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This .paper contains the proofs of the results announced
in [i, £ 17]» The reader is supposed to be familiar with the
definitions of Alexandrovfs spaces (this name is used for fi-
nitejdimensional spaces with curvatures bounded from below,
PSCBB in [i]) (see [l» f 2j), the basic examples - cones and
spherical suspensions ([I, 3*6, 3.7]). the generalised Topo-
nogov's theorem ( [i, f 4])» the notions and basic properties
of strained points ( [lf § 5l), rough volume ( [I, §§&, 9]),
spaces of directions and tangent cones (flf § 7]), boundary
([i, 7»19]>, and (directionally) differentiable functions
((i, 12.2-12.6])• The topological tools from fs] concerning
deformation of homeomorphisms are used as well. Our principal
results can be expressed as follows.

0.1. The Theorem on spherical neighborhood,
A sufficiently small spherical neighborhood of a point .

in Alexandrov's space is homeomorphic to the tangent cone at
this point.

0.2* Corollary. An Alexandrov'a space has a natural
stratification into topological manifolds.

0.3. The Stability Theorem*
A compact Alexandrov's space M has a neighborhood in

Gromov-Hausdorff metric, such that any complete Alexandrov's
space /in' in this neighborhood, with the same lower bound
of curvatures and the same dimension, is homeomorphic to M •

$ 1 contains a topological construction showing that
a point in an Alexandrov's space has a conical neighborhood -
a Morse-theoretic argument, based on the deformation theorems
from [SJ and the properties or non-critical maps;tfrom Alexand-
rov's space to euclidean space) la a (locally trivial) bundle
projection (Theorem 1.4.1). <f 3 contains the definition of
non-critical maps and proofs of their properties, used in / 1»
This definition is (for technical reasons) rather complicated
and by no means oanonioal. The admissible maps from [i, 17*i]
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are particular cases of these non-critical maps* / 2 contains
preliminary lemmas, which are used exstensively in <f 3* The
arguments of ff 2, 3 are purely geometrical, based on the
comparison inequalities* <f 4 contains the proof of the theo-
rem 4.3» that generalize the stability theorem 0*3. This
proof is essencially topologieal and baaed on the results
of ff 1, 3« The theorems 1.4.1 and 4*3 imply (by simple
arguments) the Theorem 0*1 (see 4»4), a topological characte-
risation of boundary points of Aleacandrov*s apace (4*6) and
a natural generalisation of the Diameter sphere theorem of
Grove and Shiohama C G SL] (4«5)* / 5 contains the proof of
the Doubling Theorem, stating that the (naturally defined)
doubling of an Alexandrov*s apace with boundary is also an
Alexandrov's space (with the same lower bound of curvatures),
{ 6 shpws how to generalize the Soul Theorem of Cheeger and

Gromoll £CQ] , and the Sharafutdinov's retraction C^W] to
the case of nonnegatively curved Alexandrov's spaces*

I am indebted to Yu.Burago for provoking my interest to
Alexandrov's spaces and for his interest to my work* lam
grateful to M*Gromov for many helpful discussions* I would
like to thank A*Cernavskii and S.Weinberger for their inst-
ructions concerning deformation of horaeomorphisms.

Notations and conventions*

A^B means that A is homeomorphic to 6 (
(kfi£) •%> (XViZ) means that there exists a homeomorphism

# A ^ X such that O(B)=Y, 0lCj^2 t &J

Two maps y,f -X^Y

A map 6: X-*Y i s a ^ -approximation iff
^^jl-lx^l^^ and V^Y3wY'.l^
A map Ot(Aj8>J —^> CX̂ YJ ls a v -approximation iff

as

and SL-fe-^Y *•* a V-approacimation as well

CjW^ f j converge to (M, A/, f>) in Gromov-
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Hausdorff senae iff for any ft^O, V >0 there exists /7>O
such that for any 1>A/ there exists a \J-approximation

#1 : (Hlnh,(*-h"i0B>ri(Hhft)-* (MnfyM, Nn%e(a),p)
«(M) may denote the topological open cone on fA or the

metric cone on M , in caae M ia an Alexandrov's space with
curvatures ^ j . • In this case S (M) denotes the spherical
suspension on AA • 'W (M) denotes the topological closed
cone on M t that is a join of A\ and a point, \<^ (M)
means the cone on ^ with apex p •

&p (ft) denotes the open metric ball of radius R , cente-

red at
M^ denotes the space M with metric multiplied by
CX) denotes the maximal mnumber of points x-L

such that l5CtXj|^£
denotes the 1<-dimensional rough volume,
denotes the space of directions at p •
denotes the derivative of | at [> in the direc-

tion £€r2!p •
Q'<rjp denotes the set of directions of all shortest lines
p̂ J (a shortest line p Q, is a shortest line

such that CL,£ Q and W I *= | o Q \),
(̂'̂  2 denotes the direction of some shortest line

p denotes the angle at t> in the comparison triangle
with sidelengtha |A.j>i, \Bp!, INfe| j if IA&U I lApl- lBfl|
then J2^A^B ="0 • Clearly Z'^pB satisfies the compari-
son inequality ^Af B < /A" 6̂  / J I A^ B;! <: r p .

1 denotes a \ -dimensional closed cube in euolidean
space, with edges parallel to (some) coordinate axes* J
denotes the corresponding open cube* I p (&) means the
cube { V*fcV * fy -ft W 'H,, -U t £ U ] . I "^I 1 means in parti-
cular that the edges of I*1 are parallel to some edges of I .

The distance in euclidean space R » denoted by I«y1
ia induced by the norm Ul*irna* [y^ ,

Positive constants are denoted by c • We ignore in
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notation the dependence of such constants on the lower bound
of curvatures and the dimension-like parameters* &(£,) de-
notes a constant depending on a parameter t, • V/e denote by a£
positi^^fominuous functions defined for sufficiently small
positive arguments, and tending to zero when their arguments
tend to aero» The dependence of these functions on dimension-
like parameters and the lower bound of curvature is ignored
as well. The function 32 may depend on additional parameters
that are indicated explicitly. Any emergence of C or 3C
means the statement of existence of 3uch a constant or func-
tion, and the assertions, which contain C orse, are sup-
posed to hold only for suitably chosen C and

1. The topological construction.

1*1. Spaces with multiple conical singularities (MCS-
spaces).

Definition* A metrizable space X i s a n MCS-spaoe of
dimension tv (H^o) iff each point xsX has a v Y
neighborhood pointed homeomorpMo to an open cone on a com-
pact (w~l) -dimensional KCS-apace* (We assume the empty A-/ %*<*'
set to be the unique oompact (-i)-dimensional MCS-spaoe)» J'

Remark* An open oonical neighborhood is unique up to
a pointed homeomorphism, see C K ] »

It is clear that a join of two compact MCS-spaces as
well as a product of any two MCS-spaces is an MCS-space.

There is a natural stratification of an MCS-spac,ei the
t -dimensional strata consists of such points X that the
conical neighborhood of X admits a splitting P,™* K'CSW^ \
T^. S^/being a oompact MCS-space, iff m< L • It la clear
that the £ -dimensional strata is an I -dimensional to-
pological manifold, and an MCS-space is a WCS set in the
sense of fs, def»5*1j*

1«2, Background from topology*

Theorem A* Let X be a metric space, -\\\-+\L be
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a contiriuou3v"open map, such that for each point 5C€ X
1) There is afTproduct neighborhood t^^x and a ho-

meoraorphism ^ : l ^ -^ (Ux f\ f '^(x))) x (. (Ux) respecting
(that ia (,7*^1 , where f>t; (Ux/1 {-i^}) > ?(Lbe)-
denotes the projection);

2) £~* (\ (ofy is a compact MCS-space.
Then |. is a (locally trivial) bundle map.

Complement to theorem A. Assume in addition that a pro-

duct neighborhood Ux satisfies |[UXJ= f Q0» J^ , and fix

a compact subset KcCi* . Then there exists a homeomor-

phism tf .'X-> $*(W)*1^ sî ch that ^ s -t |K •
Theorem B. Let }^ be a compact metric MCS space,

be a finite open covering of X • Given a func-
tion as,there exists a function 'X. t depending on
and ̂  f with the following property.

^If "X. is a metric space, such that any twovpoints
% € X can T36 connected by a curve in X of diameter
<?-o ( IXJSJ} , fCuictCd is an °Penjsovering of X , S'sJ^A'
is a f-approximation, JfeJMjL"*^. K&€CL $ are homeo-
morphisras, <? -close to <f , then there exists a homeomor-
phism ^ •* % ~^*% * **~c^ -close to (f .

Complement to theorem B • Given in addition continuous
maps f:X-*fck , f *%-* p.k , K: Y-* R tV^X-*k
and a compact subset K c X , suppose that for l^ inter-
secting Id, (respectively, non-intersecting K ) we have
C$&°f*L~(iQ OK U^ Q o ^ 3 | o,i^) , and each such 1^ is
contained in a product neighborhood ' ̂  w»r.t« (|ĵ )
(w«r#t. f ) (we say that •• V is a product neighborhood
w.r.t. q:V-^R^ if there exist a point vcgfV) and
a homeomorphism ^ ^ ^ M x r , such that

be:Lng the projection onto I , and Q~l(v) is an

MCS-spaco)*
Then the homeomorphism £ ; X-*X in the conclusion

of theorem B can be chosen to satisfy \-^4 oV? on X
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Jjlvjs (f^J o ^ on K • (The function 92 may now depend
on f̂ hi \ Ĵ6 l̂  PL

Theorem A was proved by L.C.Siebenmann [S, cor«6.14,
th.5.4], the complement follows from [st 6.9 ]. The follo-
wing proof of Theorem B exploits the same arguments.

Assertion 1. Let X be a compact metric MCS-space,
V W V < £ W c X be open subsets. Then for anŷ trabedding

\j VzU-^X » cT-close to the inclusion i , there exists / ^ V
aif^mbedding f: U ->X » TUt) -close to I , such that

on V and ty»0 on Z/^V • ( ^ depends on

Complement. If A ^ X ^ ^ I » where X^ is a compact
MCS-space, and W respects the projection onto I* , then

can be chosen to respect this projection.
Proof. We can apply the deformation theorem fs, th.5»47

to the*T5nbedding fi^^ &n^ 0Dta:Ijl1 a^emtiedding (p ;
U V"W ̂ ^X i swsj -close to the inclusion, which ooin-
cides with c, in some neighborhood of IV and is equal
to ^ outside some compact subset of U\U7 . Now

UHx)= < ^CXJ.PCGVNV # TO prove the complement useJ I x , x€ W
[s, th.6.1.] in addition to [s, th.5«4J. mt

Assertion 2. In conditions of Theorem B, if xeX,TceX.
satisfy I <pcx) ,'5El<̂ ' , V ^ &* (^^ v-i£?sj is an open
subset of X » y:v*-*3( is an;?%nbeddlng, S1-close to jP
then 3ce (p (V) .

This is clear* m
Now assume the conditions of Theorem B, and suppose

t'i<̂  ̂ 3 <gU* ̂ U . 1 ^ U b© open subsets such that

^ /tt^ * • Assertion 2 implies

\1^\)<^-%(MJL ) provided Ŝ  is small. Thus we may con-
sider thd̂ eimbadding (n~ ow ;ti1 AU^ L̂t * "ki^k is t^ •

J<*2 J^' 1 2 ^
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close to the Inclusion I » By Assertion 1 there is anvembed-
ding \j/.: uJf\U^-*u^ , 9tCs) -close to t , such that

Y^%~*°¥«±
 on zU,anHf ««i y=i on alnuj
• Extend (̂  onto £^ l e t t i ng <^« * on

Ul \ t/f n tf * » and define Cf̂  = ^ o y> . Now we can define
an limnersion <p'iu}i)u£ -^ X lett ing cp'fx)^ f ^

In fact if is clearly anTembedding provided F i s small.
Moreover, Assetrion 2 implies X N ^ X\ c ip' (U^ UU

provided f is small. Now the proof of Theorem B can be
completed by induction. The proof can be generalized trivi-
ally to handle the complement. •• >• r ̂  ? 1

1*3. Properties of non-critical maps. ' -
Let IX. <^Mn be a domain InT Alexandrov's space,
U -*Pr Ctcsn) be a continuous map, b^lX • w© ̂ y that

is non-critical at j> iff it satisfies some conditions,
listed In 3«1» 3.7» Now we need only the following proper-
ties of non-critical maps, that will be established in /3»

t.3«1# A set of non-critical points of a map Is open,
and a map is open ̂ ear its non-critical point.

1.3.2. If -I : \jL<Zf^K—->£*- is non-critical at p, then
f maps homeomorphically some neighborhood of b onto a

in R \
1.3.3. Let illicit—+\C be non-critioal and incom-

plementable at p , that is for any function |i in a neigh-
borhood of p the map (£1*) to ^ ^ M ' = R,^1 is criti-
cal at p • Then there exists a function 3e_lt and for suffi-
ciently small Rs>O and R/>0 , such that 9̂ f2R'J <R f
there exists a continuous function k: U 4 ~~QM(\ {~

1 (lj? M)
with the following properties \

b) .{. la infective on S -
o) £ , is complementable at any point of t/^S U •
d) If *€ U i satisfies ^/|ffJc;^CS) I) <hfr) then

J
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is non-critical for the map (-f̂ U •1U1
Moreover, for each VQX'J (R/) there exist a conti-

•Hp)

nuous function K^iU^-^Cc^R.} and a point ^}, e f ~ (v)ft U
such that

e) Uv(jc)«O (

f) Each point X€ f 1 ^ KPv] is non-critical for

Remark* It ie clear that b£ S * and we may take
WvnW for V€-fCS).

1#4o Pormulations and reductions*
Our aim in this section is to prove the following asser-

tion, ope*
Theorem 1»4«1« A proper map. | : U c M 1 0 — ^ without

critical points ia a (locally trivial) "bundle mapt
In order to prove this theorem we need also the two

following assertions.
Proposition 1.4.2. Let {iU cM H->l^ be non-critical

and incomplementable at f> • Then
a) for H > 0 sufficiently small

b) for R'>0 small enough comparing to R , there is
a home omorphi era , i

4f 4 r
which respects | f that is f sp«(p.

c) The map ( fjp/l) is non-critical at pointa of

Proposition 1.4.3. A level set ^'1fvi of a map -f ;
tt-C ^K--» R^ i s lioineomorphio to an MCS-spaoe provided

i t does riot contain c r i t i ca l points*
The oaae * ksVu of 1*4.1f 1»4.2, 1.4.3 follows inane-
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diately from 1.3.2. Theorem 1.4.1 for k^t follows from
1.4.2, 1.4.3 for it ;?-£ and Theorem A. Proposition 1.4.3
for V^l follows from 1.4*2 for i<^Z and 1.4.3 for

• It remains to prove that 1.4.1, 1.4.2, 1.4.3 for
•̂  k> t imply 1.4.2 for k-=-C • <

^ 1.5. Proof of 1.4.1, 1.4.2, 1.4.3.
^ Assume 1.4.1, 1.4.2, 1.4.3 to be true for t > / and <v: i

let £: {AcihA*1—*>$} be non-critical and incomplementable
at p ; take (^l^^Lk^H S as in 1.3.3. Then 1.4.2.C &

(\ - is clear. We prove first an assertion slightly generalizing
\* 1.4.2.a. Let 2T^= ̂ "4C/>)n^Bu(^.

Assertion 3. Let w r T^ (&') satisfy 3^(\ vf-f ̂SjI)<:Po< R..

If £o = R then the homeomorphism above maps Ov to the —
apes of the cone.
V Proof. 1.3.3.a, d imply that (ft kj has no critical

\U t t hence -tjj(v) ̂"̂  B. CR) » X fey 1.4.1
for Ic^^+l • Purthermore 1.3.3#e, f imply that (V>*v)
has no critical points in -f~J(v)ft \i\ (O,R) , hence for any

.,<R 2<^ we have

v'v' and therefore ( f'̂ fvJ H £>p
, choose Ri such that *(|v#{(S)|J<^<R0»

 and otserve 'tha"b

(fk) has no critical points in U~* CR^R^ n |"1(vJ » hence

and

'•"- ' ̂' Prom now on we may assume Z^0 since t~h, other-

wise* A^niSl ^

- ,< • A — . •( ;
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In order to prove 1«4«2«b we construct a special cell
decomposition of U N S with cells homeomorphic to Z.x f1^
or kCX)» I** , o t m < t . We use cells of 3 types.

The cells of type I are of the form C^lCVRjfl f~4

0 < ̂  < R , I ,h* ci jj ("£') , We assume that
M KPJ — * /•

for Veiy v and let C ^ k T 1 ^
The,, cells of type 3L are of the form C p~K fa
< R.p $ & ^ I ^ c J ^ (R/) • We assume that

for vel^ and let ^ « ^ f ^ f t
^ -

OJhe cells of type K are of the form G, ̂ U^fCo

and assume that 3C(lv^)l)<^ for v € ry^
and that for any cell Cj' such that C^c "S"/ , we have

It follows from 1.4*1 for t-^+l and 1.3«3«d that a

closed cell C, of type I is homeomorphic to Z* T, "*"
respecting | t and a closed cell ^ of type I is homeo-
morphic to £ * LMP xj respecting f^K,) • A* last
1.3«3.c, 1.4.2 for k>t » Assertion 3# 1 #4«3 for U
and the complement to Theorem A imply that a cell Cy of
type 1 satisfies fcJ,Cy ) » LT?(z) * r ^ , K(sJ >< f mir)
respecting | *

Poi' preliminary constructions we need also celis of type
R ; their only distinction from the cells of type M is
that the very last assumption is replaced by the opposite
one: there exists a cell Cv/ such that d/^> Cr and

We proceed "by an infinite sequence of steps* Before the
c-th step we have a decomposition of U± into finite^of

cells of types I- ]Z > such that
the boundary C N C of a n y oel1 consists of whole

and all cells of type J7 have &%<= 2*~l &- and cU**»
^ 2 ^ ^ (for m f > p )> where ĥ  are integers aatiafyj.ng

& if lM0 VCaU^l) a k(l). 1̂ '̂ is a.
^ tt3. ^ »<.t+i. 1.3.3. C <X*& i
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^ 1 R,')«r2Hie • It follows from our de-
finitions that the boundary of a cell of type jv contains
only cells of types I, E and any cell of type jv is
contained in some closed top-dimensional cell of type E ,
To perform the I -th step we first subdivide each cell
k*1 Ut 2

1"a) nt1 Li?) of type JV into 2
m C"^ J cells

\ix l^^fO (\ f"*( J^) in a regular way, and obtain se-
veral cells of types I, E • Second, we subdivide some cells
of type x in k^U1"^) to ensure (_Q) . At last, we
subdivide each new cell [C1 [c,!1'1 f^nf"1 (fXi) (iwî wjof type JZ
into 3 cells ^Co^fyrt f " 1 ^ ) , tC1 C^^lDa 1 ^ ( 1 ^ .
i H ^ ^ 1 ^ of type3 lv t I • I respectively
The result of the infinite sequence of such steps is a lo-
cally finite decomposition of Ui\% into cells of types
I,X,1 , satisfying (11) .

Kow we are going to define the required homeoraorphiam
* l \ } (d') . We may view {<(r) as a quotient

J ^ e Co,R-l}/-v and define TC(2) ̂ for % =.
Tecs.) • ̂ u s we have naturally defined functions TC;
1^ on l?(I)nlf/% f^O, ?ir-'jt( oeing the coordinate func-

tions on TJ (C) . Define the corresponding cells in
j ^ by the same inequalities as in U± , with
dJistead of |^ • We obtain the corresponding cell

decomposition of 12(z> J^^ftOsJpj *jf(S) » where ^ denotes
the apex of T<(X) » Uow we define f to map a cell in
IX^S onto the corresponding cell. First we define \p on

the cells of type 3; in K (&) $ then extend it to the
closed cella of type X in K^C^zt^J > starting from
low-dimensional ones, next - extend it to the closed cells
of type X in fc~*E%,%J f e«t,c. It is clear that y>
can be defined on the cells of types I, 3T to respect (£1^
At last we extend (f respecting f to the cells of typejff
starting from the low-dimensional ones. It remains only to
use 1.3«3»b and define <f% S~» {p$x £(S) respecting
The bijeotivity and continuity of (p are obvious.
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2, Preliminary lemmas

All functions *3t in this section may depend on the pa-
rameter, denoted by E .

2.1. Consecutive approximations,
2.1.1. Let | : t X c M ^ R

k be a differentiable map from
a domain in Alexandrov(a space, and let )l-ll denote a norm
on Hr • Suppose that for any x^Lt a n£ v e k , such
that {.(x)£V , there exists a direction ^ I x such
that HfCO-vll'oe) (.$)<-£ • Then £ is clearly £-open
w.r.t. lt-l| (that is, given xelX and V€^ U such
that B^ (Illkl-i/ll-fi"1] c(x , there exists a point u €lL
such that U%) = V and 1x̂ 1 <l~± H|^-v l\ , c.f. [1.5.3])

2.1.2. In particular suppose that f ^ f f ^ , , . ^ , ) ^ ^ ^
satisfies the following oondltion:

For any j>€lX there are such directions f.*" 4̂ '̂ lc,

r in Z f that f*jfr,(!i
+j]<* for U j A 'A

Then ^ is cf£j -open w.r.t* euclidean norm in R ^ (?<ca)j.
2.1.3. Let |- UcM h->R k be a differentiable <£-open

map, let pfelL . , ^e Zj, be such that 4r(fJ(§)~0 •
Then given neighborhoods V of -̂ and C/̂  of f there
exists a point (leU^n ̂ s (4{p)) such that ^ / c ^ ' , in
particular, given a finite set of differentiable functions
Q- ;LL -*d we can choose a€.Ujf\ J~df-f(f>)) to satisfy the
inequalities gt(f)<$t(p) if f!'{/>) (f) <O and

2.2# Lemma* A complete ^-dimensional Alexandrov's
space with curvatures ^i. can not contain h+3 compact
subsets At̂  such that M; 4j)>"»£-S" for c/J , fA^4j/>
> f ^ + ^ f0r t^3,;' (*<c(£#.

Proof. We use induction on (v , the case h = l "being
obvious* We may assume that Ah+3 is a point p • Consider
the sets of directions A-C<=Z^ , Hi * m2 • We have
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Hence the comparison theorem implies iA^-A; I > ^-x(S') (i+j)y \A*WI>

> %4-cU) , C>3 » and th i s i s a contradiction with the indue-
t iona l assumption. ••

2»3» Lemma* a) Let M^ be a complete Alexandrov's
space with curvatures ^-1 , {^l\ t l£t^!c4 2 ( o & la. K.)
be compact subsets of A^such that / A^AJ*) > T%-S ( t * j J ,
l A ^ . i ^ l + 5 C ^ i J . Then there i s a point xG M^ such
that IxAi l^Va U * 3 ) , M J ^ + c a j , (xA2l ^\~CC£X ($<c(£j).

b) The assert ion holds true i f we replace the assumption
TA^A Î > *p£ -V and the conclusion

Proof of a) ( We use induction on K. t the case h~l
being obvious. First we move a point of Aa towards A ± to
get a point *o such that lxoAJ^l^ ^t>2j, \xoA±\ ̂ ,~^ *Mj
JA ^ c(£) • Next we construct inductively a sequence of
points x £ W^ and subsets L c: /"3, ..., lc + 2 } (odi.L) such
that it Xt = t , j D x^ , and the following set of ine-
qualities is satisfied with ozL as oc ;

(1) /yAil =^4 for i£l d , UAJ V 1 ^ l
t )

Assume that v^ , i^ are already constructed for
(l<k) and let C^ _ fxgH*: X satisfies (1)

Choose any $„ >Z t j o 4 1^ and let x^^1 be the clo-
sest to AlQ point of CC* . Ihen x, A satisfies (1) with
X = L ^{jo \ instead of î  • Indeed, we have \\^&>%\<
^CTT- cC£) f o r a1^ ^ an(* therefore for any u. in some
neighborhood of Jt&± the comparison theorem implies

Hence the induetional assumption allows us to apply 2.1»2 and
conclude that the map -f(-)= (|A3,*l, ...j I\+2.'O is C0f/-open
in Borne neihgborhood of *t » Again by the inductional
assumption we can find a direction £ «r ̂Tx-̂  » such that
U t ^ * ^ t , 1 * ^ U A I H > % K rl< r^ • Hence either
lVi V " T ^ or< by 2#1#3» there ia a point near
which satisfies (1) and ia closer to Ai than
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a contradition.
Now we have a point v^ that satisfies all the requi-

rements of our assertion except the last one. Let OC be the
set of all points fccM*- such that i x A - U ^ C£^3),
'ixAily^"1/*-* a]Qd let Tt be the closest to Az point of X ,
To prove that tx A2!< £-cC£) it suffices to show that the
assumption \xA3)^% -*.&) leada to a contradiction. In-
deed, this assumption allows us to get a contradiction using
the argument above, with XjA^ instead of x ^ , Ajo

and 0A2).1,,.., |Akt2j •)) instead of | (-J . (Incase k=w
the reference to the inductional assumption in this argument
must be replaced by the reference to 2.2,) wm

Proof of b). We use induction on K and reverse induc-
tion on k while K is fixed. Repeat the first part of the
proof of a) with ^- -3LC?) instead of ju.s c&) * to get
a point x^ , such that lxk A-|=J \ M ^ ^
If Ix A, I*; 1{-c(£) we are done* Otherwise we have
(x̂ Â I > 2 - aef fi, kencayJ^SsreTore in case k<ia we can

take xk as A ̂ and apply the assumption of the reverse
induction, and in case jc^n, we get a contradiction to
2 . 2 . • • , v v - ' - - - r , . . ' • • : ' : i " • • " • -

2,4« Corollary. Under assumptions of 2»3-a) there i s
a point X6AT such that i x A - U ^ Ci>-2i , !>^ l>£v C 6r /

Indeed, consider the cone k!(MKJ with apex p and
unit sphere identif ied with ^ r v . I t follows from 2.3.a) and
2,1,2 that | ( - ) - ( l ^ / l , . . . , lA^,*t) i s a different iable
open map near ^ • Take a sequence {v :j c f l 4 1 , v*
such that V] = j^ H H Cj*2h , ^J > Maf1 , and l e t
p l€ K(HA) be such that ^(p^v1 , cG£J \fy\ <lv^(pj| .

Then any l imi t point of (p-)' in 2^ = M*- s a t i s f i e s our
conditions* *

2«5» Volume estimates,
2,5*1» Let M"- be a complete Alexandrov'a space with

curvatures > i , A«=M } A
Let IA
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Then

Indeed, the general case follows easily from the case Q ~q =

4 l l t < f A C O ^ 3 A £ 3 * '
a point X to a point y>Cx) on a shortest line >A , such
that | Â ?(AO I = 3z/£ ( Axl . It follows easily from the compa-
rison inequalities that \^(K)^(^)\^ ^/g^ i xy I for any
*M e A f ^ - w , &2 J , and this is enough for our estimate*

2.%2. It follows from 2*5.1 and [l»9.3] that there
exists a constant CK ><2 , such that A^ (Al%~K
< C S'-co""1' provided

-w

3» The definition and properties of noncritical maps»

All functions X in this section may depend on the
parameter denoted by £ •

3.1. Definition. A map f--(^....JJ.-UcM^R (k
is called ^//-nonorltical at p e H if it satisfies
the following set of conditions;

„ -\ where Q, eR f A,v are compact subsets of M*.
-% ' y$ have right and left derifatives, yjy are lipschitz

functions with lipschitz constants 4£~d « v,v are inorea-
sing functions, satisfying <pig

2» The sets of indices { ^ (}
satisfy # ft(P) ̂ S" 1 »»d there exists j>=j>(pj >o such
that for all t ^ W < ̂ ^ fO -f for xeBpCj>̂ -i if# rl

4» There is a point W« V(pJ 6 ^ such that
| > W > ^ + t for a-eFHpJ *

It is clear that the set of (£,$j~nonoritical points
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of -f ia open and -f is differentiable at any such point.
3«2# Proposition. Suppose that -f: Uc M a—>P^ has no

(£,$) -critical points in ̂ M • Then k £ K, and } is
CC£)-open. Furthermore, if i<=h, then f is a local

(bilipschita) homeomorphism.
Proof. Conditions 3.1,3, 4 imply that assumption

\f.yK contradicts to 2#2. It follows from 2«3.a, 2.4 that
for any p e U there are such directions £

(i<l<k) that l A J w 1*1 = ̂  U * j ) , l A i w ^ ^ f
' *'tyi $fl*\*C(£j t where A;(J = ^. A L • Therefore

we can apply 2.U1 to the norm llvll = 2 e3llv<| °*K -

Let Iĉ io, and assume that {(*)- |f̂ J , *
for > ^ so close to p that 3.1.3* 4 hold for
or v instead of p with the same V « Assume IW*|^/U
If x,u are sufficiently close comparing to |pW| , ]pA^|

(̂ e r:(P)J then we have -2f Wx^> \-*s, ̂ A ^ x ^ >7r4-r
for £ eru*j « We get a contradiction to 2.2 for ~ZX .

3»3« Proposition. A level set of nonoritical map has
locally an intrinsic metric which is equivalent to the indu-
ced one* More precisely, let f :Uc=Ma-^-l?k be (e.Sj -non-
critical at pe LC .Let P l - f ^ C W ) , U ~ ̂ ^ ft* ffJ > ?* I wfp)
S-.lAjjpl ( lsi^l^yer-fpj)} , ^.rennBpfpJ . Then there
is a curve on n of length ^ cC^J (qxi with endpointa <^,z •

Proof. Assume that (V{j>)a|̂  |V̂ »J t,l • Then the compari-
son inequality implies that | wVp) t'l >\~2£(S) in ^*Q ,
Moreover, we have I A'LJ W'if)I • > T 4 f cU), IA'̂  t' I > ̂  -*C5i ^ e 17 (
and I A'^ A ^ | > \ -&.CS) ('L4J , de V. (^ t p€ V. ty) • We apply
2.3«b to 2TQ and find a direction ^ ^ such that

Hence by 2.1.? there is a point ^ ^ H near ^ such
that \ze^11 < IT^I- cCe) l^il . Kow the construction of the
required curve on (1 is standard. *

3,4# Let I :ltCMa-» H k be dfi) -noncritical at
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peU * Assume that VL A (Up) > £ • I t follows from the
volume comparison theorem 2.5.1 that Vt (B. , (£/2)) ̂  C
(W eWTpV • Thus for a very small number u, o<co<$'i

we can construct a set of points V^€U- such that

Let a neighborhood V of p be so small that ZW^xty* >u?

>} ^ ^ p j i W / ^ j ^ ^ f fr *r-fr« for
a l l xev • Let e'(x) denote the mean value of I W x̂| #

Assertion 1. Let x,^eV be such! that
. Then either the map ({.,! v.-lj : V ^ ^ k + i i s

-noncritlcal at ^ or 6(y) - 6L*>\ > CC£J |x^
Assertion 2> Let x,y eV be such that

and x be a. point of a local maximum of the function

Proof of 1« The conditions 3«1»1t 2, 3 for (f, /x
are clearly satisfied. Take a point on a shortest line ^ ^
close to u Qsa candidate for Wty) • To satisfy 3#1*4 i t
suffices to choose «C such that \n/WJi\>r/^ + c(£J in I , ,
On the other hand, we have e*^)-^*) > cCt)lx^| provided mean
value of Coj Ix'K/l i S greater than Ui) « Since ftfw^]^

and (by the volume estimate 2.5.2) * {^ :|l w/v') -
<C^aw1"k (<x>co), one of the conditions above on

be satisfied, m
Proof of 2* It suffices to check that for some <* we

have lw^Yl<T/A-cC£) in ^ « Take a^ c(£J ,fc = c(i) SUch
that C^o.< (L-Cha-Ch&)-siK^ , where C^ ±0 from 2»5.2.
Assume i w / ^ ' l ^ / ^ - a for a l l <* and let ^ ^ f ^ ^ ' ^ ' U
i ^ + ^ i • Ga=frf:I^Yl>1& + a-},W/*J^w;^ # Apply
to the s e t s V'^', A;M , . . . , A'kod i n 2 x ^A'
find a di rect ion f e r x such that

#
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and 2.1.3 gives a contradiction to the local maximality
assumption* •

3.5. A map f ••U^^-^fl is called (

mentable at p , iff there is a function Q euch that the
fliap (^,gj i s ((,$) -noncritical at p .

Proposition. Let f: U <=M*-̂ RI< be C^J-nonoritical
at p€U , Vtni (Zpj ^ £, . Then either | is (c(£),gi(5j}-
complementable at p or for sufficiently small
there exists a continuous function h, in Wi-f^C

such that
1. ^(UiKo^KW-lpxl if lp^i>R/2,.
2. | i s injective on S •= k'l[o) •
3. f i s (c(£),X(s)) -coiapleraentable at any point of

4« C PjM i s (cct),ge£5jj -noncr i t ica l a t any point X eUi

such that l|(xjf(S)|<k5KW4

Proof. Let Rv>0 be so small that general assumptions
of 3.4 hold in U± • Using 3.4.1 choose M = c(£j in such
a way that jl i s (cC£jp QdtFjJ -complementable at any point
of U ^ S where S - j^eUd : 6 (X)-^ (^J^M W l̂ for a l l

vj€ U1 satisfying (̂xi-fC Î <*5 U l̂ } • Clearly S is
compact and nonempty provided j? i s not {cC£)i 9e ĵJ -comple-
mentable at J> • Obviouslyf f i s infective on S and more-
over, i t follows from c^-openness of | that
>M iU^I for a l l y ; j e S , where M1=cf£j # Xi

Define a sequence of finite subsets Sj <̂  S in a
\ \ following way: b»o^jpj , ̂  => ̂j -± , ̂ C^j) in a

.!-• maximal ^ + 5 R -net in ffS) ̂ . Define k(xj = Irvj W^ (xj

where

1 f o r
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a a < t(aj =

I t i s c lear that k (o)=S, tif^J = Co,R.l a n a t\(x)=lf>*|
i f Ipxl >^x • To check the condition 4 i t suffices to
prove the following assert ion 3 and to re fe r to 3.4.#. ^

Assertion 3« For VeU^S l e t P(x] - { y ; k. (xj ~\\(K) j # i f
<ig^k(x) then there ex i s t s rfeS such that
< Ŝ  |x j | and iK'^i < 5"-Is kj for a l l

MoreoverYfr T(x)
such thatProofr. There exists1 j

Indeed, the case
^eS euch that

is clear. Otherwise choose
, j such that

and Sj such that
and 3

Let
(1), and

. Then

be the minimal value of j that agrees with
~ho ^Q the corresponding point of S • Then
implies p^eSJ0 * Indeed, let ptf= ^

s S j o

Then
2:10w;1 (Uc[ft)-*t(x)|-

Assume now TW and .Then

all points s .^hence | ft ^ ^
satisfy our as^grtion* 3
^-^"if jo >o then there is a point f^ e Sj^.± auch

"that \ |(p )|(p.)|4 5J'»f4 H • Observe that the choice of jc

v '
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implies lxp,J ̂ ^ R . . Assume that fa e Sy. 1 and
JrePCxJ .Then ° ^ ^ ^ W M

k M i 1 ,
h e m e fffr,! K^2}!^3VS jVltfl and a l l points foeS^ ^ *
sa t i s fy our assertion* : ; « i " / '

3*6« Proposition. Let jl : GleMh-*felt be (^sj - " '^
noncr i t ica l a t peLl , V^h-i (2Tf J» C , j,et R >Q be
so small that general assumptions of 3,4 hold in Ui =. 6
0 ?"*( lj"fp, (SSW) . Suppose t h a t f

r-~ts>(2) For a l l xel^ such that £R.£|/>xUR. , holds
< > M|pvl fM-cC£; . Then for any V€l^pJ (5FE.J there
I ex i s t s a continuous function Ky :U4 —»> Co,ft] and a point

0v € U^n rA(vJ auch that
1. For xef'Nntti hold

2. (f ,kv) has no (cC£J, ^C^J) - c r i t i c a l points on

Proof* Let 0v "be the point where 6*I ,-IA,J^ ^ a t ta ins
i t s maximum, ^inoe' f'' . I s : ^ Cftj^bpe^it. follows from (2)
that | P O v |<Sn # Define K

The first assertion is now obvious^.The second assertion
follows easily from 3*4.2,i7^r- ^ ^ ^̂  u a

3»7. The Propositions 3.4, 3.5, 3*6 Justify the follo-
wing

Definition. Let UcM*- be a domain in Alex a n d r o v l e _
space, and let €0 - ^J VrK.i(rf>}>o (This is always true if U,
is compaot, see [l,9.7]). A map ftU"*^ (O^k^^+d-J
is called noncritical at p if it is (£,£) -nonoritioal
at p lnj the sense of 3«1, with £<lo , S~< A ^ (s.) , where
^ ^ (tjj is a positive function, defined inductively

(using reverse induction on k , starting from lc = n+i ) in
such a way that (sf) -noncritioal maps f:U-*P.k ^ ^



- 23 -

£ < e a 5\c A^ ̂  (£) satisfy 3«2~3*6 and the pairs
Cccê  ̂e(ff>) appearing in the formulations of 3,4. '• f 3.5.,',

, 3.6.. satisfy

It is clear that noncritical maps satisfy all the condi-
tions 1.3«

4. The stability theorem and ita corollaries.

4»1* Canonical neighborhoods and framed sets*
Fix £o>0 . Let U c M ^ be a domain in Alexand-

rov's space, such that Vzn ̂ C^fJ ̂ 6O for any p€.CL «
A subset O^ctl ±a called an (tjV -canonical neigh-
borhood of p^W- of rank It ( O ^ U K ) if U±-
0 f "̂  ( Lv i ̂S'^y t where J?iU^~>tC is 6f,<S7
tical at f> , and R.>0 is so small that general assump-
tions of 3»4 atid the second alternative of 3«5 hold true in
U± . A canonical neighborhood of rank k is an ((,$) -ca-

nonical neighborhood of rank k with £*£«,, S<Art/k (tj.
It follows from 3*5 that any point pgU, nas a canonical

/ neighborhood of some rank, L?«-*̂ V ^
i A conpact subset P c U is called Jc -framed if it

is covered by a finite set of open domains U^'^U- p such
that each {J^ is a canonical neighborhood of_aome p ^ ^ P
of rank "̂ k , and P o U , - U ^ n f T 1 (H. /I (rk O"T)J , where

HJL is an affine coordinate plane in P* » containing
and each 0; is an ortant in & with apex blpj.)
Clearly T, / i/lHn/U?-) is an MCS-space» hence by

1,4«2«b,aand 1#4*3» P is an MCS-space«
We say that the framing $UA J respects a map |:ll->R

on a compaot subset K ̂ P if the first t coordinate
functions of f. coincide with f on U. provided

4.2, Correspondence,
Let uU^ JuK be (oomplete) Alexandrov's spaces with
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the same lower bound of curvatures, GJM* —>£CV satisfy
|/x̂ -|efc)6̂ ||<v> for ^ £ L t » where He=Mn' is
a fixed domain with compact closure. We call 6 a V -ap-
proximation on It • Let H =fnettK :3*eU ;[%B(x)\«: y> } » If

V^O is sufficiently email then there is a positive lower
bound for V V , (ZjjJ ^ €ttj and V V i (zf; frsuj,
which is independent of OXfat (Indeed, by fl,9»7] it
suffices to have a positive lower bound for Vi^Cu) • But
the existence of a ft-strained point in 1A implies (when

y^O is small enough) the existence of a domain in !T ,
which is bilipschitz equivalent to euclidean ball of radius
bounded away from zero, hence V?n ("u) is also bounded
away from sjero). Let Eo denote this lower bound.

Let ;f;U-*fck be (£$) -noncritical at p<=CL t
£*C , $<£ A K^ (e) * Define a corresponding map ^ fttT-̂ l?.̂
using the same formulas with %u instead of A^ , where
TL c LC ^ ia a compact set such that the Hausdorff distance
between A^ and $(A-^) is less than V • (We assume that
AijClX ) # If V^O i s small enough (depending on M*t
j?j U, p ) then there exists a point JeJX auch that
f{p) =f(pj and lpfy)l < c(£))> , and f is (£?) -non-

critical at any such point• This follows from cC£) -openness
of nonoritical maps. If ii{j>) = 8fp) f\ I"1 (ri} ̂ R jj is an

(e,$) -canonical neighbourhood of p , then we let
- ^ W n l ^ d ^ ( ^ for^a point f satisfying
lp @(pjj < c(£) i * Clearly, tlf^J satisfies general assump-

tions of 3*4 (use %=$[%) instead of W^ ) but may sa-
tisfy the first alternative of 3.5 instead of the second one.
However it satisfies the assumptions of 3«6.

Let P<z(X be lc -frjamad by the covering /"^(/kJ} •
Then a compact subset Pc ^ is corresponding to P if it
is covered by {ftA (̂ )J and Fntf= ̂ T1 (^(\ (U
Clearly a compact Aleacandrovfs space M*1 admits ^
ming and KM.** is corresponding %o \M if1 ^ is small
enough* Now we are in a position to prove the following
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generalization of the stability Theorem 0,3.
4»3* Thgrpxe!m_. Corresponding subsets are homeomorphic.

More precisely, let Mf1} JX^ be complete Alexandrov^jk
spaceswith the same lower bound of curvatures, f c(/c M^
be a k -framed compact subset, 'FcTXc/M1^ be correspon-
ding to P w.r.t, V -approximation S • Then there exists
a homeomorphism 9r:P~+'P which is f3£(v) -close to Q ,

depending on M * >P , Moreover, if the framing of P
P 1
P 1 i J

r e s p e c t s a m a p \ \ \ L ^ \ C o n P a n d a m a p ( $ \ ) U H
on a compact subset \i<Z? , then 9r can be chosen to
satisfy -j? = fo0' on P , (&k)ss (£ Kj8 0' on K ,
where <£ depends now on M^-P* fA> ̂ .

Proof* We are going to use the complement to the Theorem
B« First observe that any twcHpointa of r can be connected
in P by a curve of small diameter* Indeed, since ^^ are

C(E) -lipschitz and C(X)-open in Lt^ f this assertion
follows easily from 3.3. Thus to apply the complement to the
Theorem B it suffices to construct homeomorphisms $. "(tyt, 0^) —*
-^(t^j^,) » 9C(vJ-close to & , such that *}f% =fu ,
If V-=v\- then we can take 0^-^° $j. • Otherwise we use
reverse induction on k • ,

Let ^ =K<_(p) = p̂ (P.)̂fjL (%ri ^S ^ ^e a n ©le^ent
of the V -framing of F » k : U^->Co,R] be the func-
tion constructed in 3«5« Fix a number Vi>O and consider
a preliminary finite cell decomposition of U^ f constructed
in 1,5» such that each cell of type .!¥ has diameter ^ •
Let Pi denote the union of closed cells of types I, JE.M,
K-t denote the union of the cells of type I • Then there

exists a (k+lj -framing of Pi that respects ^ on Pi
and respects (&,kj on Ki • Consider the corresponding
cell decomposition of U^- 13̂  [?) and let Pi; K4 be
cell-corresponding to P4, K± • By inductional assumption
we can construct a homeomorphiam %'Pa-*Pi which is

-close to 9 and satisfies fo. ° & t s £<, on "i »
ifi' 5 fj? L ) on K4 • How 8f can be extended to
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the cells of type Jv to get the required horaeomorphiam 9^
(X(yji-}f±) -close to $ provided these cells and the cor-

responding cells in ̂  satisfy (C^S^" (XCT)*I^, 2 O
respecting $+(%.) , where 2T= ̂  (R)r\ ft (&(?}) •
last condition follows from 3.6 and the inductional assump-
tion, that guarantees that "*6p (Z) ojj* (fu (?))xZ. (Use the
arguments of 1.5 - the proof of Assertion 3 and the descrip-
tion of the topology of the cells of. type JT ). m»

4.4- Proof of Theorem 0,1 on spherical neighborhood.
Let p€ M^ be a point in Ale3Candrov*s space. Theo-

rem 1.4.1 iraplies that (gp(R),^r(®)#(7 ^(tQ),^(%))
&JV small R > 0 • Indeed, the function |p,*| is noncriti-
cal at points close to p , excluding f> itself. It remains
to show that "S&pfR)^^ for small R >O • This is
a corollary of 4*3 applied to 1 -framed oompaot subset
2 C^L^f) as & and the corresponding subset **B<>(4)
in (R.~1*MK\p) > which converges to (K/;£>),[>) in Gromov-
Hausdorff sence as R-*o • m

4.5. Theorem. A complete Alexandrov'a space M1^ with
curvatures ^ 1 and with iirtm (X*"1) > ^ is homeoraorphic
to a suspension on a compact fa-i)-dimensional Alexandrov1!*
space with curvatures ^1 •

(This is a direct generalization of the Diameter sphere
Theorem of Grove and Shiohama

Proof* let
/£ fxc^ >
for all
in l<\

o < R <

be a diameter of
for some t>ot

Hence
and by 1.

But ->BJPJ

M •
depending

the function
4.1 MK#

fox' small

Then clearly
on \f"^{ , and
is noncritical
for any

. RT>0 t hence

4«6. Theorem. The boundary points of an Alexandrovfs
space are distinguished from the interior ones by the topo-
logy of their conical neighborhoods. The boundary of Alexand-
rov's space is closed*
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Proof* It suffices to establish the following charaote-
rization of the boundary points? A point belongs to the
boundary (to the interior) of Alexandrov's space iff its
conical neighborhood is homeomorphic to f^X k"(2̂  » for
some t t where £ is a compact Aleaandrov' s space with
curvatures ^± with nonempty (empty) boundary, Ihus our
theorem is reduced to the following*

conixxcl.

Assertion* If J£, Z^ are^Alexandrov's spaces,
K~xK(T) fzf^*x K[T±) and -*r has nonempty boundary, then
XL also has nonempty boundary.

Proof of the Assertion. We use the induction on the di-
mension of X f and tiie second induction on <hjm. X± to
establish the base of the first induction, The base of the
second induction is clear: ,.,.11 * K (t) is not homeomorphio
to fc**K(S*J '_ . :..,;..> . Assume that & * K(I)x>
^ R i > t K ( 2 i J , where l± <Z and 274 lias empty boun-
dary. Then there is a point in R ^ (21) , such that the
corresponding point in R l x K {Zx j does not lie in
l^^x {op»cj » Considering the conical neighborhoods of this
point we get K*x K(X) cz R^+i x K(^i ) » where % is a com-
paot Alexandrov's space with empty boundary, dXm, ̂ = <LtmxEfim

At last, assume that R** KfefeK^* KLZ±) 1 and 2"i
has empty boundary, lake again a point in K? y K (1Z) and
the corresponding point in R^xKCZiJ and consider their
conical neighborhoods. We get either fc +i f JC^Xj^R *
or Ri+ivk[f^R^+^ \(ffi) 9 where S^ , £ are compact
Alexandrov's spaces, "2 has nonempty boundary, Z^ has
empty boundary, and «k*v £ s ^ S - i 4

4 7 gQ^eij^yy- ^e* -^^ t e Alexandrov's space, p e^M
Then * ' \ (fC^H**, ^ C R 1 ^ , /»J converge to

^K(2T ) = K(̂ S,J, p) in Gromov-Hausdorff sense as
• A small spherical neighborhood of p in ^M* i s

homeomorphic to K. C&Xp) , m



5. The Doubling theorem.

it n.

5.1. Let M< be a complete Aleacandrov's space with

boundary A/&0 . Let j?:Mrt-*Afjx be an isometry. It
followsfrom 4*6 that ^M/1 <zzf(N) . The doubling ^ of

M* is defined to be the quotient £fn = W ^ M ^ t where
x~y iff *^A/ ,y=f(x) or j^f, x=y(y) #

simplify the notation we view points of V as lying in
M*r\ M^ . We define the canonical metric on ^ by

f lI
sic metric,

5.2. The Doubling theorem. The doubling Al^ of M ^ ia
a complete Alexandrov's space (with the same lower bound of
curvatures) with empty boundary.

Proof. V/e proceed by induction on ku , the case K=i
being trivial. Observers shortest line in M1^ can touch the
boundary hJ by its endpointa only (unless it lies onM )*
This is a corollary of 4.6 since the tangent cone varies con-
tinuously (in Gromov-Hausdorff topology) when its base point
moves within a shortest line (see [l,7«15]). Therefore, a
simple reflection argument shows that a shortest line in ~FC"
can go through the common boundary of M*v and Mjv only once*

Let p̂ jpAj. ' be two shortest lines in M"' » p̂ A/ •
For local consideration near p we may assume that each of
them lies in M"' or Mj^ and has a direction A' (A±) in
I or ^ p • We are going to prove that

(1) ^ f\>k :
— i 4

where the distance is taken in SJ, - the doubling of
Clearly, it suffices to check this identify for A'€

.Let^ 4

Then 2'xp^»5?Xp^+2^> i <: X |^ +^^»x 1-2V» \K$\ +
for some f€^t > where V>0 can be made as small
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as we l ike , taking xjx1 sufficiently close to p - this
is a consequence of 4.7. Hence <£ A^ & /A^' j . On the
other hand, let f e"3Zf and ^ CA/ satisfy \t\%Uv>

^(A^UlA^I • '^/fl<f*;' \K'A[\< w-W • Then we can
choose x^h , ^ 6pAa in such a way that JS'xp-x^^

» hence

I t follows from (1) that if AfAx i s a shortest
line then lA^'lary and since by inductional assumption
21 i s a compete space with curvatures ^4 , we have

(2) Uyi+lfAil^T for any f € ^ .

In particular, if B €A/ , and B ^ Z p , 8/eZ,p are

directions of symmetric shortest lines |>8 in M^ and Mf
respectively, then
(3) lAi'6'1 +lAiBiU7T,
since clearly [A^B'! ^/A/fi/i.

Kow we are going to prove the angle comparison inequa-
l i t y for a triangle 6AA± with fee A/, A « A A /V, 44 e Ai/W
Let f>-=.t\A±nM , A^Sp , P^ eT± be the direc-
tions of the shortest lines pA,pAi , and 8'e 21 ,
B' ^ be' the directions of symmetric shortest lines

2hen Z$?k +-2:BfiAd̂  IA'6'I +tA1
/a,'l £T (by (3)),

hence by Alexandrov's leraaa (see fl» the bottom:of p»6])
X t and

Now it is easy to aee that fjUn, tk/

where Aft)^A6 , lbkfc)\=\: # Since this is true for all euch
triangles, it follows that XA6>A1 exists and satisfies
the angle comparison inequality.

Now we may conclude by (1) that for any p^A^ the
space of directions of M*' at p exists and coincides with
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At last, the angle comparison inequality for general
triangle A%2 (say A,B € M n W ,Ce^^A/ ) follows from
Alexandrov's lemma. Indeed, if f> = AC/W , A',B'C'eS
denote the directions of shortest lines pA>f>B, pC , then
2 ^ 8 + STBpC ̂  JA'&'U iB'c'J -*TT by (2),

p^ has empty boundary^fne described above spaces of
directions at points of £\^ have empty boundaries by induc-
tional assumption*

6# Convex sets and complete noncompact spaces of
nonnegative curvature*

6,1# 'fheorem* Let M^ be a complete Alexandrovfs space
with curvatureB >O (^k^o) with boundary N^0 .Then
the distance function f(') - /A//1 is (strictly) convex
(that is j becomes (strictly) convex being restricted to
any shortest line)*

Proof* We consider the case of curvatures ^O ; the ca-
se of curvatures *>|< >O is similar. Let Xw, be a shor-
test line, cy lie within *j, . Clearly •(Lf(></)+
v̂ iere ^,^r€ 2k. denote the directions of shortest linos

2hus it suffices to prove that

s

where CL(t) e X j , \<^&)^\ = t « Assume that for a sequence
iL -*+O we have Mifctfofty + tffty b'^ztf * £>O • Clearly

a^A/ (see tho beginning of the proof of 5*2)« Let p£A/
be the closest to a, point of ^ , ^ ' c T p be tba set
of directions of shortest lines p^ • Then i t follows from
4*7 that |<^rp l v % , if ifcf is the image of
under reflection w«r.t« ^Ip in_ 2V, , then we have l
>,7T * Hence ^ i s a point, ^p i s the spherical su-
spension on^^p , l<J/fl = 7^/ for any | - £ ^ 2 p •
Let 0,' £Tp denote the direction of a shortest l ine
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the projection of < '̂ onto p
(that is <li ey'fi )9 f e ' 5 ^ be a limit point of

- ^7^'V?* fteA/ satisfy
( 8 e e 4* 7 ) -

Now considering the quadrangle made up from triangles on the plane

fi F^ ̂ T ) and ^(t'Jp^f we conclude that

P
- a contradiction, MI

6.2* Let M1^ be a compact Alexandrov's space with cur-
vatures ~&O with boundary A/^0 » Then the distance
function $(•) = /A/,*/ has a maximal value CL>O .It fol-
lows from 6*1 that Sx a f~

i(o.) is a convex subset of A^%
and clearly oU»n ̂ i <n- . ^ itself can be considered as
compact nonnegatively curved Alexandrov*s space. If ^ has
nonempty boundary then we can repeat the operation and obtain
a convex subset S2 a $± with <&••» S2 < dX»n S± , After fi-
nite number of steps we get a convex subset S without boun-
dary, that can be called a soul of M1^ . Clearly f is non-
critical in f'J(€,a-t) for any € ~>O , hence by the
Stability theorem 0.3. 4*7, 1*4*1 (^h, ̂  «* (f~d Ct^l, '
f'*(£)) ̂ (rdra-?,aj, f'fa-e)) . We prove in 6*3 that S± is a
deformation retract of JM^ and therefore S is a deforma-
tion retract of M^ .

The same construction can be applied to a complete non-
compact nonnegatively curved ^ , using the minimum of a
suitable combination of Busemann functions instead of / on
the first step. In this case «A A^ f~* (a-€t^J and S

is a deformation retract of M *
Let AI^ be compact Alexandrov's space with curvatures

• Then 6.1 implies that ; ~ S±~ § is a point# In
this case CM%*/)& (T(Z^)t ?-$) .To prove this assertion
by reference to 1*4*1 take a function f^
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where R, cp, ct are chosen In such a way that for some
o ^ g ^ R ^ f i , ^(x) =. $(x) if I Sxf =* J3a ; *i W^tffcRj

on flR*{x«Bs(O:/x,>^fe)|sfry;nRs^and |± is noncritical in
-ti1^, <$Hj£*<^] • So ma^e such a choice find y=>o

such that 4*3 is applicable to the i -framed subset
t%ft)<=Ks(Zs)t considered as a level set [xe &.&J ; Ix j
How take ^>O so small that for any X6 &s (ft-) there
exists 9 € 3 &s (ft) such that 2* x£^ <• >> .It follows
that for &!>€> sufficiently small the level set \12R «=
= {xfiBs^Hx^Bs^l-R-aRi^ is ^ - c l o s e to ^ 6 ^ ( 2 ^
and there exists a ^-approximation 9: BsC3)n Ks (Xs)->
-: —» Bs(3)nR^-M

h' . Hence the level set nRa* = {^eB5(Rj;
| x ̂ Bs (PL)l ~ R,-Rx j = (xe 8 S (2^3: lxn2Bl U Rd j is homeomorphic
to irs • To check the noncriticality of 4±, at x e
(^(o^R-fiJ+c^ take (//V near AT on the shortest line
A S » Other conditions are easy to satisfy provided kd is

small enough*

6,3* The Sharafutdinov's retraction*
Let At"' be a compact Alexandrov's space with curvatu-

res > O , with boundary */•*>• 0 , $(-)* /A/,*l , 4(Mn)~CotaJt
S^. j r * ^ - 1 * * xe/M^NS^ f H^f-J CfN.aJ * By 6*1
.^ is a compact nonnegatively curved Alexandrov's space

with boundary Mx- f~*-(f fa)) • The space of direotiona ~ZX
of ^\ at x is a compact Alexandrov's space with curvatu-
res >,i , with nonempty boundary, hence it contains the soul

Assertion 1* | ̂ x j- j <r ̂ for any ^ ̂ ^
Proof* It follows from 5»2 that ! rj*^} < v/z • Let

t^^Thij, be (one of) the closest to j^ point of ^^ ,
Then !2V, is a half of the spherical suspension on ^2^, with
apex ^ e T« (see a similar argument in 6.1). Hence for
any $ & xx we have <£• T% fx ̂  */£ * On the other hand

$or a* least one sllcn f since 1̂ . is \
the soul* Now the assertion follows from the angle comparison
inequality* m
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Assertion 2. 4 CrJ = ^"- I j s^J »c (l/r^ ( r j ^
P^oof* Let / ^ ^z*/ = £ • Let g' c Z & denote the set of

directions of shortest lines fx £ , such that

Clearly ^ 5 ? i -̂  • Ihe angle comparison inequality impli-
Ies Ifkl ^ c-C provided the direction of the shortest line

£,/ l ies in 2J .We apply volume estimates 35*2, ( l , 9,2,
9.3] and get Vzh^Crj<c^ ^ d ^h^<XJ<cV£ # M

WJC V>O and consider paths xt>x±.-.xni made up from
shortest lines \ *r+i of two types. Segments of the first
type must satisfy 1^, x^ /' gv in rx. , l^

.-•-. ... ,, segments of the second type must satisfy -f
and the sum of their lengths must be £ y )
• I t i s easy to see that starting from arbitrary

point xo G M"1 one can construct such a path with '•fCXmJx*-*'.
(Otherwise assume sû > £(xm) »-£ ^ a - V

and come to a contradiction).
Assertion 3. Let >i,^i -• • * ^ and ^ . . . ^ be paths as above,

?«-M"' • ^)>/("mt) . Then

fcx)^xJ for f

Proof* J?or the segments X̂ Xj ± °* ^ ^ f i rs t type we
have b J
provided [2x^(5-^0. since 2! zx^x^^ ^ ^ + 1 / • £"or seg-
ments of the second type we have f?xaiK< lex^U IKLKO- /•
Summing up we get l?v-j < ja-xj 1 +iOaU£~1 • Ihe proof o£ the
second inequality ia similar*

Assertion 3 implies that paths with fixed starting point
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x converge (as V-*o) to a •„ continuouscurve ^
KW^-fe^a. , such that 1(^(0) = t . Moreover, ?** / >

•* lyx ttj ^ LW I provided rwax f fa), f j)j ^ -t £ OL f and f̂  ttj y| ^
^ (xu| provided f(*;^-U {W^CL . Therefore we may define

a deformation y ^ J - T , f(XJ^*a * t h a t s a t i s f i e s

for oifci^O.-, f ^ ^

6*4* In contrast with the case of Riemanniau manifolds,
there exists a nonnegatively curved complete nonoorapact
Alexandrov's space which is not horaeomorphic to a (locally
trivial) bundle over its soul, for example* consider the na-
tural orthogonal projection w: ̂ P CCP*J -» XP C*?

1), ir(i
= (X'jzx,zx) , where %z- (i^l2* i^)= %'z C ̂ 1\

tt-\2t\
x+ \zj*),

and take dLs - *mt(Ee(i)) (we aasume that Cp2- has canoni-
cal metric with sectional curvatures between i and A) * It
is easy to see that /i r is a convex subset of Kj* (tP1) >
hence it is a complete noncompaot nonnegatively curved Alexan-
drov's apace. The doubling M o£ Al has the doubling

S of EfUf<= kp (€/*) as its soul. But K* can not be
homeomorphio to a fiber bundle over 5 since S is homeomor-
phio to the 3 -sphere, and M^ has two singular points*
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