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Applications of Quasigeodesics

and Gradient Curves

ANTON PETRUNIN

Abstract. This paper gathers together some applications of quasigeodesic
and gradient curves. After a discussion of extremal subsets, we give a proof
of the Gluing Theorem for multidimensional Alexandrov spaces, and a proof
of the Radius Sphere Theorem.

This paper can be considered as a continuation of [Perelman and Petrunin
1994]. It gathers together some applications of quasigeodesic and gradient curves.
The first section considers extremal subsets; in the second section we prove the
Gluing Theorem for multidimensional Alexandrov spaces; in the third we give
another proof of the Radius Sphere Theorem. Our terminology and notation
are those of [Perelman and Petrunin 1994] and [Burago et al. 1992]. We usually
formulate the results for general Alexandrov space, but for simplicity give proofs
only for nonnegative curvature.

Notation. We denote by M a complete n-dimensional Alexandrov space of
curvature ≥ k. As in [Burago et al. 1992], we denote by p′q the direction at q of
a shortest path to p. If H is a subset of M and p, q ∈ H , we denote by |pq|H
the distance between p and q in the intrinsic metric of H . Finally, if X is a
metric space with metric ρ, we denote by X/c denote the space X with metric
ρ/c; where no confusion will arise, we may use the same notation for points in
X and their images in X/c.

1. Intrinsic Metric of Extremal Subsets

The notion of an extremal subset was introduced in [Perelman and Petrunin
1993, 1.1], and has turned out to be very important for the geometry of Alexan-
drov spaces. It gives a natural stratification of an Alexandrov space into open
topological manifolds. Also, as is shown in recent results of G Perelman, extremal
subsets in some sense account for the singular behavior of collapse. Therefore

This material is part of the author’s Ph.D. thesis [Petrunin 1995].
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the intrinsic metric of such subsets turns out to be important. Moreover, there is
hope that extremal subsets with intrinsic metric will give a way to approach the
idea of multidimensional generalized spaces with bounded integral curvature.

In this section we give a new proof of the generalized Lieberman lemma,
prove a kind of “stability” property for extremal subsets, and prove the first
variation formula for the intrinsic metric of extremal subsets. The Lieberman
lemma can be understood as a totally quasigeodesic property of extremal subsets
and therefore offers some hope that extremal subsets with the intrinsic metric
might be Alexandrov spaces with the same curvature bound; at the end of this
section we give a counterexample to this conjecture for extremal subsets with
codimension at least 3. This question is still open for codimension one (i.e., for
a boundary) and for codimension two.

Theorem 1.1 (Generalized Lieberman lemma). Any shortest path in the
intrinsic metric of an extremal subset F ⊂ M is a quasigeodesic in M .

The first proof of this theorem was given in [Perelman and Petrunin 1993, 5.3].

Proof. Assume γ is a shortest path in the length metric of some extremal
subset F . Suppose γ is not a quasigeodesic. Then there is a point p such that
the development γ̃(t) from p is not convex in any neighborhood of some t0. Now
for any ε > 0 it is easy to find a “rounded” curve δ̃(t) such that δ̃(t) = γ̃(t) if
|t− t0| > ε, length(δ̃) < length(γ̃) = length(γ), and for any t the points p̃, γ̃(t),
and δ̃(t) are collinear in this order.

γ̃

p̃

γ̃(t0)

σ̃

σ̃(t0)

R
2

Now consider the curve in M given by

δ(t) = αγ(t) ◦ ρ−1
t (|p̃ δ̃(t)|),

where αγ(t) : [0,∞)→ M is the distp-gradient curve that goes through γ(t) such
that αγ(t)|[0,|pγ(t)|] is a shortest path, and where ρt is its reparametrization, as
in [Perelman and Petrunin 1994, 3.3(1)].

By [Perelman and Petrunin 1994, Theorem 6.3(a)], which states that if such
a gradient curve starts at a point of an extremal subset F then it is contained
in F , we obtain δ ⊂ F . From [Perelman and Petrunin 1994, 3.3.3] (expansion
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along gradient curves is not more than in the model space)

length(δ) ≤ length(δ̃) < length(γ̃) = length(γ).

Therefore γ is not a shortest path in F . �

Theorem 1.2. Let Mn converge to M in the Gromov–Hausdorff topology with-
out collapse (that is, dimMn = dimM), and let Fn ⊂ Mn be extremal subsets.
Assume Fn → F ⊂ M as subsets. Then Fn

GH−→ F as length metric spaces with
intrinsic metrics induced from Mn and M .

Proof. Let x and y lie in an extremal subset G. By the equivalence of the
intrinsic metric of an extremal subset and the metric of the ambient space
[Perelman and Petrunin 1993, 3.2(2)], we have for any open subset U in M

an ε = ε(Voln(U), Diam(U)) > 0 such that |xy|G ≤ ε−1|xy| if x, y ∈ U . (The
dependence on Voln(U) and Diam(U) can be easily obtained from the proof).

Consider p, q ∈ F and pn, qn ∈ Fn such that pn → p and qn → q. It is easy
to see that |pq|F ≤ lim infn→∞ |pnqn|Fn . Therefore we need to show only that
|pq|F ≥ lim supn→∞ |pnqn|Fn . Set ‖pq‖ = lim supn→∞ |pnqn|Fn ; this is easily
seen to be a metric. From the previous paragraph, ‖pq‖ does not depend on the
choice of sequences {pn} and {qn}, and we have ‖pq‖ < ε−1|pq|, because from
above ε can be found uniformly for all Mn in the absence of collapse.

Let γ : [a, b] → F be a shortest path in F between p and q parametrized by
arclength. Assume |pq|F < ‖pq‖. Then, from [Busemann 1958, 5.14], for some
t0 ∈ [a, b] and ε > 0 there is a sequence ti → t0± such that

‖γ(t0)γ(ti)‖ ≥ (1 + ε)|ti − t0|.
Setting r = γ(t0) and s = γ(ti), take sequences rn, sn ∈ Fn such that rn → r

and sn → s. Let γi in F be the limit curve to the shortest paths between rn

and sn in Fn. By [Perelman and Petrunin 1994, 2.3(3)] and the generalized
Lieberman lemma, γi is a quasigeodesic between γ(t0) and γ(ti). From above,
length(γi) ≥ (1 + ε)|ti − t0|. Now consider the limit (M/|t0 − ti|, r) → (Cr, 0).
Consider the curve in Cr given by

γ∗(t) = lim
i→∞

(
γi

|t0 − ti|

)
(t |t0 − ti|) ∈ M

|t0 − ti| ,

where (γi/|t0 − ti|) denotes the image of γi in M/|t0 − ti|. Then γ∗ is a quasi-
geodesic between 0 and the tangent vector γ±(t0) which has length not less then
1+ε. This is a contradiction since |γ±(t0)| = 1 by [Perelman and Petrunin 1994,
2.3(2)]. �

Remark 1.3. The author does not know a counterexample for the following
conjecture: Let Mn

GH−→ M , with dimMn ≤ C < ∞, and let Fn ⊂ Mn be
extremal subsets. Assume that Fn → F ⊂ M as subsets and that Fn

GH−→ F̄ .
Then there is a discrete group of isometries G on F̄ such that F = F̄ /G.
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As an example, consider the collapse of spaces with boundary Mi
GH−→ M such

that dimM = dimMi − 1. Then ∂Mi → M as subsets and ∂Mi
GH−→ M̃ , where

M̃ is the double of M .

Now let M be an Alexandrov space and F ⊂ M be an extremal subset. By
the generalized Lieberman lemma, every shortest path in the length metric of F

is a quasigeodesic as a curve in M , and every quasigeodesic at every point has
directions of exit and entrance [Perelman and Petrunin 1994, 2.1(b) and 2.3(2)].
Thus if p and q lie in F we can define q◦(= q◦p) as the set of all directions of
entrance in Σp(F ) of shortest paths between p and q in the length metric of F .
It is easy to see that q◦ is compact.

Theorem 1.4 (The first variation formula). Let F be an extremal subset
of the Alexandrov space M . Let p, q ∈ F , and let ξ(t) be a curve in F starting
from p in direction ξ′0 ∈ Σp(F ). Assume that |p ξ(t)| = t + o(t). Then

|ξ(t) q|F = |pq|F − cos |ξ′0q◦|Σp(F ) t + o(t).

Proof. To prove this we have to prove two inequalities:

|ξ(t)q|F ≤ |pq|F − cos |ξ′0q◦|Σp(F ) t + o(t), (1.1)

|ξ(t)q|F ≥ |pq|F − cos |ξ′0q◦|Σp(F ) t + o(t). (1.2)

Proof of (1.1). Take some R � 1. Set α = |ξ′0q◦|Σp(F ) and |pq|F = l. Take
η ∈ q◦ such that α = |ξ′0q◦|Σp(F ) = |ξ′0η| and let γ : [0, l]→ F be a shortest path
between p and q in F such that γ(0) = p and γ+(0) = η. Then, by the triangle
inequality,

|ξ(t) q|F ≤ l− Rt + |ξ(t) γ(Rt)|F .

The cosine rule gives us

|ξ′0 Rη|Cp(F ) =
√

R2 + 1− 2R cosα.

Now, using Theorem 1.2, for the limit (M/t, p) → Cp, we obtain

lim
t→0

|ξ(t)γ(Rt)|F /t = |ξ′0 Rη|Cp(F ).

Therefore

|ξ(t) q|F ≤ l −Rt + t
√

R2 + 1− 2R cosα + o(t)

≤ l − cos α t +
t

R− 1
+ o(t).

When R →∞ we obtain

|ξ(t)q|F ≤ |pq|F − cos |ξ′0q◦|Σp(F ) t + o(t). �
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Lemma 1.5. Let C = C(Σ) be a cone with curvature ≥ 0 (so the curvature of Σ
is ≥ 1). Let γ be a quasigeodesic in C not passing through the vertex o. Then the
projection of γ on Σ parametrized by the arclength is a quasigeodesic in Σ and
the development of γ in the plane with respect to the vertex of C is a straight
line.

Proof. To prove the second part of this lemma we have to prove that

(|γ(t)|2)′′ = 2.

In order to prove that (|γ(t)|2)′′ ≤ 2, it is enough to consider the development
of γ with respect to the vertex o of the cone. We prove that (|γ(t)|2)′′ ≥ 2.
Consider the Busemann function for θ ∈ Σ, namely,

fθ = lim
λ→∞

(distλ θ−λ).

The condition of convexity of the development with respect to λ θ gives the
concavity of the function fθ ◦ γ(t) for every quasigeodesic γ in C. Using this for
θ = γ(t)/|γ(t)| we get the needed inequality.

Therefore if γ∗ is the projection of γ on Σ, we can choose a unique arclength
parameter x on γ∗ such that

pr
(
γ(c tanx + d)

)
= γ∗(x)

for some constants c > 0 and d; without loss of generality we can set d = 0.
Now we have to prove that the development of γ∗ in a standard sphere with

respect to any θ ∈ Σ is convex, i.e., that cos(|θγ∗(x)|)′′ + cos(|θγ∗(x)|) ≥ 0. By
[Perelman and Petrunin 1994, 1.7] it is enough to prove this only for |θγ∗(x)| <
π/2. It is easy to see that

cos(|θγ∗(x)|) = −fθ(γ(c tan x))
|γ(c tanx)| .

Then direct calculation gives what we need, because fθ ◦γ is convex and because
|γ(c tanx)| = c/ cosx. �

Proof of (1.2). Assume that (1.2) is false. Then one can find a sequence {ti},
ti → 0+, such that

|ξ(ti)q|F < |pq|F − cos |ξ′0q◦|Σp(F ) ti − ε ti

for some fixed ε > 0.
Assume |pq|F = l and |ξ(ti)q|F = li. Let γi : [0, li] → F be the shortest paths

between ξ(ti) and q in F such that γ(0) = ξ(ti). We can pass to a subsequence of
{γi} such that the shortest paths γi approach some shortest path γ : [0, l] → F

between q and p. Let η ∈ q◦ be the direction of this shortest path γ. By Theorem
1.1, γi and γ are quasigeodesics.
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Now consider the Gromov–Hausdorff limit (M/ti, p) GH−→ Cp, and pass to a
subsequence again, so that there exists γ̂ : [0,∞)→ Cp satisfying

γ̂(t) = lim
i→∞

(γi/ti)(tti) ∈ M/ti,

where (γi/ti) denotes the image of γi in M/ti.
By [Perelman and Petrunin 1994, 2.3(3)], γ̂ is a quasigeodesic in Cp, and it is

easy to see that γ̂(0) ∈ Σp ⊂ Cp.
We define the direction at infinity of the curve γ̂ in Cp by

lim
t→∞

γ̂(t)
|o γ̂(t)| .

By Lemma 1.5 this is well defined for quasigeodesics.
We claim that the direction at infinity of γ̂ is η. Indeed, let θ be the direction

of γ̂ at infinity. By the cosine rule we obtain, for R � 1,

|γ̂(2R)|2 = lim
i→∞

(|p γi(2Rti)|/ti)2

≤ lim
i→∞

(|p γi(Rti)|2+(Rti)2−2Rti|p γi(Rti)| cos\(γ+
i (Rti), p′γi(Rti)

)
)
/t2i

= |γ̂(R)|2 +R2−2R |γ̂(R)| lim
i→∞

cos\(γ+
i (Rti), p′γi(Rti)

).

p
θ

γ1(0)

γ1(Rti) γ1(2Rti)

Now, by Lemma 1.5, we have for some β

lim
i→∞

\(γ+
i (Rti), p′γi(Rti)

) ≥ arccos
|γ̂(R)|2 + R2 − |γ̂(2R)|2

2R |γ̂(R)|

= arccos

(
(R2 + 1− 2R cosβ) + R2 − (4R2 + 1− 4R cos β)

)
2R

√
R2 + 1− 2R cos β

= arccos

(
−

√
R2 − 2R cos β + cos2 β

R2 − 2R cos β + 1

)
≥ arccos

(
−

√
1− 1

(R− 1)2

)
≥ arccos

(−1 + 1/(R− 1)2
)

> π(1 − 1/R).

Taking rk → p such that (rk)′p → θ, we have

lim
i→∞

\̃p γi(Rti) rk ≥ π − \(γ̂(R), (rk)′p) > π − π/R− \(θ, (rk)′p).
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The latter inequality is a corollary of Lemma 1.5, since sin\(γ̂(R), θ) ≤ 1/R.
Therefore, since the perimeter of any triangle in the space of directions is at
most 2π, we get

lim
i→∞

\(γ+
i (Rti), (rk)′γi(Rti)

)≤2π− lim
i→∞

\̃p γi(Rti) rk− lim
i→∞

\
(
γ+

i (Rti), p′γi(Rti)

)
≤π/R+\(θ, (rk)′p)+π/R.

Using [Perelman and Petrunin 1994, 1.4(G2)] for γi with respect to the points
rk and starting at γi(Rti), we obtain the estimates

|rkγ(|prk|)| = lim
i→∞

∣∣rk γi

(
Rti + |γi(Rti)rk|

)∣∣
≤ lim

i→∞
|γi(Rti)rk| lim

i→∞
\(γ+

i (Rti), (rk)′γi(Rti)
)

≤ |prk| (2π/R +\(θ, (rk)′p)).

This means that η is 2π/R-close to θ. Sending R to infinity we obtain θ = η.
Now fix R � 1 and divide γi into two pieces using a parameter value xi ∈ [0, li)

such that |pγi(xi)| = Rti. We estimate the length of each part separately.
By Theorem 1.2 the length of the first part |qγi(xi)|F is possible to estimate

from the triangle inequality:

|qγi(xi)|F ≥ |pq|F − |pγi(xi)|F = |pq|F − Rti + o(ti).

The length of the second part is estimated using the fact that the limit of
lengths of quasigeodesics is the length of the limit quasigeodesic [Perelman and
Petrunin 1994, 2.2, 2.3(3)]. Therefore

|ξ(ti)γi(xi)|F /ti → length(γ̂ ∩BR(o) ⊂ Cp).

By Lemma 1.5 the last expression can be estimated from below as

R− cos\(q◦, ξ′0)−C/R.

This estimate is easily deduced from the following diagram in the plane of the
development ˜̂γ of γ̂ from o. Here α is the angle at õ subtended by ˜̂γ. Clearly α

is not less than \(q◦, ξ′0).

1

cos α
R

< C/R

α

eγ̂
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From these two estimates we obtain

|ξ(ti)q|F ≥ |pq|F − cos |ξ′0q◦|Σp(F ) ti −C/Rti + o(ti),

which for C/R < ε contradicts the assumption. This completes the proof of (1.2)
and of the first variation formula. �

A counterexample. In [Perelman and Petrunin 1993, 6.1] we conjectured that
the intrinsic metric of a primitive extremal subset has curvature bounded from
below. Here we show a counterexample to this conjecture for codim F ≥ 3.
Therefore this question is still open for codimF = 1 (i.e., for a boundary) and
for codimF = 2. Sergei Buyalo [1976] has settled the first of these questions
affirmatively for a “smooth” Alexandrov space, i.e., for a convex subset in a
Riemannian manifold with curvature bounded from below.

Consider a right simplex conv{a1a2a3a4a5} in a standard S4 such that |aiaj| =
π/2 for i 6= j. Assume a5 = a0, take some ε > 0, and consider the closed broken
geodesic

F = a+
0 a−1 a+

1 a−2 a+
2 a−3 a+

3 a−4 a+
4 a−5 a+

0 ,

where a±i is the point on the geodesic aiai±1 such that |aia
±
i | = ε. Let Σ =

conv{F }. Then direct calculation shows that F is a primitive extremal subset
of Σ and that, for ε sufficiently small, length(F ) > 2π. In particular, C(F ) is an
extremal subset of C(Σ), which has a singular point of negative curvature.

2. The Gluing Theorem

The Gluing Theorem for the two dimensional case is due to A. D. Alexandrov
(see [Pogorelov 1973, § 11], for example). Later Perelman [1991, 5.2] proved
the Doubling Theorem for multidimensional Alexandrov spaces; this is a special
case of the theorem formulated below. The original Alexandrov’s Theorem had
a lot of applications to the bending of convex surfaces with boundary, which are
currently impossible to generalize to the multidimensional case, because they are
supported by the Theorem about convex embeddings [Pogorelov 1973, Sect6–
7]. Formally, the following theorem gives new examples of Alexandrov spaces,
but unfortunately we have not too many examples of Alexandrov spaces with
isometric boundaries.

Theorem 2.1. Let M1 and M2 be Alexandrov spaces with nonempty boundary
and curvature ≥ k. Let there be an isometry is : ∂M1 → ∂M2, where ∂M1 and
∂M2 are considered as length-metric spaces with the induced metric from M1

and M2. Then the glued space X = M1 ∪is(x)=x M2 is an Alexandrov space with
curvature ≥ k.

Lemma 2.2. Let p ∈ ∂M and η ∈ ∂Σp. Then there exists a shortest path in ∂M

starting at p in a direction arbitrarily close to η.
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Proof. Let N = ∂M . The boundary is an extremal subset and therefore we
can use notation q◦(= q◦p) for the set of all directions of entrance in Σp(N) of
shortest paths between p and q in the length metric of N .

Choose a sequence of points qn ∈ N such that qn → p and \(q′n, η) → 0
(where q′n = (qn)′p is the direction at p of the shortest path pq). Assume that
\(ηq◦n) ≥ ε for all n. Pass to a subsequence such that limn→∞\(θ q◦n) → 0 for
some direction θ.

Find a point r ∈ M such that \(r′, θ) < ε/6. Let {rn} be points on the
shortest path pr such that |prn| = |pqn|. Since the shortest path from p to qn

in N is a quasigeodesic (see Theorem 1.1), we conclude by using [Perelman and
Petrunin 1994, 1.4(G2), 1.5] that |rnqn| < (ε/5)|pqn| for n sufficiently large,
hence that limn→∞\(q′n, r′) < ε/3 for ε ≤ π/4. Therefore

lim
n→∞\(q′n, θ) < ε/2.

We obtain a contradiction because limn→∞ q′n = η and \(η, θ) ≥ ε. �

The rest of this section will be devoted to the proof of Theorem 2.1. Let N =
M1 ∩M2 = ∂Mi ⊂ X.

Definition 2.3. The m-predistance |pq|m between points p and q in X is the
minimal length of broken geodesics with vertices p = p0, p1, . . . , pk+1 = q, where
k ≤ m, plpl±1 is a shortest path that lies completely in one of Mi for every
l ∈ {1, 2, . . . , k}, and pl lies in N . A broken geodesic that realizes this minimum
is called an m-shortest path.

Remark 2.4. It is easy to see that |pq|m ≥ |pq|m+1 ≥ |pq|, limm→∞ |pq|m = |pq|,
|pq|m + |qr|l ≥ |pr|m+l if q ∈ X \N,

|pq|m + |qr|l ≥ |pr|m+l+1 if q ∈ N .
(2.1)

For every interior vertex p = pl, l ∈ {1, 2, . . . , k}, of an m-shortest path, we can
define directions of exit and entrance ξi as directions in Σp(Mi) of shortest paths
in Mi.

By Theorem 1.2 the isometry is : ∂M1 → ∂M2 = N gives an isometry is′p :
∂Σp(M1) → ∂Σp(M2) = Σp(N) and isp : ∂Cp(M1) → ∂Cp(M2) = Cp(N). Set

Σ#
p (X) := Σp(M1) ∪is′p(x)=x Σp(M2),

C#
p (X) := C(Σ#

p (X)) = Cp(M1) ∪isp(x)=x Cp(M2).

From the induction hypothesis, Σ#
p (X) will be an Alexandrov space with curva-

ture ≥ 1, and therefore C#
p (X) will be a cone with curvature ≥ 0.

Notation. If K1 and K2 are two compact metric spaces, we say that K1 ≤ K2

if there is a noncontracting map m : K1 → K2. If (L1, p1) and (L2, p2) are two
locally compact metric spaces with base points, we say that (L1, p1) ≤ (L2, p2)
if for any R > 0 there is a noncontracting map m : BR(p1) → BR(p2).
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We will write lim supi→∞ Ki ≤ K if for any Hausdorff subsequence Kik

GH−→
K′ we have K′ ≤ K. Similarly one can write lim infi→∞ Ki ≥ K. We write
lim supi→∞(Li, pi) ≤ (L, p) if for any R > 0 we have lim supi→∞ BR(pi) ≤ BR(p)
(compare with [Burago et al. 1992, 7.13]).

Proof. Proof of Theorem 2.1 As a base we can take the classical Gluing Theo-
rem of A. D. Alexandrov in dimension 2 [Pogorelov 1973, § 11] Assume we have
already proved Theorem 2.1 for dimensions less than n.

Lemma 2.5. For any point p ∈ N we have lim supδ→0(X/δ, p) ≤ (C#
p (X), o).

It is easy to see that as a corollary of Theorem 2.1 we will actually have equality
in this theorem, instead of inequality.

Proof of Lemma 2.5. Consider the gradient-exponential maps [Perelman and
Petrunin 1994, 3.5] gexp1 : Cp(M1) → M1 and gexp2 : Cp(M2) → M2. By
[Perelman and Petrunin 1994, 6.4(a)], we have expi(Cp(N)) ⊂ N . We construct
an exponential map exp : C#

p (X) → X by setting

exp(v) =
{

gexp1(v) for v ∈ Cp(M1) ⊂ C#
p (X),

gexp2(v) for v 6∈ Cp(M1).

Define expδ : C#
p (X) → X/δ by expδ(v) = iδ ◦ exp ◦(vδ), where iδ : X → X/δ is

the canonical mapping.
Let x = x0, x1, . . . , xk, xk+1 = y be vertices of an m-shortest path in C#

p (X).
It is easy to see that |xlxl+1| ≥ | expδ(xl) expδ(xl+1)|+o(δ)/δ. Therefore for the
m-predistance in C#

p (X) we have |xy|m ≥ | expδ(x) expδ(y)| + o(δ)/δ. Now
|xy| = limm→∞ |xy|m for any x, y ∈ C#

p (X). Hence

lim
δ→0

| expδ(x) expδ(y)| ≤ lim
m→∞ |xy|m = |xy|.

Now in order to complete the proof we need to verify that

lim
δ→0

exp−1
δ (BR(p) ⊂ X/δ) ⊂ BR(o) ⊂ C#

p (X).

for any R > 0, or, equivalently, that limδ→0 |p expδ(x)| ≥ |x| for any x ∈ C#
p (X).

Assume otherwise. Therefore we can find x ∈ C#
p (X) and a sequence δn → 0

such that for some ε > 0 we have

|p expδn
(x)| ≤ (1 − ε) |x|.

Consider shortest paths p expδn
(x) ⊂ X/δn for all n. No subsequence lies

completely in Mi/δn for fixed i. Let yn ∈ N/δn ⊂ X/δn be the closest point
of N/δn to expδn

(x) on p expδn
(x). Pass to a subsequence of {δn} such that

exp−1
δn

(yn) → x∗. By [Perelman 1991, 4.7], x∗ ∈ C(Σp(N)) = C(∂Mi) and

lim
δn→0

| expδn
(x) expδn

(x∗)| = |xx∗|
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(because a shortest path expδn
(x)yn completely lies in one of the Mi and because

|yn expδn
(x∗)| = o(δn)/δn). Therefore |p expδn

(x∗)| ≤ (1−ε) |x∗| for n sufficiently
large, By Lemma 1.5, a limit of shortest paths in N/δn between p and expδn

(x∗)
(which is a quasigeodesic by the generalized Lieberman lemma, Theorem 1.1) is
a shortest path ox∗ in Cp(Mi). Because limits preserve lengths of quasigeodesics
[Perelman and Petrunin 1994, 2.3(3)], we have

lim
n→∞ |p expδn

(x∗)|N/δ = |x∗|.
Hence for n sufficiently large we get

|p expδn
(x∗)| ≤ (1− ε) |p expδn

(x∗)|N/δ .

Therefore we can find a segment snrn on a shortest path p expδn
(x∗) that com-

pletely lies in one of the Mi/δn, such that sn , rn ∈ N/δn and

|snrn|Mi ≤ (1− ε)(|prn|N − |psn|N) (2.2)

(where we use the same notation for points in N and N/δ).
We can easily pass to a subsequence such that limn→∞ |psn|N/|prn|N = c. for

some 0 ≤ c ≤ 1.
Now we consider two cases, c 6= 1 and c = 1.
Suppose c 6= 1, and consider limit (Mi/|prn|N , p) GH−→ Cp(Mi). Pass to a

subsequence such that sn → s and rn → r. The boundary N is an extremal
subset; therefore, by Theorem 1.2, (N/|prn|N , p) GH−→ Cp(N) as length-metric
spaces. Hence

lim
n→∞

|snrn|Mi

|prn|N = |sr| ≥ |r| − |s| = |r|C(N) − |s|C(N) = 1− lim
n→∞

|psn|N
|prn|N ,

contradicting (2.2).
Suppose instead that c = 1. Pass to a subsequence such that there exists

a limit (Mi/|snrn|Mi, sn) GH−→ (Ms, s). (We remark that Ms need not be the
tangent cone.) Set Ns = ∂Ms. By Theorem 1.2 we have

(N/|snrn|Mi , sn) GH−→ (Ns, s).

Let fn : N/|snrn|Mi → R be functions defined by

fn(x) = |px|N/|snrn|Mi
− |psn|N/|snrn|Mi

.

Pass to a subsequence such that there exists a limit f : Ns → R, f = limn→∞ fn.
It is easy to see that Ms can be represented as a product R ×M ′

s such that
f(x) ≤ prR(x), where prR is the projection Ms → R. Indeed a sequence of
quasigeodesics that prolong shortest paths psn in N easily goes to a straight line
in Ms, so by the Toponogov splitting theorem we have such a representation.
Therefore Ns is split as well, Ns = R×N ′

s.
Let σn be a shortest path in N between p and sn , parametrized by distance

from sn, and let σ be a limit of {σn/|rnsn|Mi}. By the triangle inequality, for any
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T > 0 we have |xp|N − |snp| ≤ |xσn(|snrn|T )| − |snrn|T . As a limit we obtain
that f(x) ≤ |xσ(T )| − T . For T → ∞ the right side goes to the Busemann
function of σ which coincides with prR.

Pass to a subsequence such that there is a limit as rn → r. We obtain

1 = |rs| ≥ prR(r) ≥ f(r) = lim
n→∞(|prn|N − |psn|N)/|rnsn|Mi ,

again contradicting (2.2). This concludes the proof of the lemma. �

Lemma 2.6. The directions of exit and entrance (ξi) of any m-shortest path at
every interior vertex p = pl, for l ∈ {1, 2, . . . , k ≤ m} (see Definition 2.3), are
opposite in C#

p (X) (that is, |ξ1ξ2| = 2|ξ1| = 2|ξ2|; see [Perelman and Petrunin
1994, 2.1]).

Proof. Let ξi ∈ Σp(Mi) be directions of exit/entrance of the m-shortest path
at the interior vertex p. We first prove that |ξ1ν |0 + |ξ2ν |0 = π for any ν ∈
Σp(N) ⊂ Σ#

p (X). Here the left side is the sum of two 0-distances in the glued
space Σ#

p (X), each of which, by Definition 2.3, is measured in one of the Σp(Mi).
Assume we have proved the lemma for dim < n, and let dimΣ#

p (X) = n. From
the first variation formula we obtain

f(ν) := |ξ1ν |0 + |νξ2|0 ≥ π

for any ν ∈ Σp(N). Assume ν̄ is the minimum point in Σp(N) of the last
function. Thus, ξ1ν̄ξ2 is a 1-shortest path. Let γ be a shortest path in Σp(N)
such that γ(0) = ν̄ with arbitrary initial data γ+(0) = η. Assume f(ν̄) > π.
By the induction assumption, |(ξ1)′̄νη|0 + |η(ξ2)′̄ν|0 = π. By the generalized
Lieberman lemma, Theorem 1.1, γ is a quasigeodesic as a curve in Σp(M1) and
Σp(M2). By [Perelman and Petrunin 1994, 1.4(G1)], the condition f(ν̄) > π

implies (f ◦ γ)(x) < (f ◦ γ)(0) = f(ν̄) for sufficiently small x. This contradicts
the assumption that f has a minimum at ν̄.

Therefore f(ν̄) = π. Take any shortest path γ in Σp(N) such that γ(0) = ν̄.
Then γ is a quasigeodesic for Σp(M1) and Σp(M2). Set

g(ν) := cos |ξ1ν |0 + cos |νξ2|0
for ν ∈ Σp(N). By the preceding arguments, g(ν̄) = g ◦ γ(0) = 0, (g ◦ γ)′(0) = 0
and g ◦ γ ≤ 0. By [Perelman and Petrunin 1994, 1.3(L2)], (g ◦ γ)′′ + g ◦ γ ≥ 0.
Therefore (g ◦ γ)′′ ≥ 0 and so g ◦ γ ≡ 0; in particular for any ν , g(ν) = 0.
Therefore f ≡ π, that is, |ξ1ν |0 + |ξ2ν |0 = π as claimed.

In order to prove that ξ1 and ξ2 are opposite, it is enough to show that
2|ξ1| = 2|ξ2| = |ξ1ξ2| holds in C#

p (X), or equivalently that |ξ1ξ2| = π holds in
Σ#

p (X). If this is false, there is m such that |ξ1ξ2|m < π in Σ#
p (X). Let θ be the

closest vertex to ξ1 of the m-shortest path ξ1ξ2. By the preceding discussion,
there is a 1-shortest path through θ of length π. Therefore we have two distinct
directions at θ which are opposite to (ξ1)′θ, a contradiction to the fact that Σ#

p

is an Alexandrov space. This completes the proof of the lemma. �
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Corollary 2.7. Let ξi ∈ Σp(Mi) be directions of exit/entrance of an m-shortest
path at an interior vertex . For any η ∈ Σp(Mi) there is a unique η∗ ∈ Σp(N)
such that

|ξ1η|0 + |ηη∗|0 + |η∗ξ2|0 = π

or

|ξ1η
∗|0 + |η∗η|0 + |ηξ2|0 = π.

Proof. Suppose η ∈ Σp(M1). Consider the 1-shortest path ηξ2. Applying
Lemma 2.6 to Σ#

p (X) we see that the directions at the vertex are opposite;
therefore this 1-shortest path is a part of a 1-shortest path ξ1ξ2. �

Lemma 2.8. Let γ : [a, b] → X be a quasigeodesic in one of the intMi or a
shortest path in the length metric of N . Then

ρk(|pγ(t)|m)′′ + kρk(|pγ(t)|m) ≤ 1

for any p ∈ X

For the definition of ρk see [Perelman and Petrunin 1994, 1.4(L2)].

Proof. We consider the case k = 0; we must show that (|pγ(t)|2m)′′ ≤ 2.
This is true for m = 0 because

|pq|0 =

 |pq|Mi if p ∈ Mi, q ∈ intMi or q ∈ Mi, p ∈ intMi,
mini |pq|Mi if p, q ∈ N ,
∞ otherwise.

(Recall that a shortest path in N is a quasigeodesic in both Mi by the generalized
Lieberman Lemma).

Suppose the claim is true for all l < m and false for m. Then the standard
idea shows that in this case there exists t0 ∈ (a, b) and ε > 0 such that for
|t− t0| < ε

|pγ(t)|2m ≥ |pγ(t0)|2m −A(t − t0) + (t− t0)2 + ε(t− t0)2,

for some constant A.
Assume t0 = 0. Set q = γ(0) and let p = p0p1 . . . pkpk+1 = q be an m-shortest

path. Take a sequence tj → 0 such that the sequence ((γ(tj )′pk
)∗ (as in Corollary

2.5) goes to some direction ν ∈ Σpk(N). Using Lemma 2.2 we can find a shortest
path γk in N which goes from pk in a direction arbitrarily close to ν .

In the following proof one might get lost in calculations and lose the main
idea. If we assume that all ((γ(tj )′pk

)∗ coincide with ν and there is a shortest
path (in the intrinsic metric of N) that goes in this direction, one can ignore the
residue terms below.
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Set α = \((pk)′q, γ+(0)), β = \(q′pk
, γ+

k (0)), βj = \(γ+
k (0) (γ(tj))′pk

), θj =
\((γ(tj))′pk

q′pk
), and δ = \(γ+

k , ν), as in the figure below.

X

pk

ν δ γ+
k (0)

β
βj

θj α

q

γ(tj) O(δ) + o(tj)/tj

q′

θj

γ(tj)
′

β

βj δ

γ+γ+

ν
γ(tj)

′∗
o(tj)/tj

Σpk
(Mi) Σpk

(N )

It is easy to see that

θj ≥ tj sin α

|pkq|0 + o(tj).

We can assume that q′pk
6∈ Σpk(N); otherwise our m-shortest path lies completely

in N . By the cosine rule applied to the triangle 4q′pk
(γ(tj))′pk

γ+
k (0), we have

β − βj ≥
(
1 + o(δ) + o(tj)/tj

)
θj ≥ tj

(
sin α

|pkq|0 + o(δ)

)
+ o(tj).

Hence

cos(β − βj) ≤ 1− t2j sin2 α

2 |pq|20
+ o(δ)t2j + o(t2j ).

From the induction assumption and Lemma 2.6 we have

|p γk(τ )|2m−1 ≤ |p pk|2m−1 + 2τ |p pk|m−1 cosβ + τ2.

Because γk is a quasigeodesic for both of the Mi, we obtain

|γ(tj)γk(τ )|20 ≤ |γ(tj) pk|20 − 2 cosβj τ |γ(tj) pk|0 + τ2,

where these distances are measured in a fixed Mi.
Therefore, using (2.1) and the previous two inequalities, we have

|p γ(tj)|2m ≤ min
τ

(|p γk(τ )|m−1 + |γ(tj)γk(τ )|0)2

≤ min
τ

(|AB(τ )|+ |B(τ )C|)2

= |AC|2 = |p pk|2m−1 + |γ(tj) pk|20 + 2 |p pk|m−1|γ(tj) pk|0 cos(β − βj),
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where A, B(τ ) and C are as shown in the following diagram in the plane:

A |ppk|m−1 D

β − βj

βj
π − β

C
B(t)|pγk(τ)|m−1

|γ(tj) γk(τ)|0

Because γ is either a quasigeodesic in one of the Mi, or a shortest path in N

and therefore a quasigeodesic in both of the Mi (see Theorem 1.1), we conclude
that

|pk γ(tj)|20 ≤ |pkq|20 + t2j − 2tj|pkq|0 cosα

and so

|pk γ(tj )|0 ≤ |pkq|0 − tj cosα +
t2j sin2 α

2|pkq|0 + o(t2j ).

Hence

|p γ(tj)|2m ≤ |p pk|2m−1 + |q pk|20 + t2j − 2tj|q pk|0 cos α

+ 2|p pk|m−1

(
|pkq|0 − tj cosα +

t2j sin2 α

2|pkq|0 + o(t2j )

)
×

(
1− t2j sin2 α

2|pkq|20
+ t2jo(δ) + o(t2j )

)
≤ (|ppk|m−1+|pkq|0)2−2tj(|ppk|m−1+|pkq|0) cosα+t2j +t2j o(δ)+o(t2j )

= |p q|2m − 2tj|pq|m cosα + t2j + t2jo(δ) + o(t2j ).

This inequality for two sequences tj → 0+ and tj → 0− contradicts our assump-
tion for sufficiently small δ. �

We continue the proof of Theorem 2.1, showing that every m-shortest path is
a k-quasigeodesic. Indeed, using [Perelman and Petrunin 1994, 1.4(L2), 1.5],
we only need to verify that ρk(|γ(t)p|)′′ ≤ 1 − kρk(|γ(t)p|). Now |γ(t)p| =
limn→∞ |γ(t)p|n, and using Lemma 2.8 and [Perelman and Petrunin 1994, 1.3(4)]
we obtain the needed inequality for all t 6= tl (where γ(tl) = pl).

Let σ be a shortest path between an arbitrary point x and γ(tl), parametrized
by distance from γ(tl). By Lemmas 2.5 and 2.6 we conclude that, for fixed ε,

|σ(T )γ(tl + Tε)| + |σ(T )γ(tl − Tε)| ≤ 2T + CTε2 + o(T ).

Therefore

distx ◦ γ(tl + Tε) + distx ◦ γ(tl − Tε) ≤ 2distx ◦ γ(tl) + CTε2 + o(T ).

Therefore, for T → 0,

(distx ◦ γ)+(tl) ≤ (distp ◦ γ)−(tl) + Cε.
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Hence, for ε → 0, we obtain (distx ◦ γ)+(tl) ≤ (distx ◦ γ)−(tl). From this, using
[Perelman and Petrunin 1994, 1.3(2)], we obtain the needed inequality for any t.

Let γm be an m-shortest path between p, q ∈ X. Then γ = limm→∞ γm is
a shortest path between p and q. It is easy to see that γ is convex (as a limit
of convex curves) and parametrized by the arclength (because length(γm) →
length(γ)); hence γ is a quasigeodesic. Therefore by [Perelman and Petrunin
1994, 1.6] we obtain that X is an Alexandrov space of curvature ≥ k. This
completes the proof of the Gluing Theorem. �

3. The Radius Sphere Theorem

Theorem 3.2 below was proved independently by Karsten Grove and Peter
Petersen [Grove and Petersen 1993]. Another proof follows immediately from
[Perelman and Petrunin 1993, 1.2, 1.4.1]. The following proof is only a good
demonstration of how beautiful quasigeodesics are.

Proposition 3.1. Let Σ be an Alexandrov space of curvature ≥ 1, with radius
greater than π/2. Then for any p ∈ Σ the space of directions Σp has a radius
greater than π/2.

Proof. Assume that Σp has radius ≤ π/2, and let ξ ∈ Σp be a direction
such that closBξ(π/2) = Σp. Take a quasigeodesic of length π/2 starting at
p in the direction ξ. Then the other endpoint q of this quasigeodesic satisfies
closBq(π/2) = Σ. (Indeed, for any point r ∈ Σ we have \rpq ≤ π/2; therefore
|rq| ≤ π/2 by the comparison inequality [Perelman and Petrunin 1994, 1.4(G2)].
This contradicts our assumption that Σ has radius > π/2. �

Theorem 3.2. Let Σ be an Alexandrov space of curvature ≥ 1, with radius
> π/2. Then Σ is homeomorphic to the sphere Sn .

Proof. Assume we have proved the theorem for dim Σ < n. We now prove it
for dimΣ = n.

Let xy be a diameter of Σ. Let z be a critical point of distx. Then \̃xzy ≤
\xzy ≤ π/2. By assumption |xz|, |zy|, π/2 ≤ |xy|. Therefore the last inequality
can hold only for z = y. Therefore distx has no critical points but x and y.
By [Perelman 1994], Σ is homeomorphic to S(Σx). By Proposition 3.1 we have
Rad (Σx) > π/2. Hence by the induction assumption Σx is homeomorphic to
Sn−1. Therefore Σ is homeomorphic to Sn . �
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