα }. Consider
the space X ′ = X ∪ {wα} such that |wα − x| =
= Rα for any x ∈ X and |wα −wβ | = Rα + Rβ

if α ̸= β. Further, consider an extension of f by
wα 7→ oα.

3.7. Let diamY = 2·R. We can assume that
R > 0; otherwise, there is nothing to prove.
Denote by Z a minimal (with respect to inclu-
sion) intersection of closed R-balls in Y such
that s(Z) ⊂ Z.

Consider the intersection

Y ′ = Z ∩

 ⋂
p∈Z

B[p,R]Y

 .

By 3.6b, Y ′ is injective. Use that Z is min-
imal to show that s(Y ′) ⊂ Y ′. Show that
diamY ′ ⩽ 1

2
· diamY.

Consider a sequence of nested injective
spaces Y = Y0 ⊃ Y1 ⊃ . . . such that Yn+1 =
= Y ′

n. Choose a point yn ∈ Yn for each n.
Show that the sequence yn is Cauchy. By 3.3a,
yn converges, say to y∞. Observe that y∞ is a
fixed point of s.

3.12; only-if part. Suppose r is extremal. By
3.11b, r is 1-Lipschitz. Since S1 is compact,
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3.11d implies that for any p ∈ S1 there is q ∈ S1
such that

r(p) + r(q) = |p− q|S1 .

Therefore

π = |p− (−p)|S1 ⩽

⩽ r(p) + r(−p) =

= r(p) + r(q) + r(−p) − r(q) ⩽

⩽ |p− q|S1 + |q − (−p)|S1 =

= π.

So, we have equality in both places, and the
only-if part follows.

If part. Assume r is a 1-Lipschitz function such
that r(p) + r(−p) = π. Then

|p− q|S1 = |p− (−p)|S1 − |q − (−p)|S1 ⩾

⩾ π − (r(−p) − r(q)) =

= r(p) + r(q).

Therefore r is admissible.
Finally, if r is not extremal, then there is an

admissible function s ⩽ r such that s(p) < r(p)
for some p. The latter contradicts the equality
r(p) + r(−p) = π.

Source: [139, Proposition 2.7].

3.13. Show and use that s∗(x) ⩾ |x− y| − s(y)
for any x, y ∈ X .

Remarks. It is easy to check that q : s 7→
7→ 1

2
·(s + s∗) is a short map on the space of

admissible functions (with sup-norm). More-
over, iterating q and passing to the limit, we get
a short retraction from the space of admissible
functions to the space of extremal functions on
X [see 3.1 in 88]. The existence of such a map
also follows from 3.27.

3.15. Apply 3.14c.

Comment. Conditions under which gluings of
injective spaces are injective were studied by
Benjamin Miesch and Maël Pavón [98, 99].

3.16. Let B = B[0, 1] and P ⊃ B be a par-
allelepiped of minimal volume. Choose coor-
dinates so that P is described by inequalities
|xi| ⩽ 1 for all i; let e1, . . . , em be the standard
basis of these coordinates.

Let Bi = B[(1 + R)·ei, R] for some R > 0.
Show that ei ∈ B for any i; in particular
B ∩ Bi ̸= ∅. Show P can be chosen so that

Bi ∩ Bj ̸= ∅ for all i and j and all large
R > 0. Apply hyperconvexity to show that
e1 + · · · + em ∈ B. The same way, show that
±e1±· · ·±em ∈ B for all choices of signs. Con-
clude that B = P .

3.17. Observe that closed balls are compact
and apply the finite intersection property.

3.18. Denote by Ud the d-Urysohn space, so
U∞ is the Urysohn space.

The extension property implies finite hyper-
convexity. It remains to show that Ud is not
countably hyperconvex.

Suppose that d < ∞. Show that for any
point x ∈ Ud there is a point y ∈ Ud such that
|x − y|Ud

= d = diamUd. It follows that there
is no point z ∈ Ud such that |z − x|Ud

⩽ d
2

for any x ∈ Ud. Whence Ud is not countably
hyperconvex.

Use 2.19b to reduce the case d = ∞ to the
case d < ∞.

3.19. Choose ε0 > 0. Let p0 be a point pro-
vided by the definition of almost hyperconvex-
ity; that is |xα − p0| ⩽ rα + ε0 for a given
ε0 > 0. We may assume that δ0 = sup{ |xα −
− p0| − rα } > 0; otherwise, the problem is
solved. Clearly, δ0 ⩽ ε0.

Applying hyperconvexity for ε1 < 1
10

·δ0, we
get a point p1 such that |xα−p1| ⩽ rα +ε1 and
|p0 − p1| ⩽ δ0 + ε1. Again, we may assume that
δ1 = sup{ |xα−p1| − rα, |p0−p1| } > 0, and we
have δ1 ⩽ ε1.

Continuing this way, we get a sequence
p0, p1, . . . that either terminates and in this case
the problem is solved, or it is an infinite Cauchy
sequence. In the latter case, its limit p∞ satis-
fies |xα − p∞| ⩽ rα for any α.

Comment. This solution reminds the proof
of 2.9; a more exact statement was proved
by Benjamin Miesch and Maël Pavón [100,
2.2]; namely, they show that almost n-
hyperconvexity implies (n− 1)-hyperconvexity.

3.20. Show and use that the functions in ExtX
are 1-Lipschitz and uniformly bounded.

3.21; (a). Use 3.11d to show that if f is ex-
tremal if and only if f(v) = x and f(w) = 1− x
for some x ∈ [0, 1]. Conclude that ExtX is iso-
metric to the unit interval [0, 1].

(b). Let f be an extremal function. By 3.11d , at
least two of the numbers f(a)+f(b), f(b)+f(c),
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and f(c) + f(a) are 1. It follows that for some
x ∈ [0, 1

2
], we have

f(a) = 1 ± x, f(b) = 1 ± x, f(c) = 1 ± x,

where we have one “minus” and two “pluses” in
these three formulas.

Suppose that

g(a) = 1 ± y, g(b) = 1 ± y, g(c) = 1 ± y

is another extremal function. Then |f − g| =
= |x − y| if g has “minus” at the same place as
f and |f − g| = |x + y| otherwise.

It follows that ExtX is isometric to a tripod
— three segments of length 1

2
glued at one end.

a

b c

x

y

pq

(c). Assume f is an extremal function. Use
3.11d to show that

2 = f(x) + f(y) =

= f(p) + f(q);

in particular, two values a = f(x) − 1 and b =
= f(p) − 1 completely describe the function f .
Since f is extremal, we also have that

(1 ± a) + (1 ± b) ⩾ 1

for all 4 choices of signs; equivalently,

|a| + |b| ⩽ 1.

It follows that ExtX is isometric to the
rhombus |a| + |b| ⩽ 1 in the (a, b)-plane with
the metric induced by the ℓ∞-norm.

Remarks. If X has n-points, then (evidently)
ExtX is a polyhedral complex in (Rn, ℓ∞) =
= ℓ∞(X ); each face of the complex is defined by
equalities and inequalities of the following type:
xi + xj ⩾ const and xi + xj = const. It is easy
to see (and follows from 3.16) that each face is
isometric to a convex polyhedron in (Rk, ℓ∞) for
some k ⩽ n; in fact k ⩽ n/2. The structure of
the complex can be encoded by certain graphs
with the vertex set X [see Section 4 in 88].

3.22. Recall that x 7→ distx gives an isomet-
ric embedding X ↪→ ℓ∞(X ); so we can identify
X with a subset of ℓ∞(X ). Further, ExtX is

a subset of ℓ∞(X ). It is sufficient to show that
ExtX = G.

Use 3.11d to show that ExtX ⊂ G.
Given g ∈ G, show that g(x) = |g−x|

ℓ∞(X )
.

Conclude that g is admissible and apply 3.11d .

Source: Suggested by Rostislav Matveyev.

3.25. Recall that

|f − g|ExtX = sup { |f(x) − g(x)| : x ∈ X }
and

|f − p|ExtX = f(p)

for any f, g ∈ ExtX and p ∈ X .
Since X is compact we can find a point

p ∈ X such that

|f − g|ExtX = |f(p) − g(p)| =

= ||f − p|ExtX − |g − p|ExtX | .
Without loss of generality, we may assume that

|f − p|ExtX = |g − p|ExtX + |f − g|ExtX .

Applying 3.11d , we can find a point q ∈ X such
that

|q − p|ExtX = |f − p|ExtX + |f − q|ExtX ,

whence the result.
Since ExtX is injective (3.23), by 3.3b it

has to be geodesic. It remains to note that the
concatenation of geodesics [pq], [gf ], and [fq] is
the required geodesic [pq].

3.26. The only-if part follows since X is iso-
metric to a subset of ExtX .

The if part means that

➊
|f − g| + |v − w| ⩽ max{ |f − v| + |g − w|,

|f − w|+|g − v| } + 2·δ
for any f, g, v, w ∈ ExtX .

Suppose X is compact. Applying 3.25, we
can choose p, q, x, y ∈ X such that

➋
|p− f | + |f − g| + |g − q| = |p− q|
|x− v| + |v − w| + |w − y| = |x− y|

Since X is δ-hyperbolic, we have

|p− q| + |x− y| ⩽ max{ |p− x| + |q − y|,
|p− y|+|q − x| } + 2·δ.

Show that this inequality, together with the tri-
angle inequality and ➋ imply ➊.

For the noncompact case, prove an approx-
imate version of ➋ and apply it the same way.

3.28. Show that there is a unique isometry of
ExtX that is identity on X . Use it together
with 3.27.
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3.29. Show that there is a pair of short maps
ExtX → ExtU → ExtX such that their com-
position is the identity on X . You may need
to apply the Katětov extension (2.5a). Make a
conclusion.

3.30. Apply 3.11d to show that for any u ∈ S2+
the restriction fu := distu|S1 is an extremal
function on S1. Moreover, the function fu
uniquely determines u. Make a conclusion.

3.32. Observe that coordinate functions are
monotonic on any geodesic in ℓ1. Use it to show
that ℓ1 is a median space; that is, for any
three points x, y, z there is a unique point m (it
is called the median of x, y, and z) that lies on
some geodesics [xy], [xz] and [yz]. Apply it to
show that ℓ1 is 3-hyperconvex.

The 4-hyperconvexity fails for the unit balls
centered at four even vertices of the cube
([0, 1]3, ℓ1).

3.33. Choose three points x, y, z ∈ X and set
A = {x, z}. Let f : A → A be the identity map.
Then F (y) = x or F (y) = z. In both cases, the
strong triangle inequality follows.

3.34; main part. Choose a maximal (with re-
spect to inclusion) subset A ⊃ K that admits a
short retraction f : A → K; it exists by Zorn’s
lemma. If A is the whole space, then the prob-
lem is solved. Otherwise, choose p /∈ A.

Choose a sequence of points an ∈ A such
that |an − p| converge to the exact lower bound
on the distances from points in A to p. Since K
is compact, we can pass to a subsequence of an
such that f(an) converges. Let

f(p) = lim f(an).

It remains to check that

➌ |f(a) − f(p)| ⩽ |a− p|

for any a ∈ A. Choose ε > 0; note that

|an − p| < |a− p| + ε, |f(an) − f(p)| < ε

for all large n. Therefore,

|f(a) − f(p)| ⩽
⩽ max{ |f(a) − f(an)|, |f(an) − f(p)| } ⩽

⩽ |f(a) − f(an)| + ε ⩽

⩽ |a− an| + ε ⩽

⩽ max{ |a− p|, |an − p| } + ε <

< |a− p| + 2·ε.

Since ε > 0 is arbitrary, we get ➌.

Example. Consider set of {∞, 1, 2, . . . } with
metric defined by

|m− n| := 1 +
1

min{m,n}
for m ̸= n. Observe that the space is complete,
the subset {1, 2, . . . } is closed, but it is not a
short retract of the ambient space.

3.35. Consider the space KX of all maps X →
→ K equipped with the product topology.

Denote by SF the set of maps h ∈ KX such
that the restriction h|F is short and agrees with
f in F ∩ A. Note that the sets SF ⊂ KX are
closed and any finite intersection of these sets is
nonempty.

According to Tikhonov’s theorem, KX is
compact. By the finite intersection property,
the intersection

⋂
F SF for all finite sets F ⊂ X

is nonempty. Hence the statement follows.

Source: [111, 7.1].

4.3. Suppose that |A − B|HausX < r. Choose
a pair of points a, a′ ∈ A on maximal distance
from each other. Observe that there are points
b, b′ ∈ B such that |a − b|X , |a′ − b′|X < r.
Whence

|a− a′|X − |b− b′|X ⩽ 2·r
and therefore

diamA− diamB ⩽ 2·|A−B|HausX .

Swap A and B and repeat the argument.

4.4; (a). Given a set A ⊂ R2, denote by Ar its
closed r-neighborhood. Show and use that

(ConvA)r = Conv(Ar).

(b). The answer is “no” in both parts.
For the first part let A be a unit disk and B

a finite ε-net in A. Evidently, |A−B|HausR2 <
< ε, but |∂A− ∂B|HausR2 ≈ 1.

For the second part take A to be a unit disk
and B = ∂A to be its boundary circle. Note that
∂A = ∂B; in particular, |∂A − ∂B|

HausR2 = 0

while |A−B|
HausR2 = 1.

Remark. A more interesting example for (b)
is provided by the so-called lakes of Wada —
an example of three (and more) disjoint open
topological disks in the plane that have identi-
cal boundaries.

4.5. Checking two functions distA and distB
leads to

|A−B| ⩽ sup
f

{max
a∈A

{f(a)} − max
b∈B

{f(b) }.
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Use 4.2 to prove the opposite inequality.

4.6. By 4.4a, it is sufficient to show that

|A−B|HausRn = sup
|u|=1

{|hA(u) − hB(u)|}

for any nonempty compact convex sets A,B ⊂
⊂ Rn.

Prove the 1-dimensional case of this equal-
ity. Further, denote by Aℓ the orthogonal pro-
jection of A to a line ℓ. Show and use that

|A−B|HausRn = sup
ℓ
{|Aℓ −Bℓ|Haus ℓ},

where the least upper bound is taken for all
lines ℓ.

4.7; (a). Given t ∈ (0, 1], consider the real inter-
val C̃t = [ 1

t
+ t, 1

t
+ 1]. Denote by Ct the image

of C̃t under the covering map π : R → S1 = R/Z.
Set C0 = S1. Note that the Hausdorff dis-

tance from C0 to Ct is t
2
. Therefore {Ct}t∈[0,1]

is a family of compact subsets in S1 that is con-
tinuous in the sense of Hausdorff.

Assume there is a continuous section c(t) ∈
∈ Ct, for t ∈ [0, 1]. Since π is a covering map, we
can lift the path c to a path c̃ : [0, 1] → R such
that c̃(t) ∈ C̃t for all t. In particular, c̃(t) → ∞
as t → 0, a contradiction.

(b). Consider path c(t) := minCt.

Source: Suggested by Stephan Stadler.

4.9. Show that f : (p, r) 7→ B[p, r] defines a
continuous map X × [0,∞) → HausX . Observe
that B[p, r] = X for all r ⩾ diamX . Composing
f with the retraction r : HausX → X we get a
homotopy from the identity map to a constant
map on X , hence the statement.

By the way, is there a good description of such
spaces? Note that if X is injective or discrete,
then a short retraction HausX → X exists. On
the other hand, the Euclidean plane does not
have such a retraction [107, 115]. See also [110].

4.12. Show that for any ε > 0 there is a posi-
tive integer N such that

⋃
n⩽N Kn is an ε-net

in the union
⋃

n Kn. Observe that
⋃

n⩽N Kn is
compact. Apply 1.13 and 1.11c.

4.13; if part. Choose two compact sets A,B ⊂
⊂ X ; suppose that |A−B|HausX < r.

Choose finite ε-nets {a1, . . . , am} ⊂ A and
{b1, . . . bn} ⊂ B. For each pair ai, bj construct

a constant-speed path γi,j from ai to bj such
that

length γi,j < |ai − bj | + ε.

Set
C(t) = { γi,j(t) : |ai − bj |X < r + ε } .

Observe that C(t) is finite; in particular, it is
compact.

Show and use that
|A− C(t)|X < t·r + 10·ε,
|C(t) −B|X < (1 − t)·r + 10·ε.

Apply 4.12 and 1.27.

Only-if part. Choose points p, q ∈ X . Show
that the existence of ε-midpoints between {p}
and {q} in HausX implies the existence of ε-
midpoints between p and q in X . Apply 1.27.

4.14; (a) Suppose that a sequence of compact
subsets Kn ⊂ R2 converges to K∞ in the sense
of Hausdorff. Assume K∞ is not connected;
show that so is Kn for large n.

(b). Choose a finite subset F that is ε-close
to K. Show that one can obtain a tree T by
connecting some vertices of F by line segments
of length smaller than 2·ε. Let γ be a curve
that bounds a neighborhood of T . Show that if
the neighborhood is sufficiently small, then γ is
2·ε-close to K.

Remarks. You might be surprised to learn that
most connected compact sets in the pane are
homeomorphic to each other — they are homeo-
morphic to the so-called pseudo-arc [24]; here
the word most understood in the sense of 1F. In
particular, most of the compact connected plane
sets are not path-connected.

4.15. Let A be a compact convex set in the
plane. Denote by Ar the closed r-neighborhood
of A. Recall that by Steiner’s formula we have

areaAr = areaA + r · perimA + π ·r2.
Taking the derivative and applying the coarea
formula, we get

perimAr = perimA + 2·π ·r.
Observe that if A lies in a compact set B

bounded by a closed curve, then
perimA ⩽ perimB.

Indeed the closest-point projection R2 → A is
short and it maps ∂B onto ∂A.

It remains to use the following observation:
if An → A∞, then for any r > 0 we have that
the inclusions

Ar
∞ ⊃ An and A∞ ⊂ Ar

n
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hold for all large n.

Remark. Observe that the inequality

areaA∞ ⩾ lim
n→∞

areaAn

holds for any sequence of compact (not neces-
sarily convex) sets A1, A2, . . . in the plane that
converges to A∞ in the sense of Hausdorff.

4.17. Note that almost all points on ∂D have
a defined tangent line. In particular, for almost
all pairs of points a, b ∈ ∂D the two angles α and
β between the chord [ab] and ∂D are defined.

D
ab

αβ

The convexity of D′ implies that α = β;
here we measure the angles α and β on one side
from [ab]. Show that if the identity α = β holds
for almost all chords, then D is a round disk.

4.19. Observe that all functions distAn are
Lipschitz. Suppose that for some (and there-
fore any) point x the sequence distAn (x) is not
bounded. Then we can pass to a subsequence
of An so that distAn (x) → ∞ for any x; in this
case, An converges to the empty set.

Assume the sequence distAn (x) is bounded
for some (and therefore any) point x. Then,
passing to a subsequence of An, we may as-
sume that the sequence distAn converges to
some function f .

Set A∞ = f−1{0}. It remains to show that
f = distA∞ .

5.3; (a). Apply the definition (5.1) for space W
obtained from X by adding one point that lies
at distance 1

2
· diamX from each point of X .

(b). Given a point x ∈ X , denote by a·x and
b·x the corresponding points in a·X and b·X re-
spectively. Show that there is a metric on W =
= a·X ⊔ b·X such that

|a·x− b·x|W =
|b−a|

2
· diamX

for any x and the inclusions a·X ↪→ W, b·X ↪→
↪→ W are distance-preserving. Conclude that
|X − O|GH ⩽ 1

2
· diamX . The opposite inequal-

ity follows from (a).

(c). Use (a) and (b) to show that the isome-
try class of O is completely determined by the
following property

|X − Y|GH ⩽ max{ |O − X|GH, |O − Y|GH }.

for any X and Y.

Remark. In fact, the isometry group of space
GH is trivial. The latter was proved by George
Lowther [79, 92].

5.4. Check a one-point set and the vertices of
an equilateral triangle. You may use 5.3a.

5.5. Suppose that we can identify Ar and Br

with subspaces of a space W such that

|Ar − Br|HausW < 1
10

for large r; see the definition of Gromov–
Hausdorff metric (5.1).

Set n = ⌈r⌉. Note that there are 2·n
integer points in Ar: a1 = (0, 0), a2 =
= (1, 0), . . . , a2·n = (n, 1). Choose a point
bi ∈ Br that lies at the minimal distance from
ai. Note that |bi − bj | > 4

5
if i ̸= j. It follows

that r > 4
5
·(2·n − 1). The latter contradicts

n = ⌈r⌉ for large r.

Remark. Try to show that |Ar −Br|GH = 1
2

for
all large r.

5.6. Suppose

|X − Y|HausU < ε.

Denote by Û the injective envelope of U . Ac-
cording to 3.29, the inclusions X ↪→ U and
Y ↪→ U can be extended to distance-preserving
inclusions X̂ ↪→ Û and Ŷ ↪→ Û . Therefore, we
can and will consider X̂ and Ŷ as subspaces of
Û . It is sufficient to show that

➊ |X̂ − Ŷ|Haus Û < 2·ε.

Given f ∈ Û , let us find g ∈ X̂ such that

➋ |f(u) − g(u)| < 2·ε

for any u ∈ U . Note that the restriction f |X is
admissible on X . By 3.9, there is g ∈ X̂ such
that

➌ g(x) ⩽ f(x)

for any x ∈ X .
Recall that any extremal function is 1-

Lipschitz; in particular, f and g are 1-Lipschitz
on U . Therefore, ➌ and |X − Y|U < ε imply
that

g(u) < f(u) + 2·ε
for any u ∈ U . By 3.10, we also have

g(u) > f(u) − 2·ε
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for any u ∈ U . Whence ➋ follows.
It follows that Ŷ lies in a 2·ε-neighborhood

of X̂ in Û . The same way we show that X̂ lies in
a 2·ε-neighborhood of Ŷ in Û . Hence ➊ follows.

Remark. This problem was discussed by Urs
Lang, Maël Pavón, and Roger Züst [89, 3.1].
They also show that the constant 2 is optimal.
To see this, look at the injective envelopes of
two four-point metric spaces shown on the di-
agram and observe that the Gromov–Hausdorff
distance between the 4-point metric spaces is 1,
while the distance between their injective en-
velopes approaches 2 as s → ∞.

ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1ℓ1

1

1

1

1

s

s

4

5.8; only-if part. Let us identify X and Y with
subspaces of a metric space W such that

|X − Y|HausW < ε.

Set x ≈ y if and only if |x − y|W < ε. It
remains to check that ≈ is an ε-approximation.

If part. Show that we can assume that

R = { (x, y) ∈ X × Y : x ≈ y }

is a compact subset of X × Y. Conclude that∣∣|x− x′|X − |y − y′|Y
∣∣ < 2·ε′

for some ε′ < ε.
Show that there is a metric on W = X ⊔ Y

such that the inclusions X ↪→ W and Y ↪→ W
are distance-preserving and |x − y|W = ε′ if
x ≈ y. Conclude that

|X − Y|HausW ⩽ ε′ < ε.

5.10; (a). Let ≈ be an ε-approximation pro-
vided by 5.8. For any x ∈ X choose a point
f(x) ∈ Y such that x ≈ f(x). Show that
x 7→ f(x) is an 2·ε-isometry.

(b). Let x ∈ X and y ∈ Y. Set x ≈ y
if |y − f(x)|Y < ε. Show that ≈ is an ε-
approximation. Apply 5.8.

5.13. Consider the product space [0, ε] × Zn

with the natural ℓ∞-product metric. Make
three variations of it by changing the sizes of
some segments.

5.15; (a). Suppose Xn are simply-connected
length metric space, Xn

GH−−→ X , and there is
a nontrivial covering map f : X̃ → X . We will
arrive at a contradiction by showing that there
is a nontrivial covering map fn : X̃n → Xn for
large n.

Choose a base point p ∈ X and its inverse
image p̃ ∈ X̃ . Consider two paths α, α′ : [0, 1] →
→ X that start at p; denote by α̃, α̃′ : [0, 1] →
→ X̃ their liftings. Show that there is ε > 0
such that if |α(t) − α′(t)|X < ε for any t, then
|α̃(1) − α̃′(1)|

X̃
< ε.

Now suppose n is large. Choose an ε
10

-
approximation ≈ for Xn and X . Choose q ∈ Xn

such that q ≈ p. Show that for any path
β : [0, 1] → Xn that starts at q there is a path
α : [0, 1] → X that starts at p such that α(t) ≈
≈ β(t) for any t. Observe that if α and α′

are two choices of such paths, then |α(t) −
− α′(t)|X < ε.

Mimicking the standard construction of a
covering map, we get the needed fn : X̃n → Xn.

(b). Let V be a cone over Hawaiian earrings.
Consider the doubled cone W — two copies of V
with glued base points (see the diagram).

The space W can be equipped with a length
metric (for example, the induced length metric
from the shown embedding).

Show that V is simply-connected, but W is
not; use the van Kampen theorem.

If we delete from the earrings all small cir-
cles and repeat the construction, then the ob-
tained double cone becomes simply-connected
and remains close to W. That is, W is a
Gromov–Hausdorff limit of simply-connected
spaces.

Remark. Note that the limit space in (b), does
not admit a nontrivial covering.

5.16; (a). Suppose that a metric on S2 is close
to the unit disk D2. Show that S2 contains a
circle γ that is close to the boundary curve of
D2. By the Jordan curve theorem, γ cuts S2
into two disks, say D1 and D2.
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By 5.15a, the Gromov–Hausdorff limits of
D1 and D2 have to contain the whole D2; oth-
erwise, the limit would admit a nontrivial cov-
ering.

Consider points p1 ∈ D1 and p2 ∈ D2 that
are close to the center of D2. On one hand, the
distance |p1 − p2|S2 has to be small. On the
other hand, any curve from p1 to p2 must cross
γ, so its length is about 2 (or larger) — a con-
tradiction.

(b). Show that one can remove fine tunnels
from the standard 3-ball in such a way that (1)
the topology does not change, (2) the induced
length metric is very close to the original one,
and (3) the tunnels come sufficiently close to
any point in the ball.

Consider the doubling of the obtained ball
along its boundary; that is, two copies of the
ball with glued corresponding points on their
boundaries. The obtained space is homeomor-
phic to S3. Observe that the obtained space is
sufficiently close to the original ball.

Source: [34, Exercises 7.5.13 and 7.5.17].

5.18. Apply 1.14.

5.19. Let µ be a C-doubling measure on a space
X from Q(C,D). Without loss of generality, we
may assume that µ(X ) = 1.

The doubling condition implies that

µ[B(p, D
2n

)] ⩾ 1
Cn

for any point x ∈ X . It follows that

pack D
2n

X ⩽ Cn.

By 1.14, for any ε ⩾ D
2n−1 , the space X ad-

mits an ε-net with at most Cn points. Whence
Q(C,D) is uniformly totally bounded.

5.20. Since diam B[x, r] ⩽ r, diameter of any
space in BX is at most 2.

Suppose X is not doubling. Show that
n(x, r) = pack r

2
B[x, r] is unbounded; that is,

n(xn, rn) → ∞ for some sequences xn and
rn > 0. Conclude that BX is not uniformly
totally bounded.

Suppose X is M -doubling. Show that

pack r
2n

B[x, r] ⩽ Mn,

and apply 5.18.

5.21; (a). Choose ε > 0. Since Y is compact,
we can choose a finite ε-net {y1, . . . , yn} in Y.

Suppose f : X → Y be a distance-
noncontracting map. Choose one point xi in
each nonempty subset Bi = f−1[B(yi, ε)]. Note
that the subset Bi has diameter at most 2·ε and

X =
⋃
i

Bi.

Therefore, the set of points {xi} is a 2·ε-net
in X .

(b). Let Q be a uniformly totally bounded fam-
ily of spaces. Suppose that each space in Q has
an 1

2n
-net with at most Mn points; we may as-

sume that M0 = 1.
Consider the space Y of all infinite integer

sequences m0,m1, . . . such that 1 ⩽ mn ⩽ Mn

for any n. Given two sequences ℓ = (ℓ1, ℓ2, . . . ),
and m = (m1,m2, . . . ) of points in Y, set

|ℓ−m|Y = C
2n

,

where n is the minimal index such that ℓn ̸= mn

and C is a positive constant.
Observe that Y is compact. Indeed it is

complete and the sequences with constant tails,
starting from index n, form a finite C

2n
-net in Y.

Given a space X in Q, choose a sequence of
1
2n

nets Nn ⊂ X for each n. We can assume
that |Nn| ⩽ Mn; let us label the points in Nn

by {1, . . . ,Mn}. Consider the map f : X → Y
defined by f : x 7→ (m1(x),m2(x), . . . ) where
mn(x) is the label of a point in Nn that lies at
the distance < 1

2n
from x.

If 1
2n−2 ⩾ |x− x′|X > 1

2n−1 , then mn(x) ̸=
̸= mn(x′). It follows that |f(x)− f(x′)|Y ⩾ C

2n
.

In particular, if C > 10, then

|f(x) − f(x′)|Y ⩾ |x− x′|X
for any x, x′ ∈ X . That is, f is a distance-
noncontracting map X → Y.

5.24. Let K be a compact space. Denote by
a(K) the largest diameter of connected compo-
nent in a compact space K. Further, let

b(K) = max
p∈K

min
q ̸=p

{|p− q|K}.

Note that b(K) = 0 if and only if K has no iso-
lated points.

Show that if a(K) = b(K) = 0, then K is
homeomorphic to the Cantor set.

Further show that the sets

Aε = {K ∈ GH : a(K) < ε }
Bε = {K ∈ GH : b(K) < ε }

are open and dense in GH. Apply 1.10.
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5.25; (a). Show that (the isometry classes of)
finite metric spaces with only rational distances
form a countable dense subset in GH.

(b)+(c). Choose two compact metric spaces
X and Y. Let W ⊃ X ′,Y ′ be as in 5.11; so
X ′ iso

== X , Y ′ iso
== Y, and

ℓ = |X ′ − Y ′|HausW = |X − Y|GH

for some ℓ ⩾ 0.
We can assume that W = X ′ ∪ Y ′, so W is

compact. Choose a compact geodesic extension
G of W; it exists by 2.2 (or 3.20).

Given t ∈ [0, ℓ], consider the set

Zt = {w ∈ G : distX ′w ⩽ t, distY′w ⩽ ℓ− t } .

Observe that t 7→ Zt is a geodesic in Haus(G)
from X ′ to Y ′. Conclude that t 7→ [Zt] is a
geodesic in GH from [X ] to [Y].

Source: [78].

5.26; (a). To check that |∗ − ∗|
GH′ is a metric,

it is sufficient to show that

|X − Y|GH′ = 0 =⇒ X iso
== Y;

the remaining conditions are trivial.
If |X − Y|

GH′ = 0, then there is a sequence
of maps fn : X → Y such that

|fn(x) − fn(x′)|Y ⩾ |x− x′|X − 1
n
.

Choose a countable dense subset S ⊂ X
and pass to a subsequence such that fn(x) con-
verges for any x ∈ S; denote by f∞ : S →
→ Y the limit map. Note that f∞ is distance-
noncontracting, and it can be extended to a
distance-noncontracting map f∞ : X → Y.

The same way we can construct a distance-
noncontracting map g∞ : Y → X .

By 1.15, the compositions f∞ ◦ g∞ : Y → Y
and g∞◦f∞ : X → X are isometries. Therefore,
f∞ and g∞ are isometries as well.

(b). The implication

|Xn −X∞|GH → 0 ⇒ |Xn −X∞|GH′ → 0

follows from 5.10a.
Now suppose |Xn − X∞|

GH′ → 0. Show
that {Xn} is a uniformly totally bonded family.

If |Xn − X∞|GH ̸→ 0, then we can pass to
a subsequence such that |Xn − X∞|GH ⩾ ε for
some ε > 0. By the Gromov selection theorem,
we can assume that Xn converges in the sense of
Gromov–Hausdorff. From the first implication,
the limit X ′

∞ has to be isometric to X∞; on the

other hand, |X ′
∞ − X∞|GH ⩾ ε — a contradic-

tion.

5.28. Apply 2.20 and 5.27.

6.2. Let F = {n ∈ N : f(n) = n }; we need to
show that ω(F ) = 1.

Consider an oriented graph Γ with vertex
set N \ F such that m is connected to n if
f(m) = n. Show that each connected compo-
nent of Γ has at most one cycle. Use it to sub-
divide vertices of Γ into three sets S1, S2, and
S3 such that f(Si) ∩ Si = ∅ for each i.

Conclude that ω(S1) = ω(S2) = ω(S3) = 0
and hence

ω(F ) = ω(N \ (S1 ∪ S2 ∪ S3)) = 1.

Source: The presented proof was given by
Robert Solovay [124], but the key statement is
due to Miroslav Katětov [82].

6.6. Choose a nonprincipal ultrafilter ω and set
L(s) = sω . It remains to observe that L is lin-
ear.

Remark. This construction identifies ultrafilters
with vectors in (ℓ∞)∗. Recall that ℓ∞ = (ℓ1)∗

and ℓ1 ⊊ (ℓ∞)∗. A principle ultrafilter is a ba-
sis vector in ℓ1; nonprincipal ultrafilters lie in
(ℓ∞)∗ \ ℓ1. The set of ultrafilters is the clo-
sure of basis vectors in ℓ1 with respect to weak*-
topology on (ℓ∞)∗.

6.7. Apply 6.2.

6.11. Let γ be a path from p to q in a metric
tree T . Assume that γ passes thru a point x on
distance ℓ from [pq]. Then

➊ length γ ⩾ |p− q| + 2·ℓ.
Suppose that Tn is a sequence of metric

trees that ω-converges to Tω . By 6.10, the space
Tω is geodesic.

The uniqueness of geodesics follows from ➊.
Indeed, if for a geodesic [pωqω ] there is another
geodesic γω connecting its ends, then it has to
pass thru a point xω /∈ [pωqω ]. Choose se-
quences pn, qn, xn ∈ Tn such that pn → pω ,
qn → qω , and xn → xω as n → ω. Then

|pω − qω | = length γ ⩾

⩾ lim
n→ω

(|pn − xn| + |qn − xn|) ⩾

⩾ lim
n→ω

(|pn − qn| + 2·ℓn) =

= |pω − qω | + 2·ℓω .
Since xω /∈ [pωqω ], we have that ℓω > 0 — a
contradiction.
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It remains to show that any geodesic tri-
angle Tω is a tripod. Consider the sequence
of centers of tripods mn for given sequences of
points xn, yn, zn ∈ Tn. Observe that its ultra-
limit mω is the center of a tripod with ends at
xω , yω , zω ∈ Tω .

6.12. ConstructX and distance-preserving em-
beddings Xn ↪→ X that satisfy 5.29. Given
x∞ ∈ X∞, choose a sequence xn ∈ Xn such
that xn → x∞ in X. Let xω be the ω-limit
of the sequence xn in X. Note that xω ∈ X∞.
Show that the map x∞ 7→ xω is defined; that is,
it does not depend on the choice of the sequence
xn. Further, show that the map x∞ 7→ xω is an
isometry of X∞. Make a conclusion.

6.13. Further, we consider X as a subset of Xω .

(a). Follows directly from the definitions.

(b). Suppose X compact. Given a sequence
x1, x2, . . . ∈ X , denote its ω-limit in Xω by xω

and its ω-limit in X by xω .
Observe that xω = ι(xω). Therefore, ι is

onto.
If X is not compact, we can choose a se-

quence xn such that |xm − xn| > ε for fixed
ε > 0 and all m ̸= n. Observe that

lim
n→ω

|xn − y|X ⩾ ε
2

for any y ∈ X . It follows that xω lies at the
distance ⩾ ε

2
from X .

(c). A sequence of points xn in X will be called
ω-bounded if there is a real constant C such that

|p− xn|X ⩽ C

for ω-almost all n.
The same argument as in (b) shows that

any ω-bounded sequence has its ω-limit in X .
Further, if (xn) is not ω-bounded, then

lim
n→ω

|p− xn|X = ∞;

that is, xω does not lie in the metric component
of p in Xω .

6.14. Let us show that cardinality of Xω is at
least continuum — it is sufficient to construct a
continuum family A sequences of points on X
such that for any two sequences (an) and (bn)
in A the equality an = bn holds only for finitely
many n.

To do this, let us identify points in X with
nonnegative integers. Consider the set A of all

sequences an such that a0 = 0 and an+1 =
= an + εn ·2n where εn ∈ {0, 1} for any n. Ob-
serve that A has cardinality continuum and dis-
tinct sequences in A have distinct ω-limits.

Show and use that the spaces Xω and
(Xω)ω have discrete metrics and both have car-
dinality at most continuum.

A more conceptual construction of A. Choose a
compact metric space K with continuum points,
say K = [0, 1]. Identify X with a dense subset
of K. For any point k ∈ K, choose a sequence
an ∈ X that converges to k. Observe that the
family of all these sequences meet the required
condition.

6.15. Choose a bijection ι : N → N × N. Given
a set S ⊂ N, consider the sequence S1, S2, . . .
of subsets in N defined by m ∈ Sn if (m,n) =
= ι(k) for some k ∈ S. Set ω1(S) = 1 if and
only if ω(Sn) = 1 for ω-almost all n. It remains
to check that ω1 meets the conditions of the ex-
ercise.

Comment. It turns out that ω1 ̸= ω for any ι;
see the post of Andreas Blass [28].

6.17. Arguing as in 6.16, we get a pair of points
x and y in X such that

|p− x| + |x− y| + |y − q| = |p− q|
and there is no midpoint between x and y in
X (possibly p = x and q = y). Note that it is
sufficient to show that there is a continuum of
distinct midpoints in Xω between x and y in X .

Since X is a length space, we can choose a
1
n

-midpoint mn ∈ X between x and y. Note
that the sequence mn contains no converging
subsequence. Conclude that we may pass to a
subsequence of mn such that |mi −mj | > ε for
a fixed ε > 0 and any i ̸= j.

Argue as in 6.14 to show that there is a con-
tinuum of distinct ω-limits of subsequences of
mn; each such limit is a midpoint between x
and y.

6.18. Consider the infinite metric T tree with
unit edges shown on the diagram. Observe that
T is proper.

. . .
v0 v1 v2 v3 v4
Consider the vertex vω = limn→ω vn in the

ultrapower T ω . Observe that ω has an infinite
degree. Conclude that T ω is not locally com-
pact.
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6.19. Consider a product of an infinite sequence
of two-point spaces.

Remark. There are such examples of geodesic
spaces with a cocompact isometric action of a
finitely generated group [127].

6.20. Assume L is the Lobachevsky plane.

(a). Show that there is δ > 0 such that sides
of any geodesic triangle in L intersect a disk of
radius δ. Conclude that any geodesic triangle in
AsymL is a tripod.

(b). Observe that L is one-point-homogeneous
and use it.

(c). By (b), it is sufficient to show that pω has
a continuum degree.

Choose distinct geodesics γ1, γ2 : [0,∞) →
→ L that start at a point p. Show that the lim-
its of γ1 and γ2 run in the different connected
components of (AsymL)\{pω}. Since there is a
continuum of distinct geodesics starting at p, we
get that the degree of pω is at least continuum.

On the other hand, the set of sequences of
points in L has cardinality continuum. In par-
ticular, the set of points in AsymL has cardi-
nality at most continuum. It follows that the
degree of any vertex is at most continuum.

The proof for the Lobachevsky space goes
along the same lines.

For the infinite three-regular tree, part (a)
follows from 6.11. The three-regular tree is only
vertex-homogeneous; the latter is sufficient to
prove (b). No changes are needed in (c).

Remark. The properties (b) and (c) describe
the tree T up to isometry [56]. In particular,
the asymptotic space of the Lobachevsky plane
does not depend on the choice of the ultrafilter
and the sequence λn → ∞.

6.21. Denote by oω the point in Tω
oX that

corresponds to o. Argue as in 6.20c to show
that Tω

oX \ {oω} has a continuum of connected
components. Further, show that each connected
component Wα is isometric to R × (0,∞) with
the metric described by

|(x1, t1) − (x2, t2)| =

= min{ |(x1, t1) − (x2, t2)|R2 , t1 + t2 }.

Conclude that the space Tω
oX can be de-

scribed as follows. Prepare continuum copies
Wα as above; denote by (x, t)α the point in
Wα with coordinates (x, t). The tangent space
is the disjoint union of single point oω and all

Wα with metric such that |(x1, t1)α− (x2, t2)α|
is the same as in Wα and for the remaining
pairs, we have |oω− (x, t)α| = t and |(x1, t1)α−
− (x2, t2)β | = t1 + t2 if α ̸= β.

7.4. Let us show that γ ⩽ α + β; the rest of
inequalities can be done the same way. Since
γ ⩽ π, we may assume that α + β < π.

Denote by γx, γy , and γz the geodesics
[px], [py], and [pz] parameterized from p by arc-
length. By the triangle inequality, for any ε > 0
and all sufficiently small t, τ, s ∈ R+ we have

|γx(t) − γz(τ)| ⩽
⩽ |γx(t) − γy(s)| + |γy(s) − γz(τ)| <

< t2 + s2 − 2·t·s· cos(α + ε) +

+
√

s2 + τ2 − 2·s·τ · cos(β + ε) ⩽

Below we define s(t, τ) so that for s =
= s(t, τ), this chain of inequalities can be con-
tinued as follows:

⩽
√

t2 + τ2 − 2·t·τ · cos(α + β + 2·ε).

Thus for any ε > 0,

γ ⩽ α + β + 2·ε.
Hence the result.

= α+
ε

= β + ε

ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
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τττττττττττττττττττττττττττττττττττττττττττττττττττττττττττττττττ

To define s(t, τ), consider three rays γ̃x, γ̃y ,
γ̃z on a Euclidean plane starting at one point,
such that ∡(γ̃x, γ̃y) = α + ε, ∡(γ̃y , γ̃z) = β + ε
and ∡(γ̃x, γ̃z) = α + β + 2·ε. We parametrize
each ray by the distance from the starting point.
Given two positive numbers t, τ ∈ R+, let
s = s(t, τ) be the number such that γ̃y(s) ∈
∈ [γ̃x(t) γ̃z(τ)]. Clearly s ⩽ max{t, τ}, so t, τ, s
may be taken sufficiently small.

Remark. Note that for the Euclidean space the
statement implies that central angle defines a
metric on unit sphere. This statement is not
quite trivial; moreover, it is straightforward to
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modify Euclidean proof so it will work in Alex-
androv settings.

7.5; only-if part. Let us start with two model
triangles [x̃ỹp̃] = △̃(xyp) and [x̃ỹq̃] = △̃(xyq)
such that p̃ and q̃ lie on the opposite sides of
the line x̃ỹ.

Suppose [x̃ỹ] intersects [p̃q̃] at a point z̃. In
this case by CAT(0) comparison we have that

|p̃− q̃|E2 = |p̃− z̃|E2 − |z̃ − q̃|E2 ⩽ |p− q|X .

α
βx̃ ỹ

p̃

q̃

x̃ ỹ

p̃

q̃

Let us fix points x̃ and ỹ, and the distances
from x̃ to the remaining three points and reduce
the angles α = ∡[x̃ p̃

ỹ ] and β = ∡[x̃ q̃
ỹ ]. It results

in decreasing distances |p̃−q̃|, |p̃−ỹ|, and |q̃−ỹ|.
If α = β = 0, then

|p̃− q̃|E2 =

∣∣∣∣|x̃− p̃|E2 − |x̃− q̃|E2

∣∣∣∣ =

=

∣∣∣∣|x− p|X − |x− q|X

∣∣∣∣ ⩾
⩾ |p− q|X .

By the intermediate value theorem, there are in-
termediate values of α and β so that |p̃− q̃|E2 =

= |p−q|X . By construction, |x̃−p̃|E2 = |x−p|X ,
|x̃− q̃|E2 = |x− q|X , |ỹ − p̃|E2 ⩽ |y − p|X , |ỹ −
− q̃|E2 ⩽ |y − q|X .

Now suppose [p̃q̃] does not intersect [x̃ỹ].
Without loss of generality, we may assume that
[p̃q̃] crosses the line x̃ỹ behind x̃.

Let us rotate p̃ around x̃ so that x̃ will lie
between p̃ and q̃. It will result in decreasing the
distance |p̃ − ỹ|; by the triangle inequality we
have that

|p̃− q̃|E2 = |p̃− x̃|E2 + |x̃− q̃|E2 =

= |p− x|X + |x− q|X ⩾

⩾ |p− q|X .

Repeating the argument above produces the
needed configuration.

If part. Suppose p̃, q̃, x̃, ỹ ∈ E2 satisfies the con-
ditions

|p̃− q̃| = |p− q|, |x̃− ỹ| = |x− y|,
|p̃− x̃| ⩽ |p− x|, |p̃− ỹ| ⩽ |p− y|,
|q̃ − x̃| ⩽ |q − x|, |q̃ − ỹ| ⩽ |q − y|.

Fix z̃ ∈ [x̃ỹ]. By the triangle inequality

|p̃− z̃| + |z̃ − q̃| ⩾ |p̃− q̃| = |p− q|.

Note that if |p̃′ − x̃| ⩾ |p̃ − x̃| and |p̃′ −
− ỹ| ⩾ |p̃− ỹ|, then |p̃′ − z̃| ⩾ |p̃− z̃|. In partic-
ular, if [x̃ỹp̃′] = △̃(xyp) and [x̃ỹq̃′] = △̃(xyq),
then

|p̃′ − z̃| + |q̃′ − z̃| ⩾ |p̃− z̃| + |z̃ − q̃|.

Whence the “if” part follows.

7.6. Set α̃ = ∡̃(p x
y), β̃ = ∡̃(p y

z) and γ̃ = ∡̃(p z
x).

If X is CBB(0), then

α̃ + β̃ + γ̃ ⩽ 2·π.

Note that we can find α, β, γ such that

α̃ ⩽ α ⩽ π, β̃ ⩽ β ⩽ π, γ̃ ⩽ γ ⩽ π,

and
α + β + γ = 2·π.

Consider a model configuration p̃, x̃, ỹ, z̃ ∈ E2

such that

|p̃− x̃|E2 = |p− x|X , ∡[p̃ x̃
ỹ ] = α,

|p̃− ỹ|E2 = |p− y|X , ∡[p̃ ỹ
z̃ ] = β,

|p̃− z̃|E2 = |p− z|X , ∡[p̃ z̃
x̃] = γ.

Since increasing angle in a triangle increase
the opposite side, we have

|x− y|X ⩽ |x̃− ỹ|E2 ,

|y − z|X ⩽ |ỹ − z̃|E2 ,

|z − x|X ⩽ |z̃ − x̃|E2 .

Whence the “only-if” part follows.
Now suppse that we have a model configu-

ration p̃, x̃, ỹ, z̃ ∈ E2 such that

|p− x|X = |p̃− x̃|E2 , |x− y|X ⩽ |x̃− ỹ|E2 ,

|p− y|X = |p̃− ỹ|E2 , |y − z|X ⩽ |ỹ − z̃|E2 ,

|p− z|X = |p̃− z̃|E2 , |z − x|X ⩽ |z̃ − x̃|E2 .

Set

α = ∡[p̃ x̃
ỹ ], β = ∡[p̃ ỹ

z̃ ], γ = ∡[p̃ z̃
x̃].

Observe that

α + β + γ ⩽ 2·π.
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Since increasing a side in a triangle increase the
opposite angle, we have that

α̃ ⩽ α, β̃ ⩽ β, γ̃ ⩽ γ.

Whence the “if” part follows.

7.7. Set α̃ = ∡̃(p x
q ), β̃ = ∡̃(p y

q ) and γ̃ = ∡̃(p x
y).

Note that the quadruple p, x, y, z is eu-
clidean if

➊ α̃ + β̃ + γ̃ ⩽ 2·π

and the triple of numbers α̃, β̃, γ̃ satisfies all tri-
angle inequalities. Without loss of generality we
may assume that α̃ ⩽ β̃ ⩽ γ̃; in this case, the
triangle inequities hold if

➋ γ̃ ⩽ α̃ + β̃.

Note that the inequality ➊ follow from
CBB(0) comparison.

Consider two model triangles [x̃ỹp̃] =
= △̃(xyp) and [x̃ỹq̃] = △̃(xyq) such that p̃ and
q̃ lie on the opposite sides of the line x̃ỹ.

Suppose [x̃ỹ] intersects [p̃q̃] at a point z̃. In
this case by CAT(0) comparison we have that

|x̃− ỹ|E2 = |x̃− z̃|E2 − |z̃ − ỹ|E2 ⩽ |x− y|X .

Which is equivalent to ➋.
If [x̃ỹ] crosses the line [p̃q̃] behind p̃, then

α̃ + β̃ > π and therefore ➋ follows from ➊.
Finally if [x̃ỹ] crosses the line [p̃q̃] behind q̃,

then by CBB(0) comparison with center at q,
we have that

∡̃(q x
p) + ∡̃(q y

p) + ∡̃(q x
y) ⩽ 2·π

It follows that

|x̃− ỹ|E2 ⩾ |x− y|X
and therefore

γ̃ ⩽ ∡[p̃ x̃
ỹ ].

Since ∡[p̃ x̃
ỹ ] = α̃ + β̃ we get ➋.

7.10. We will use the charcterization of CBB(0)
space provided by 7.6; the rest is nearly identi-
cal to the proof of 7.9.

Fix a quadruple in U × V:

p = (p1, p2), x = (x1, x2),

y = (y1, y2), z = (z1, z2).

For the quadruple p1, x1, y1, z1 in U , construct
model configurations p̃1, x̃1, ỹ1, z̃1 in E2 pro-
vided by 7.6. Similarly, for the quadruple
p2, q2, x2, y2 in V construct model configura-
tions p̃2, x̃2, ỹ2, z̃2 in E2

Consider four points in E4 = E2 × E2

p̃ = (p̃1, p̃2), x̃ = (x̃1, x̃2),

ỹ = (ỹ1, ỹ2), z̃ = (z̃1, z̃2).

The inequalities in 7.6 imply that

|p− x|X = |p̃− x̃|E4 , |x− y|X ⩽ |x̃− ỹ|E4 ,

|p− y|X = |p̃− ỹ|E4 , |y − z|X ⩽ |ỹ − z̃|E4 ,

|p− z|X = |p̃− z̃|E4 , |z − x|X ⩽ |z̃ − x̃|E4 .

It remains to observe that one can move z̃ into
the plane of p̃, x̃, and ỹ keeping the distance |p̃−
− z̃|E4 and nondecreasing the rest of distances.

7.13. Suppose that there are distinct geodesics.
Then there are two points p and q on different
geodesics such that |p − x| = |q − x|. With-
out loss of generality, we may assume that |z −
− x| < |p − x|; in other words z lies between p
and x on the first geodesic and z lies between q
and x on the second geodesic. Observe that

∡̃(z x
p) = ∡̃(z x

q ) = π.

By comparison, we have

∡̃(z x
p) + ∡̃(z x

q ) + ∡̃(z p
q) ⩽ 2·π.

It follows that ∡̃(z p
q) = 0. Since |z−p| = |z−q|,

it implies that p = q — a contradiction.

7.16. Use 7.15a, to show that the map (t, x) 7→
7→ γx(t) is continuous; that is ht(x) = γx(t)
defines a homotopy.

It remains to observe that h1(x) = x and
h0(x) = p for any x.

7.17. Suppose that a geodesic [pq] is not ex-
pendable behind q. Denote by ht the geodesic
homotopy with the center at p; see 7.16.

Since [pq] is not extendable, q /∈ Imht for
any t < 1. In particular, the local homology
groups vanish at p; the latter does not hold for
a manifold — a contradiction.

7.20. Apply 7.15b twice.
More precisely, consider a triangle [xyz] in

the space; let [x̃ỹz̃] = △̃(xyz). Choose points
p ∈ [xy] and q ∈ [xz]; consider the correspond-
ing points p̃ ∈ [x̃ỹ] and q̃ ∈ [x̃z̃]. We need to
show that

➌ |p̃− q̃|E2 ⩽ |p− q|X .

By 7.15b, we have

∡̃(x p
q) ⩾ ∡̃(x y

z).

Whence ➌ follows.
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7.21. It is sufficient to prove the Jensen in-
equality; that is,

|γ1(t) − γ2(t)| ⩽ (1 − t)·|γ1(0) − γ2(0)|
+ t·|γ1(1) − γ2(1)|.

γ1(0)

γ1(1) = δ(1)

γ2(1)
γ2(0) = δ(0)

γ1(t)

δ(t)

γ2(t)

Let δ be the geodesic path from γ2(0) to
γ1(1). From 7.15a, we have

|γ1(t) − δ(t)| ⩽ (1 − t)·|γ1(0) − δ(0)|
|δ(t) − γ2(t)| ⩽ t·|δ(1) − γ2(1)|

It remains to sum it up and apply the triangle
inequality.

Remark. Note that in the Euclidean space the
proof is just as hard.

7.22. Let p, q ∈ Ar; that is, there are points
p∗, q∗ ∈ A such that |p− p∗|, |q− q∗| ⩽ r. Con-
sider a geodesic path γ from p to q and a geo-
desic path γ∗ from p∗ to q∗. Set f(t) = |γ(t) −
− γ∗(t)|.

Observe that f(0), f(t) ⩽ r. By 7.21, f is
convex. Therefore f(t) ⩽ r for any t ∈ [0, 1].

Since A is convex γ∗ runs in A. Therefore
f(t) ⩾ distA ◦ γ(t); that is, γ runs in Ar.

7.23; (a). Assume there are two point x, y ∈ K
that minimize the distance to p; suppose ℓ =
|p − x| = |p − y|. Since K is convex, the geo-
desic [xy] lies in K. Let m be a midpoint of
[xy].

Use thinness of [pxy] to show that |p −
− m| < ℓ. It follows that x does not minimize
the distance to p — a contradiction.

(b). Let p∗ and q∗ be the closest point projec-
tions of p and q to K. Assume all four points
p, q, p∗, q∗ are distinct. Consider two model
triangles [p̃p̃∗q̃∗] = △̃(pp∗q∗) and [p̃q̃q̃∗] =
△̃(pqq∗) such that the points p̃∗ and q̃ lie on
the opposite sides from the line p̃q̃∗.

Use thinness of [pp∗q∗] and [pqq∗] to show
that ∡[p̃∗ p̃

q̃∗ ] ⩾ π
2

and ∡[q̃∗ p̃∗

q̃ ] ⩾ π
2
. Finally

observe that

|p− q|U = |p̃− q̃|E2 ⩾ |p̃∗ − q̃∗|E2 = |p∗ − q∗|U .

If some of the points p, q, p∗, q∗ coincide,
then the proof is easier.

7.24. Fix a closed, connected, locally convex
set K.

Let us show that f = distK is convex in a
neighborhood Ω ⊃ K; that is, distK is convex
along any geodesic completely contained in Ω.
It is sufficient to show that for any a point p ∈ K
the function f is convex in a ball Bp = B(p, rp)
if K ∩ B[p, 2·rp] is convex.

By 7.21 for any geodesic path γ0 in B and
any geodesic path γ1 in K we have that the
function t 7→ |γ0(t) − γ1(t)| is convex. We may
choose γ1 in such a way that its ends realize the
distances from the ends of γ0 to K; that is,

|γ0(0) − γ1(0)| = f ◦ γ0(0),

|γ0(1) − γ1(1)| = f ◦ γ0(1).

Observe that

|γ0(t) − γ1(t)| ⩾ f ◦ γ0(t)

for any t. Whence Jensen’s inequality holds for
f ◦ γ if γ is any geodesic in Bp.

K

ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ

x y

α(s)

Since K is locally convex, it is locally path-
connected. Since K is connected, the latter im-
plies that K is path-connected.

Fix two points x, y ∈ K. Let us connect x
to y by a path α : [0, 1] → K. By 7.12 and 7.21,
the geodesic [xα(s)] is uniquely defined and de-
pends continuously on s.

If [xy] = [xα(1)] does not completely lie in
K, then there is a value s ∈ [0, 1] such that
[xα(s)] lies in Ω, but does not completely lie
in K. Therefore f is convex along [xα(s)]. Note
that f(x) = f(α(s)) = 0 and f ⩾ 0, therefore
f(z) = 0 for any z ∈ [xα(s)]. In other words,
[xα(s)] ⊂ K — a contradiction.

Remark. The statement generalizes a theorem
of Heinrich Tietze [129]; our proof is nearly iden-
tical to the original.

8.5. If A is not convex, then there is a geode-
sic [xy] with the ends in A and the remaining
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points outside of A. Observe that in the dou-
bling, say W, two copies of this geodesics con-
nect the same pair of points x and y. By 7.12,
W is not CAT(0).

8.12. By approximation, it is sufficient to con-
sider the case when A and B have smooth
boundary.

If [xy] ∩ A ∩ B ̸= ∅, then z0 ∈ [xy] and
Ȧ, Ḃ can be chosen to be arbitrary half-spaces
containing A and B respectively.

In the remaining case [xy] ∩A ∩B = ∅, we
have z0 ∈ ∂(A∩B). Consider the solid ellipsoid

C = { z ∈ Em : f(z) ⩽ f(z0) } .

Note that C is compact, convex and has smooth
boundary.

Suppose z0 ∈ ∂A ∩ IntB. Then A and C
touch at z0 and we can set Ȧ to be the uniquely
defined supporting half-space to A at z0 and Ḃ
to be any half-space containing B. The case
z0 ∈ ∂B ∩ IntA is treated similarly.

Finally, suppose z0 ∈ ∂A ∩ ∂B. Then the
set Ȧ (respectively, Ḃ) is defined as the unique
supporting half-space to A (respectively, B) at
z0 containing A (respectively, B).

Suppose f(z) < f(z0) for some z ∈ Ȧ ∩ Ḃ.
Since f is concave, f(z̄) < f(z0) for any z̄ ∈
∈ [zz0[. Since [zz0[ ∩ A ∩ B ̸= ∅, the latter
contradicts the fact that z0 is minimum point
of f on A ∩B.

8.13. Fix two open balls B1 = B(0, r1) and
B2 = B(0, r2) such that

B1 ⊂ Ai ⊂ B2

for each wall Ai.
Suppose X is an intersections of the walls.

Observe that

B1 ⊂ X ⊂ B2.

Therefore if x ∈ X, then X contains the con-
vex hull Conv(B1 ∪ {x}; therefore all intersec-
tions of the walls have ε-wide corners for ε =
= 2· arcsin r1

r2
.

8.14. Note that any centrally symmetric con-
vex closed set in Euclidean space is a product of
a compact centrally symmetric convex set and
a subspace.

It follows that there is R < ∞ such that
if X is an intersection of an arbitrary number

of walls, then for any point p ∈ X there is an
isometry of X that moves p to a point in the
ball B(0, R).

It remains to apply the argument in 8.13.

8.18. Note that we can assume that the balls
have zero radiuses.

Observe that at each collision the balls ex-
change their velocities. Let us also change their
labels at each collision. Note that after the re-
labeling, the coordinates functions t 7→ xi(t) of
the balls are linear functions in time.1

It remains to show n lines on the plane have
at most n·(n−1)

2
intersections. It follows since

any pair of lines have at most one intersection.

Remarks. For nonidentical balls, the problem
is a bit more interesting; Grant Sanderson [121]
has couple of funny movies on a partial case of
this problem.

Recall that in the 3-dimensional case the
number of collisions grows exponentially in n;
the two-dimensional case is open [38].

9.5. Note that the existence of a null-homotopy
is equivalent to the following. There are two
one-parameter families of paths ατ and βτ ,
τ ∈ [0, 1] such that:

⋄ lengthατ , lengthβτ < π for any τ .

⋄ ατ (0) = βτ (0) and ατ (1) = βτ (1) for
any τ .

⋄ α0(t) = β0(t) for any t.

⋄ α1(t) = α(t) and β1(t) = β(t) for any t.

By Corollary 9.3, the construction in Corol-
lary 9.4 produces the same result for ατ and βτ .
Hence the result.

p

q

γ

9.10. The following
proof works for compact
locally simply connected
metric spaces; it includes
compact length, locally
CAT(0) spaces.

By the globalization
theorem there is a non-
trivial homotopy class of
closed curves.

Consider a shortest noncontractible closed
curve γ in X ; note that such a curve exists.

1We use here that radiuses vanish; otherwise, x̃i = xi−2·ki ·r are linear, where ki is the number
of i-th ball counted from left.
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Indeed, let L be the infimum of lengths of all
noncontractible closed curves in X . Compact-
ness and local contractibility of X imply that
any two sufficiently close closed curves in X are
homotopic. Then choosing a sequence of unit
speed noncontractible curves whose lengths con-
verge to L, an Arzelá–Ascoli type of argument
shows that these curves subconverge to a non-
contractible curve of length L.

Assume that γ is not a geodesic circle, that
is, there are two points p and q on γ such that
the distance |p−q| is shorter then the lengths of
the arcs, say α1 and α2, of γ from p to q. Con-
sider the products, say γ1 and γ2, of [qp] with
α1 and α2. Then

⋄ γ1 or γ2 is noncontractible,

⋄ length γ1, length γ2 < length γ,

a contradiction.
In the CAT(1) case we also have a geodesic

circle. The proof is done nearly the same way,
but we need to consider the homotopy classes of
closed curves shorter than 2·π. One also need
to apply 9.5, to show that curves γ1 and γ2 are
not contractible in the class of curves shorter
than 2·π.

Remark. The statement of the exercise fails if
the requirement that X be compact is replaced
by the assumption that it is proper. For ex-
ample, the surface of revolution of the graph of
y = ex around the x-axis is locally CAT(0) but
has no closed geodesics.

9.11. Consider a closed ε-neighborhood A of
the geodesic. Note that Aε is convex. By the
Reshetnyak gluing theorem, the double Wε of
U along Aε is CAT(0).

Consider the space W ′
ε obtained by doubly

covering U \Aε and gluing back Aε.
Observe that W ′

ε is locally isometric to Wε.
That is, for any point p′ ∈ W ′

ε there is a point
p ∈ Wε such that the δ-neighborhood of p′ is
isometric to the δ-neighborhood of p for all small
δ > 0.

Further observe that W ′
ε is simply con-

nected since it admits a deformation retraction
onto Aε, which is contractible. By the global-
ization theorem, W ′

ε is CAT(0).
It remains to note that Ũ can be obtained

as a limit of W ′
ε as ε → 0, and apply Proposi-

tion 7.8.

10.1. Recall that by Proposition 8.1, any local
geodesic shorter in U is a geodesic.

Consider a sequence of directions ξn at p
of geodesics [pqn]. Since the geodesics are ex-
tendable, we can assume that the distances |p−
− qn|U = 1 for any n.

Since U is proper, we can pass to a converg-
ing subsequence of qn; denote its limit by q.
Since qn → q, the comparison implies that
∡[p qn

q ] → 0 as n → ∞. Therefore the direc-
tion ξ of [pq] is the limit of directions ξn.

Note that the unit disc in the plane with
attached half-line to each point is a complete
CAT(0) length space with extendable geodesics.
However, the space of geodesic directions on the
boundary of the disc is not complete — there
is no geodesic tangent to the boundary of the
disc. This provides a counterexample to the
statement of the exercise if U is not assumed
to be proper.

10.2. Given a constant speed geodesic α start-
ing at p, consider sequence of points xn = α( 1

n
).

Note that n·|p − xn| is constant. Therefore if
we consider xn as a point in n·X , then this se-
quence has an ω-limit ι(α) in Tω

p .
Observe that ι defines a distance-preserving

map T′
p → Tω

p . Since Tω
p is complete, this map

can be extended to Tp. Whence the statement
follows.

Since X is CAT(0), so is n·X , and by 7.8 so
is Tω

pX . Since TpX is naturally isometric to a
subspace of Tω

p , we get that TpX is CAT(0) as
well.

Remark. The ultratangent space might be
larger than tangent space. For example, let Ш
be a comb with a spine formed by a real line and
a half-line (a tooth) attached to each point of
the spine. Then for p = 0 on the spine, TpШ is
formed by three half-lines meeting at one point,
while Tω

p Ш is isometric to Ш.

10.3. Observe that it is sufficient to show that
the space of directions Σp is a π - length space;
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the latter means that the defining condition of
length space holds for pairs of points on distance
less than π.

Since Σp is complete, the same argument as
in 1.27a, shows that it sufficient to prove exis-
tence of almost midpoints for pairs of point on
distance less than π; that is, if ∡(ξ, ζ) < π, then,
given ε > 0, there is µ ∈ Σp such that

➊ ∡(ξ, µ), ∡(µ, ζ) ⩽ 1
2
·∡(ξ, ζ) + ε.

Without loss of generality, we may assume
that ζ and ξ are geodesic directions; so there
are geodesics [px] and [pz] that start from p in
these directions; in particular, ∡[p x

z ] = ∡(ξ, ζ).
Fix small r > 0 and choose points x̄ = [px] and
z̄ = [pz] on the distance r from p. Since r is
small, we can assume that

∡[p x
z ] + ε > ∡̃(p x̄

z̄ ).

Take a midpoint m of [x̄ȳ]. By Alexandrov’s
lemma (7.14)

∡̃(p x̄
m), ∡̃(pm

z̄ ) ⩽ 1
2
·∡̃(p x̄

z̄ ).

By comparison

∡̃(p x̄
m) ⩾ ∡[p x̄

m] and ∡̃(p z̄
m) ⩾ ∡[p z̄

m].

Whence ➊ holds for the direction µ of [pm].

10.8. Assume P is not CAT(0). Then by 10.7,
a link Σ of some simplex contains a closed geo-
desic α with length 4·ℓ < 2·π. We can assume
that Σ has minimal possible dimension; so, by
10.7, Σ is locally CAT(1).

Divide α into two equal arcs α1 and α2.
Assume α1 and α2 are length minimizing;

parameterize them by [−ℓ, ℓ]. Fix a small δ > 0
and consider two curves in Cone Σ written in
polar coordinates as

γi(t) = (αi(arctan t
δ

),
√

δ2 + t2).

Observe that both curves γ1 and γ2 are geode-
sics in Cone Σ and have common ends.

Observe that a small neighborhood of the
tip of Cone Σ admits an isometric embedding
into P. Hence we can construct two geodesics
γ1 and γ2 in P with common endpoints.

It remains to consider the case when α1

(and therefore α2) is not length minimizing.
Pass to its maximal length minimizing arc

ᾱ1 of α1. Since Σ is locally CAT(1), 9.3 implies
that there is another geodesic ᾱ2 in Σp that
shares endpoints with ᾱ1. It remains to repeat
the above construction for the pair ᾱ1, ᾱ2.

Remark. By 7.12, the given condition is a nec-
essary and sufficient.

10.15. Use induction on the dimension to prove
that if in a spherical simplex △ every edge is at
least π

2
, then all dihedral angles of △ are at

least π
2
.

The rest of the proof goes along the same
lines as the proof of the flag condition (10.14).
The only difference is that a geodesic may spend
time at least π on each visit to Starv .

Remark. Note that it is not sufficient to assume
only that the all dihedral angles of the simplices
are at least π

2
. Indeed, the two-dimensional

sphere with removed interior of a small rhom-
bus is a spherical polyhedral space glued from
four triangles with all the angles at least π

2
. On

the other hand the boundary of the rhombus is
closed local geodesic in this space. Therefore
the space cannot be CAT(1).

10.17. The space Tn has a natural cone struc-
ture with the vertex formed by the completely
degenerate tree — all its edges have zero length.

Note that the space Σ over which the cone
is taken comes naturally with a triangulation
with all-right spherical simplicies. Each simplex
corresponds to a combinatorics of a possibly de-
generate tree.

Note that the link of any simplex of this
triangulation satisfies the no-triangle condition
(10.10). Indeed, fix a simplex △ of the complex;
suppose it is described by a possibly degenerate
topological tree t. A triangle in the link of △
can be described by three ways to resolve a de-
generacy of t by adding one edge, such that (1)
any pair of these resolutions can be done simul-
taneously, but (2) all three cannot be done si-
multaneously. Direct inspection shows that this
is impossible.

Therefore, by Proposition 10.12 our com-
plex is flag. It remains to apply the flag condi-
tion (10.14), and then 7.11.

11.2. If the complex S is flag, then its cubi-
cal analog □S is locally CAT(0) and therefore
aspherical.

Assume now that the complex S is not flag.
Extend it to a flag complex T by gluing a sim-
plex in every clique (that is, a complete sub-
graph) of its one-skeleton.

Note that the cubical analog □S is a proper
subcomplex in □T . Since T is flag, □̃T , the uni-
versal cover of □T , is CAT(0). Let □̃S be the
inverse image of □S in □̃T .
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Choose a cube Q with minimal dimension
in □̃T which is not present in □̃S . By 7.24, Q
is a convex set in □̃T . The closest point projec-
tion □̃T → Q is a retraction. It follows that the
boundary ∂Q is not contractible in □̃T \ IntQ.
Therefore the spheroid ∂Q is not contractible in
□̃S . That is, a covering of □S is not aspherical
and therefore □S is not as well.

11.5. The solution goes along the same lines as
the proof of Lemma 11.4, but few changes are
needed.

The cycle γ is taken in the complement
S \ {v} (or, alternatively, in the link of v in S).
Instead of a vertex, one has to take edge e in Q̃
that corresponds to v; so we show existence of
large cycle in Q̃ that is not contractible in Q̃\e.
The last change is not principle: it is more vi-
sual to think that G is made from the squares
parallel to the squares of the cubical complex
which meet the edges of the complex orthogo-
nally at their midpoints (in this case, formally
speaking G, is not a subcomplex of the cubical
analog).

11.9; (b)⇒(a). By 3.3c,
Q is contractible. There-
fore the globalization the-
orem and flag condition
(9.6 and 10.14) imply
that it is sufficient to
show that each link in Q
is flag. Further, by 10.12
it is sufficient to show
that link of each cube in Q satisfies no-triangle
condition.

Arguing by contradiction, we can assume
that no-triangle condition does not hold at a
vertex v; that is, a zero-dimensional cube. In
this case v is a vertex of there edges ex, ey ,
and ez ; each pair of edges belong to one of the
squares sx, sy , and sz with complementary in-
dex, but the squares sx, sy , sz do not belong to
one cube. For higher dimensional cubes we have
a product of this configuration with a cube.

Let mx, my and mz be the midpoints of ex,
ey , and ez respectively. Consider 3 balls with
centers mx, my and mz and radius 1

4
. Observe

that each pair of balls have a common point; but
all three together have no points of intersection.
By 3.14c, the latter implies that (Q, ℓ∞) is not
an injective space — a contradiction.

(c)⇒(a). Observe that median point m(x, y, z)
of depends continuously on triple of points
(x, y, z) and m(x, x, y) = x.

Given a loop γ : [0, 1] → Q with base at
p = γ(0) = γ(1), consider the map (a, b) 7→
7→ m(p, γ(a), γ(b)) of the triangle △ defined by
0 ⩽ a ⩽ b ⩽ 1. Note that boundary of triangle
runs along γ. It follows that γ is null homotopic
and therefore Q is simply connected.

xy

z

It remains to check
that all links of Q satisfy
no-triangle condition.

Assume that a link of
Q does not satisfy the no-
triangle condition. The
same way as in the pre-
vious problem, we can as-
sume that it is a link of a
vertex; so we have a con-
figuration of three squares sx, sy , and sz , three
edges ex, ey , and ez , and one common vertex v
as above. Observe that the centers x, y, and z
of the squares sx, sy , and sz . Observe that the
geodesics [xy]ℓ1 , [xz]ℓ1 , and [yz]ℓ1 are uniquely
defined and they have no common point. It fol-
lows that the triple (x, y, z) does not have a me-
dian; that is, (Q, ℓ1) is not a median space — a
contradiction.

12.22. Let α be a closed curve in S2 of length
2·ℓ.

Assume ℓ < π. Let α1 be a subarc of α of
length ℓ, with endpoints p and q. Since |p −
− q| ⩽ ℓ < π, there is a unique geodesic [pq]
in S2. Let z be the midpoint of [pq].

We claim that α lies in the open hemisphere
H centered at z.

Assume the contrary; that is, α meets the
equator ∂H at a point r. Without loss of gen-
erality, we may assume that r ∈ α1.

p

q
z

r

r∗

α1

α∗
1

The arc α1 to-
gether with its reflec-
tion α∗

1 in z form a
closed curve of length
2·ℓ which meets r and
its antipodal point r′.
Thus

ℓ = lengthα1 ⩾

⩾ |r − r′| = π

— a contradiction.

Solution with the
Crofton formula. Let α be a closed curve in
S2 of length ⩽ 2·π. We wish to prove that
α is contained in a hemisphere in S2. By ap-
proximation it suffices to prove this for smooth
curves α of length < 2·π with transverse self-
intersections.
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Given v ∈ S2, denote by v⊥ the equator in
S2 with the pole at v. Further, #X will denote
the number of points in the set X.

Obviously, if #(α ∩ v⊥) = 0, then α is
contained in one of the hemispheres determined
by v⊥. Note that #(α ∩ v⊥) is even for almost
all v.

Therefore, if α does not lie in a hemisphere,
then #(α ∩ v⊥) ⩾ 2 for almost all v ∈ S2.

By the Crofton formula we have that

length(α) =
1

4
·
w

S2
#(α ∩ v⊥)·dv area ⩾

⩾ 2·π.

12.23. Since Ω is not two-convex, we can choose
a simple closed curve γ that lies in the intersec-
tion of a plane W0 and Ω, and is contractible in
Ω but not contractible in Ω ∩W0.

p

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

W0

W

Let φ : D → Ω be a disc that shrinks γ. Ap-
plying the loop theorem (arguing as in the proof
of Proposition 12.8), we can assume that φ is an
embedding and φ(D) lies on one side of W0.

Let Q be the bounded closed domain cut
from E3 by φ(D) and W0. By assumption it
contains a point that is not in Ω. Changing
W0, γ and φ slightly, we can assume that such
a point lies in the interior of Q.

Fix a circle Γ in W0 that surrounds Q∩W0.
Since Q lies in a half-space with boundary W0,
there is a smallest spherical dome with bound-
ary Γ that includes the set R = Q \ Ω.

The dome has to touch R at some point p.
The plane W tangent to the dome at p has the
required property — the point p is an isolated
point of the complement W \ Ω. Further, by
construction a small circle around p in W is con-
tractible in Ω.

12.26. The proof is simple and visual, but it is
hard to write it formally in a non-tedious way.

Consider the surface S̄ formed by the clo-
sure of the remaining part S of the boundary.
Note that the boundary ∂S of S̄ is a collection
of closed polygonal lines.

Assume S̄ is not piecewise linear. Show that
there is a line segment [pq] in E3 that is tangent

to S̄ at some point p and has no common points
with S̄ except p.

Since S̄ is locally concave, there is a local
inner supporting plane Π at p that contains the
segment [pq].

p

q

x
y

z

∂S̄∂S̄

Show that Π ∩ S̄ contains a segment [xy] ∋
∋ p with the ends in ∂S̄. Denote by Π+ the
half-plane in Π that contains [pq] and has [xy]
in its boundary.

Use the fact that [pq] is tangent to S to show
that there is a point z ∈ ∂S̄ such that the line
segment [xz] or [yz] lies in ∂S̄ ∩ Π+.

From the latter statement and local convex-
ity of S̄, it follows that the solid triangle [xyz]
lies in S̄. In particular, all points on [pq] suffi-
ciently close to p lie in S̄ — a contradiction.

13.1. Choose a function r 7→ α(r) such that
α′(r)·r → 0 and α(r) → ∞ as r → 0. Consider
the reparametrization of the Euclidean plane
given by ι : (r, θ) 7→ (r, θ + α(r)) in the polar
coordinates. Observe that ι is not differentiable
at the origin, but the metric tensor g induced
by ι is continuous.

For more on the subject read the paper of
Eugenio Calabi and Philip Hartman [43].

13.5; (a). Suppose p = f(x) = f(y) and the
points x, y ∈ M are distinct. Since f is short,
we get for any r > 0 the ball B(p, r)N contains
the images of B(x, r)M and B(y, r)M. Since f
is volume-preserving, we get

➊ vol B(x, r)M + vol B(y, r)M ⩽ vol B(p, r)N .

By 13.2, for any ε > 0 and all suffi-
ciently small r > 0 the volumes of the balls
B(x, r)M, B(y, r)M and B(p, r)N , lie in the
range ωn ·e∓2·n·ε ·rn, where ωn denotes the vol-
ume of the unit ball in the n-dimensional Eu-
clidean space. The latter contradicts ➊ for ap-
propriate choice of ε and r.

(b). Denote by σ(r, a) the volume of union of
two r-balls in the n-dimensional Euclidean space
such that the distance between their centers is
a. Observe that the function (a, r) 7→ σ(r, a) is
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continuous and increasing in a and r for a ⩽ r.
Further, note that

σ(λ·r, λ·a) = λn ·σ(r, a)

for any λ > 0.
Choose a point z ∈ M and small ε > 0.

By 13.2 there is R > 0 such that B(z, 10·R) ad-
mits a e∓ε-bilipschitz map to the n-dimensional
Euclidean space.

Choose x, y ∈ B(z,R). The argument used
in part (a) implies that

➋
e−n·ε ·σ(e−ε ·r, e−ε ·|x− y|M) ⩽

⩽ en·ε ·σ(eε ·r, eε ·|f(x) − f(y)|N ).

This inequality implies a lower bound on |f(x)−
− f(y)|N in terms of |x− y|M.

Use the listed properties of the function
(a, r) 7→ σ(r, a) to show that for any c < 1 there
is ε > 0 such that ➋ implies that b > c·a for all
sufficiently small a.

Finally, since M and N are length-metric
spaces, part (b) implies that f is locally distance
preserving. (An inclusion map from a noncon-
vex open subset to the plane gives an example
of volume preserving short map that is not dis-
tance preserving.)

A more general result is discussed by Paul
Creutz and Elefterios Soultanis [48].

13.10. Denote by M and M◦ the space of
(M, g) and (M◦, g); further denote by M̄◦ the
completion of M◦. Observe that the inclusion
M◦ ↪→ M induces a short onto map ι : M̄◦ →
→ M.

Recall that M is bounded by hypersurface
that is locally a graph. Use it to show that
any sufficiently short curve γ in (M, g) can be
approximated by a curve in M◦ with g-length
arbitrary close to lengthg γ. Conclude that ι is
an isometry.

13.13. From the proof of Besicovitch inequal-
ity, one can see that the restriction of f to the
interior of M is (1) volume-preserving, and (2)
its differential dpf : Tp → Tf(p) is an isometry
for almost all p.

Since f is Lipschitz, (2) can be used to show
that f is short. It remains to apply 13.5 and
13.10.

13.14. Consider the hexagon with flat metric
and curved sides shown on the diagram. Ob-
serve that its area can be made arbitrarily small
while keeping the distances from the opposite
sides at least 1.

ααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααα
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ

13.15; (a). Let α be a shortest curve that runs
between the boundary components of the cylin-
der. Cut the cylinder along α. We get a square
with Riemannian metric on it (□, g).

Two opposite sides of □ correspond to the
boundary components of the cylinder. The
other pair corresponds to the sides of the cut.
By assumption, the g-distance between the first
pair of sides is at least 1.

Consider a shortest curve β that connects
this pair of sides; let us keep the same notation
for the projection of β in the cylinder.

Note that a cyclic concatenation γ of β with
an arc of α is homotopic to a boundary circle.
Therefore lengthg γ ⩾ 1. Since α is a shortest
path, its arc cannot be longer than any curve
connecting its ends; therefore

lengthg β ⩾ 1
2
· lengthg γ ⩾ 1

2
.

That is, the other pair of sides of □ lies on g-
distance at least 1

2
from each other. By 13.12,

area(□, g) ⩾ 1
2
, hence the result.

(b). Note that any curve in the cylinder that
is bordant to a boundary component has length
at least 1. Therefore if 0 ⩽ t ⩽ 1, then the level
sets

Lt =
{
x ∈ S1 × [0, 1] : distS1×{0}(x)g = t

}
have length at least 1. Applying the coarea in-
equality, we get that

area(S1 × [0, 1], g) ⩾ 1.

13.16; (a). Argue the same way as in 13.11, but
observe in addition that vol Σ = volf(Σ) = 0
and use it time to time.

(b). Without loss of generality, we may assume
that V lies in a unit cube □. Consider a non-
continuous metric tensor ḡ on □ that coincides
with g inside V and with the canonical flat met-
ric tensor outside of V .

Observe that the ḡ-distances between op-
posite faces of □ are at least 1. Indeed this is
true for the Euclidean metric and the assump-
tion |p − q|g ⩾ |p − q|Ed guarantees that one
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cannot make a shortcut in V . Therefore, the
ḡ-distances between every pair of opposite faces
is at least as large as 1 which is the Euclidean
distance.

Applying part (a), we get that vol(□, ḡ) ⩾
⩾ vol□. Whence the statement follows.

13.17. Let x ∈ S2 be a point that minimize the
distance |x − x′|g . Consider a shortest path γ
from x to x′. We can assume that

|x− x′|g = length γ = 1.

Let γ′ be the antipodal arc to γ. Note that
γ′ intersects γ only at the common endpoints x
and x′. Indeed, if p′ = q for some p, q ∈ γ, then
|p− q| ⩾ 1. Since length γ = 1, the points p and
q must be the ends of γ.

It follows that γ together with γ′ forms a
closed simple curve in S2; it divides the sphere
into two disks D and D′.

Let us divide γ into two equal arcs γ1 and
γ2; each of length 1

2
. Suppose that p, q ∈ γ1,

then

|p− q′|g ⩾ |q − q′|g − |p− q|g ⩾

⩾ 1 − 1
2

= 1
2
.

That is, the minimal distance from γ1 to γ′
1 is

at least 1
2
. The same way we get that the min-

imal distance from γ2 to γ′
2 is at least 1

2
. By

Besicovitch inequality, we get that

area(D, g) ⩾ 1
4

and area(D′, g) ⩾ 1
4
.

Therefore
area(S2, g) ⩾ 1

2
.

A better estimate. Let us indicate how to im-
prove the obtained bound to

area(S2, g) ⩾ 1.

Suppose x, x′, γ and γ′ are as above. Con-
sider the function

f(z) = min
t

{ |γ′(t) − z|g + t }.

Observe that f is 1-Lipschitz.
Show that two points γ′(c) and γ(1 − c)

lie on one connected component of the level set
Lc =

{
z ∈ S2 : f(z) = c

}
; in particular

lengthLc ⩾ 2·|γ′(c) − γ(1 − c)|g .

By the triangle inequality, we have that

|γ′(c) − γ(1 − c)|g ⩾ 1 − |γ(c) − γ(1 − c)|g =

= 1 − |1 − 2·c|.

The coarea inequality (13.9)

area(S2, g) ⩾
1w

0

lengthLc ·dc

finishes the proof.
The bound 1

2
was proved by Marcel Berger

[18]. Christopher Croke conjectured that the
optimal bound is 4

π
and the round sphere is the

only space that achieves this [Conjecture 0.3 in
49] — if you solved the last part of the problem,
then publish the result.

13.18. Given ε > 0, con-
struct a disk ∆ in the plane
with

length ∂∆ < 10

and

area ∆ < ε

that admits an continuous in-
volution ι such that

|ι(x) − x| ⩾ 1

for any x ∈ ∂∆.
An example of ∆ can be guessed from the

picture; the involution ι makes a length preserv-
ing half turn of its boundary ∂∆.

Take the product ∆ × ∆ ⊂ E4; it is homeo-
morphic to the 4-ball. Note that

vol3[∂(∆ × ∆)] = 2· area ∆· length ∂∆ < 20·ε.

The boundary ∂(∆×∆) is homeomorphic to S3
and the restriction of the involution (x, y) 7→
7→ (ι(x), ι(y)) has the needed property.

It remains to smooth ∂(∆ × ∆) a bit.

Remark. This example is given by Christopher
Croke [49]. Note that according to 14.24, the
involution ι cannot be made isometric.

13.19. Note that if (M, g∞) is e∓ε-bilipschitz
to a cube, then applying Besicovitch inequality,
we get that

lim
n→∞

vol(M, gn) ⩾ e−n·ε · vol(M, g∞).

By the Vitali covering theorem, given ε > 0,
we can cover the whole volume of (M, g∞) by
e±ε-bilipschitz cubes. Applying the above ob-
servation and summing up the results, we get
that

lim
n→∞

vol(M, gn) ⩾ e−n·ε · vol(M, g∞).
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The statement follows since ε is an arbitrary
positive number.

To solve the second part of the exercise,
start with g∞ and construct gn by adding many
tiny bubbles. The volume can be increased arbi-
trarily with an arbitrarily small change of met-
ric.

Remark. A more general result was obtained
by Sergei Ivanov [77]. Note that the statement
does not hold true for Gromov–Hausdorff con-
vergence. In fact any compact metric space X
can be GH-approximated by a Riemannian sur-
face with an arbitrarily small area. To show
the latter statement, approximate X by a finite
graph Γ, embed Γ isometrically to the Euclidean
space, and pass to the surface of its neighbor-
hood.

13.20. Set s = sys(T2, g).
Cut T2 along a shortest closed noncon-

tractible curve γ. We get a cylinder (S1, g) with
a Riemannian metric on it.

Applying the argument in 13.15a, we get
that the g-distance between the boundary com-
ponents is at least s

2
. Then 13.15a implies that

the area of torus is at least s2

2
.

Remark. The optimal bound is
√
3

2
·s2; see 13G.

13.21. Set s = sys(RP2, g). Cut (RP2, g) along
a shortest noncontractible curve γ. We obtain
(D2, g) — a disc with metric tensor which we
still denote by g.

Divide γ into two equal arcs α and β. De-
note by A and A′ the two connected components
of the inverse image of α. Similarly denote by
B and B′ the two connected components of the
inverse image of β.

αα

β

β

γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1γ1

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

γ1(0)γ1(1)

γ1(0)

Let γ1 be a path from A to A′; map it to
RP2 and keep the same notation for it. Note
that γ1 together with a subarc of α forms a
closed noncontractible curve in RP2. Since

lengthα = s
2
, we have that length γ1 ⩾ s

2
. It

follows that the distance between A and A′ in
(D2, g) is at least s

2
. The same way we show

that the distance between B and B′ in (D2, g)
is at least s

2
.

Note that (D2, g) can be parameterized by
a square with sides A, B, A′ and B′ and apply
13.11 to show that

area(RP2, g) = area(D2, g) ⩾ 1
4
·s2.

Remark. The optimal bound is 2
π
·s2; see 13G.

In fact any Riemannian metric on the disc with
the boundary globally isometric to a unit cir-
cle with angle metric has the area at least as
large as the unit hemisphere. It is expected
that the same inequality holds for any compact
surface with connected boundary (not necessar-
ily a disc); this is the so-called fi l l ing area
conjecture [it is mentioned Mikhael Gromov
in 5.5.B′(e′) of 62].

13.22. Cut the surface along a shortest non-
contractible curve γ. We might get a surface
with one or two components of the boundary.
In these two cases repeat the arguments in 13.21
or 13.20 using 13.12 instead of 13.11.

13.23. Consider the product of a small 2-sphere
with the unit circle.

13.25. Apply the same construction as in the
original Besicovitch inequality, assuming that
the target rectangle [0, d1]×· · ·×[0, dn] equipped
with the metric induced by the ℓ∞ norm; apply
13.24 where it is appropriate.

13.26. Suppose that ∆1 ̸= ∆2. Consider the
map f : Sn → X such that the restriction to
north and south hemispheres describe ∆1 and
∆2 respectively. Show that if ∆1 ̸= ∆2, then
Sn can be parameterized by the boundary of
the unit cube □ in such a way that for any pair
A, A′ of opposite faces their images f(A), f(A′)
do not overlap.

Since X is contractible, the map f can be
extended to a map of the whole cube. By 13.25

hausn+1[f(□)] > 0,

a contradiction.

14.4. The following claim resembles Besicov-
itch inequality; it is key to the proof:

(∗) Let a be a positive real number. Assume
that a closed curve γ in a metric space
X can be subdivided into 4 arcs α, β, α′,
and β′ in such a way that
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◦ |x − x′| > a for any x ∈ α and
x′ ∈ α′ and

◦ |y − y′| > a for any y ∈ β and
y′ ∈ β′.

Then γ is not contractible in its a
2
-

neighborhood.
To prove (∗), consider two functions defined

on X as follows:

w1(x) = min{ a, distα(x) }
w2(x) = min{ a, distβ(x) }

and the map w : X → [0, a] × [0, a], defined by

w : x 7→ (w1(x), w2(x)).

Note that

w(α) = 0 × [0, a], w(β) = [0, a] × 0,

w(α′) = a× [0, a], w(β′) = [0, a] × a.

Therefore, the composition w ◦ γ is a degree 1
map

S1 → ∂([0, a] × [0, a]).

It follows that if h : D → X shrinks γ, then there
is a point z ∈ D such that w ◦ h(z) = (a

2
, a
2

).
Therefore, h(z) lies at distance at least a

2
from

α, β, α′, β′ and therefore from γ. It proves the
claim.

Coming back to the problem, let {Wi} be an
open covering of the real line with multiplicity 2
and radWi < R for each i; for example, take the
covering by the intervals ((i− 2

3
)·R, (i+ 2

3
)·R).

Choose a point p ∈ X . Denote by {Vj} the
connected components of dist−1

p (Wi) for all i.
Note that {Vj} is an open finite cover of X with
multiplicity at most 2. It remains to show that
radVj < 100·R for each j.

τ

p x

y

m

Arguing by contradiction assume there is a
pair of points x, y ∈ Vi such that |x − y|X ⩾
⩾ 100·R. Connect x to y with a curve τ in Vj .

Consider the closed curve σ formed by τ and
two shortest paths [px], [py].

Note that |p − x| > 40. Therefore, there is
a point m on [px] such that |m− x| = 20.

By the triangle inequality, the subdivision
of σ into the arcs [pm], [mx], τ and [yp] satisfy
the conditions of the claim (∗) for a = 10·R,
hence the statement.

The quasiconverse does not hold. As an exam-
ple take a surface that looks like a long cylinder
with closed ends; it is a smooth surface diffeo-
morphic to a sphere. Assuming the cylinder is
thin, it has macroscopic dimension 1 at a given
scale. However, a circle formed by a section of
cylinder around its midpoint by a plane parallel
to the base is a circle that cannot be contracted
in its small neighborhood.

Source: [62, Appendix 1(E2)].

14.5; only-if part. Suppose widthn X < R.
Consider a covering {V1, . . . , Vk} of X guaran-
teed by the definition of width. Let N be its
nerve and ψ : X → N be the map provided by
14.2.

Since the multiplicity of the covering is at
most n + 1, we have dimN ⩽ n.

Note that if x ∈ N lies in a star of a vertex
vi, then ψ−1{x} ⊂ Vi; in particular, we have
rad[ψ−1{x}] < R.

If part. Choose x ∈ N . Since the inverse
image ψ−1{x} is compact, ψ is continuous,
and rad[ψ−1{x}] < R, there is a neighborhood
U ∋ x such that the rad[ψ−1(U)] < R.

Since X is compact, there is a finite cover
{Ui} of N such that ψ−1(Ui) ⊂ X has a radius
smaller than R for each i. Since N has dimen-
sion n, we can inscribe1 in {Ui} a finite open
cover {Wi} with multiplicity at most n + 1. It
remains to observe that Vi = ψ−1(Wi) defines a
finite open cover of X with multiplicity at most
n + 1 and radVi < R for any i.

14.6. Assume that P is connected.
Let us show that diamP < R. If this is

not the case, then there are points p, q ∈ P on
distance R from each other. Let γ be a short-
est path from p to q. Clearly length γ ⩾ R
and γ lies in B(p,R) except for the endpoint
q. Therefore, length[B(p,R)P ] ⩾ R. Since

1Recall that a covering {Wi} is inscribed in the covering {Ui} if for every Wi is a subset of
some Uj .
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VolProP (R) ⩾ length[B(p,R)P ], the latter con-
tradicts VolProP (R) < R.

In general case, we get that each connected
component of P has a radius smaller than R.
Whence the width of P is smaller than R.

Second part. Again, we can assume that P is
connected.

The examples of line segment or a circle
show that the constant c = 1

2
cannot be im-

proved. It remains to show that the inequality
holds with c = 1

2
.

Choose p ∈ P such that the value

ρ(p) = max { |p− q|P : q ∈ P }

is minimal. Suppose ρ(p) ⩾ 1
2
·R. Observe that

there is a point x ∈ P\{p} that lies on any
shortest path starting from p and length ⩾ 1

2
·R.

Otherwise, for any r ∈ (0, 1
2
·R) there would be

at least two points on distance r from p; by
coarea inequality we get that the total length
of P∩B(p, 1

2
·R) is at least R — a contradiction.

Moving p toward x reduces ρ(p) which con-
tradicts the choice of p.

14.18. The inequality 6·R < s used twice:

⋄ to shrink the triangle [pipjpk] to a point;

⋄ to extend the constructed homotopy on
M0 to M1.

The first issue can be resolved by passing to
a barycentric subdivision of N 2; denote by vij
and vijk the new vertices in the subdivision that
correspond to edge [vivj ] and triangle [vivjvk]
respectively.

Further for each vertex vij choose a point
pij ∈ Vi ∩ Vj and set f(vij) = pij . Simi-
larly for each vertex vijk choose a point pijk ∈
∈ Vi ∩ Vj ∩ Vk and set f(vijk) = pijk.

Note that

|pi − pij | < R,

|pi − pijk| < R,

|pij − pijk| < 2·R.

Therefore, perimeter of the triangle [pipijpijk]
in the subdivision is less that 4·R. It resolves
the first issue.

The second issue disappears if one estimates
the distances a bit more carefully.

14.19. Choose a fine covering of M with mul-
tiplicity at most n. Choose ψ from M to the
nerve N of the covering the same way as in the
proof of 14.15.

It remains to construct f : N → M and
show that f ◦ ψ is homotopic to the identity
map. To do this, apply the same strategy as
in the proof of 14.15 together with the so-called
geodesic cone construction described be-
low.

Let △ be a simplex in a barycentric subdi-
vision of N . Suppose that a map f is defined on
one facet △′ of △ to M and B(p, r) ⊃ f(△′).
Then one can extend f to whole △ such that
the remaining vertex v maps to p. Namely con-
nect each point f(x) to p by minimizing geodesic
path γx (by assumption it is uniquely defined)
and set

f : t·x + (1 − t)·v 7→ γx(t).

14.21. Suppose M is an essential manifold and
N is an arbitrary closed manifold. Observe
that shrinking N to a point produces a map
N#M → M of degree 1. In particular, there
is a map f : N#M → M that sends the funda-
mental class of N#M to the fundamental class
of M .

Since M is essential, there is an aspherical
space K and a map ι : M → K that sends the
fundamental class of M to a nonzero homol-
ogy class in K. From above, the composition
ι ◦ f : N#M → K sends the fundamental class
of N#M to the same homology class in K.

14.22. Suppose M1 and M2 are essential. Let
ι1 : M1 → K1 and ι2 : M2 → K2 are the maps
to aspherical spaces as in the definition (14.20).
Show that the map (ι1, ι2) : M1×M2 → K1×K2

meets the definition.

Remarks. Choose a group G. Note that there
is an aspherical connected space CW-complex
K with fundamental group G. The space
K is called an Eilenberg–MacLane space
of type K(G, 1), or briefly a K(G, 1) space.
Moreover it is not hard to check that

⋄ K is uniquely defined up to a weak ho-
motopy equivalence;

⋄ if W is a connected finite CW-complex.
Then any homomorphism π1(W, w) →
→ π1(K, k) is induced by a continuous
map φ : (W, w) → (K, k). Moreover, φ is
uniquely defined up to homotopy equiv-
alence.

⋄ Suppose that M is a closed manifold,
K is a K(π1(M), 1) space and a map
ι : M → K induces an isomorphism of
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fundamental groups. Then M is essen-
tial if and only if ι sends the fundamental
class of M to a nonzero homology class
of K.

The property described in the last state-

ment is the original definition of essential man-
ifold. It can be used to prove a converse to the
exercise; namely the product of a nonessential
closed manifold with any closed manifold is not
essential.
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[73] D. Hilbert. „Ueber die gerade Linie als kürzeste Verbindung zweier Punkte.“
Math. Ann. 46 (1895), 91–96.

http://www.math.cornell.edu/~hatcher/
http://www.math.cornell.edu/~hatcher/


BIBLIOGRAPHY 211

[74] T. Hu and W. A. Kirk. “Local contractions in metric spaces”. Proc. Amer.
Math. Soc. 68.1 (1978), 121–124.

[75] J. R. Isbell. “Six theorems about injective metric spaces”. Comment. Math.
Helv. 39 (1964), 65–76.

[76] J. R. Isbell. “Injective envelopes of Banach spaces are rigidly attached”.
Bull. Amer. Math. Soc. 70 (1964), 727–729.

[77] S. V. Ivanov. “Gromov–Hausdorff convergence and volumes of manifolds”.
Algebra i Analiz 9.5 (1997), 65–83.

[78] A. O. Ivanov, N. K. Nikolaeva, and A. A. Tuzhilin. “The Gromov–Hausdorff
metric on the space of compact metric spaces is strictly intrinsic”. Mat.
Zametki 100.6 (2016), 947–950.

[79] A. O. Ivanov and A. A. Tuzhilin. “Isometry group of Gromov–Hausdorff
space”. Mat. Vesnik 71.1-2 (2019), 123–154.

[80] A. Karlsson. Ergodic theorems for noncommuting random products. url:
http://www.unige.ch/math/folks/karlsson/.

[81] A. Karlsson. “A metric fixed point theorem and some of its applications”.
Geom. Funct. Anal. 34.2 (2024), 486–511.
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[87] C. Kuratowski. “Quelques problèmes concernant les espaces métriques non-
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