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This .paper contains the proofs of the results announced
in [I, § 17]. The reader is supposed to be familiar with the
definitions of Alexandrov'e spaces (this name iz used for i~
nitedimensional spaces with curvatures bounded from below,
PSCBB in [I}) (see [I, §2]), the basic examples - cones and
spherical suspensions ([I, 3.6, 3.7]), the generalised Topo-
nogov's theorem (I, § 4]), the notions and basiec properties
of strained points ( [I, ¢51), rough volume ([T, §§6, 9]),
spaces of directions and tangent cones ([I, § 71)» boundary

([T, 7+19)), and (directionally) differentiable functions
({1, 12.2-12,6) ). The topological tools from [S] concerning
- deformation of homeomorphisms are used as well, Our principal
results can be expressed as follows.

Os1. The Theorem on spherical neighborhood.

A sufficilently small spherdcal neighborhood of & point
in Alexandrov's space is homeomoxphlc to the tangent cone at
this point, |

0.2, Corollary. An Alexandrov'a space has a natural
gtratification into ftopological manifolds.

Qe3s The Stability Theorem,

A compact Alexandrov'a space M" has a neighborhood in
Gromov-~Hausdorff meitric, such that any complete Alexandrov*s
apace M™ in this neighborhood, with the same lowexr bound
of curvatures and the same dimension, is homeomorphic to M" .

§1 contains & topological conatruction showing that
a point in an Alexandrov's space has a conical neighborhood -
8 Morse-theoretic argunent, based on the deformation theorema
tand in 3, The tame 9tgwmant proves that opeT  Vhom -

from [S] I e properties of nofi~o0 cal maps; exand-
. rov'a apace o euclidean apace) is a (locally itrivial) bundle
projection (Theorem 1.4¢1)s ¢ 3 contains the definition of .
non=critical maps and proofs of their properties, used in ¢ 1.
Thig definition is (for technical resasons) rather complicated
and by no means canonicel., The admissible maps from [I. 17. 1]
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are particulax cases of these non~c¢critical mapa. ﬂ’2 contalina
preliminary lermas, which are used exstensively in ¢ 3, The
arguments of #f 2, 3 are purely geomatrical, based on the
comperison 1nequalitie§. §‘4 contains the proof of the theo-
rem 4.3, that generalize the atabllity Theorem 0.3. This
proof is essencially topological and based on the resulis
of ¢ 1, 3« The theorems 1.4,1 and 4.3 imply (by simple
argunents) the Theorem O.1 (Bee 4.4), a topological characte-
risation of boundary points of Alexandrov's space (4.6) and
a natural generalisation of the Dianeter sphere theorem of
Grove and Shiohama [ GSh] (44.5)s ¢5 contains the proof of
the Doubling Theorem, stating that the (naturally defined)
doubling of an Alexandrov's apace with boundary is also an
Alexandrov's space (with the same lower bound of curvatures).
§ 6 shows how to generalize the Soul Theorem of Cheeger and
Gromoll [ CG], and the Sharafutdinov's retraction [Sh] to
the cage of nonnegatively curved Alexandrov's spaces.

I am indebted to Yu.Bursgo for provoking my interest to
Alexandrov's spaces and for his interest {to my work, Ianm
grateful to M.Gromov for many helpful discussions. I would
like to thank A,Cernavskil and S.Weinberger for thelr ingi-
ructions concerning deformationef homeomorphiasms,

Notations and conventions. .
A*B means that A 1s homeomoxphic to B ,
BRO) ~ (XY2) means that there exists a homeomorphism
6:A—>X such that @B)=Y,0(C})=Z (B,CcA;ZYvcX)
Two meps 9,y (XY  are V -olose iff VxeX
L) p(xl <y

Amap ¢: X—Yy isa Y ~approximation iff V%,ZZEX ;
119 6 B(x, )}~ ‘x,_l,_\\ <y and V&EY FaxeX - ggwlc))

A map (A %)—-s(X Y) ia s y ~approximation iff

é{p)ecY and l ‘®@>Y is a V-approximation as well |

&g H.A‘-sX .
(M;,N;, p;)  converge o (M, N,p) in Gromov-
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Hausdorff sense iff for eny R>0, V>0 there exists A w0
such that for any (>A  there exists a V-approximstion

6. (M;n8p, (R), N DBp (R),p; ) — (MNB,(R), N1 8Bn(R],p)

K (M) may denote the topological open cone on M or the
metric cone on M , in case M 1is an Alexandrov's space with
curvatures 21 . In this case S(M) denotes the spherical
suspension on M . K (M) denotes the topological closed
cone on M , that i3 a join of M and a point. K‘o (M)
means the cone on M  with apex p.

B. (R) denotes the open metric ball of radius R, cente~

red at .

R - M'l:' denotes the space M" with metric multiplied by R.

By (X) denotes the maximal mnumber of points x;&X
such that lx:r,l ERS (_L-#J)

Vr denotes the L-dimensional rough volume,

Ze denotes the apace of directions at p . '

{¢)t) denotes the derivative of § at p in the direc-

tion teZp o

Q <Zp denotes the set of directions of all shortest lines

pQ (a shortest line PQ is & shortest line pq

such that qe@ and lpgle|p Q).

Q'€ Z, denotes the direction of some shortest line pl/ .

ZA g denotes the angle at in the comparison triangle
with sidelengths Inpi, VBpl, IAB) - 5 a2 ABL« [IApl~ iByl]
then Z ApB =0 « Clearly ZApB gatisfies the compari-
son inequality Z'APB <we’'l , AR 1< Zp.

T denotes a k -dimensional closed cube in suclidean
space, with edges parallel to (some) ooord:l.nata axes, eI"’
denotes the oorreaponding open cube, I (R] means the
cube { keR 3 Dy—-ple *151'4\;} I c::[ means in parti—
cular that the edges of I™ are parallel to some edges of 1%,

The distance in euclidean space R, denoted by I-,|
ia induced by the nomm lx[=m?k x| o

Positive constants are denoted by C. ¥We ignore in
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notation the dependence of such conatants on the lower bownd
of curvatures and the dimension-like parameters. @€(&) de-
notes a conatant depending on e parameter £, . We denote by 2
positivevaontinuous functions defined for sufficiently small
positive arguments, and tending to zZero when their arguments
tend to zero. The dependence of these functlons on dimension=-
1llke parametera and the lower bound of curvature is ignored
as well, The function X may depend on additional parameters
that are indicated explicitly. Any emergence of ¢ or &
means the statement of existence of such a conatant or funce
tion, and the assertions, which contailn ¢ or =2, are sup-
posed to hold only for sultably chosen ¢ and &£ .

1« The topological construction,

1¢1e Spaces with multiple conical singularities (MCS-
spaces).

Definition. A metrizable space X is an MCS-space of
dimension h (N =0) iff each point XxeX has a
neighbornood pointed homeomorphic to an open cone on a con
pact (n-4) -dimensional KCS-space. (We assume the empty C&f’"f
get to be the unique compact (-1) »dimensional MCS-space)s ~

Remark. An open conical neighborhood is unique up to
a pointed homeomerphism, see [ K |

It 18 clear that a join of two compact MCS-gpaces as
well as & product of any two MCS-apaces is an MCS-gpaoca,

There is a natural stratification of en MOS~apace; the

@ -dimensional airata consists of such points X +{hat the
conical neighborhood of X admite e splitting R"x K{Sm) 3
y\-tt S Ybeing a compact MCS-space, iff w¢{ o It is clear

that the { ~dimensionsl strata is an ¢ -dimensional to~
pological manifold, and an MCS)space is a WC3 set in the

| sense of (8, defe5e1]e
1¢2+ Background from topology. \
Theorem A, Let A be a metric space, —F:X N % be

,t((‘ )
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propen

a continuous¥open map, auch that for each point .'Xex
1) Thexe ia anproduct neighborhood U,dx " and a ho=

meomorphism f, U - (U § (L) x x 1 (W) respecting
(that is pzete=§ o where pr: (Uong- LC40) x §(Us )= £ (Ue)

denotes the projection);
2) {*({@® 1is a compact MCS-apace.
Then .ﬁ is a (locally trivial) dbundle map.
Complement to theorem A. Assume in addition that a2 pro-

duct neighborhood ’U satigfies JE(U,,)- {300- » and fix
a compact subset Kc:: Ug s+ Then there exists a homeomor-
phism : X—> 1(4¢ i'.'))y.]:l< such that S’IK —f;h( .

Theorem B. Let X be s compact metric MCS space,
fl.u be a finite open covering of X . Given a func-
tion aothere ex18ts a function % , depending on X ’ {ud
and %, , with the following property.

_If ‘5{ is a metric apace, such that any ti‘%;gbints X »
'Z‘ex can be comnected by a ourve in X of diameter <
<, (lxlﬂr,,l\ 5 {.uﬁt}déa ia an open cchering ot X , g::)(—»f
is & ¥ -~approximation, P! ¢—+u¢ L&l , are homeo-
morphiams, & -close to ¢ , then there existe a homeomor-
phism 'Z:X—-v? s L(5) »alose to [

Complement to theorem B . Given in addition continuous
maps $:X—->R* , )7."2’5(-* R« , kX¥-Rr ,K:¥-R
and a compact subset K< X suppose that for L{,,_ inter-
secting K (respectively, non-intersecting i‘(.) we have
(Thlep=(4h) ontf, (Toy, =P antt,) , and each such T, 1s
contained in a product neighborhood YL werets (fh)
(Waxete {— ) (we say that - V is a product neighborhood
weretse g:VsR™ if there exigt a point veg(V)  and
2 homeomoxphism % V—ag (v} I ( s such that gEP'lfgﬂ

P2 being the projection onto I~ , and g"(v) 48 an
MCS~-gpaca).

Then the homeomoxphism  :X-—»X in the conclusion

of theorem B can be chosen to satisty L=7o oh  om X and
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(¢W = ('E,T;) 173 on |< « (The function ¢ may now depend
on X,{u,Y, Xo, K,-@,L—-

Theorem A was proved by L.C.3iebenmann [ S, cor.6.14,
th.5.4), the complement follows from (Ss 6.9 ]s The follo-
wing proof of Theorem B exploits the same arguments,

e C—\/ _ Assgertion 1. Let X be a compact metric MCS-space,
P C;O VeVeUeX be open subsets. Then for anj-embedding \ x&j‘
\ U X y O =-close to the inclusion { , there exists , ./ ¢

Ni
anvembedding YU — X y () -close to { , such that (6(7
Yzg on W ana 9/5:{, on U\V o+ ( 22 depends on
W,V LX), | ]

Complement. If X=X X1 sy where X, is akcompaot
MCS~space, and 50 respects the projection onto I1° , then

qa can be chosen to respect this projection,

Proof. We can apply the deformation ttiforem [- 3, th.5.4]
to th¥embedding P| . ¢z and obtain afiembedding () :
(W =X s 25 wolose to the inclusion, which coin-
cldes with ( iIn some neighborhood of -V and is equal
to ¢ outside some compact subset of UNW . Now et

px) ,xeW
S(f(x)= { Py (), 2 VW . To prove the complement use
X xe WV

{8, th.6.1.] 1in addition to [S, th.5.4]. e

Agsertion 2. In conditions of Theorem B, if xeX ®eX
satisfy |9(x) K iPay , V> By (%6 +105) is an open
subset of X, ¢:VoX  is af®émbedding, &-close to ¢,
then % ¢ @ V) .

This ia ¢clear. wm

Now assume the conditions of Theorem B, and suppose
W 0l «2 . Let U @l U QU @y,

u,;é tl_; = u;' @LL;' < “4 be open subsets such that

PSS d.Lé Q\[ai,gj,"kc Ufuhl ;1 * . Assertion 2 i{mplies

y&(u;nu;)c;' nﬂz(%z) provided &  is smsll, Thus we may cone
o it aut which 1ig 25" -
aider th¢¥émbedding Golot iy AU -y, o vl
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open,

close to the inclusion { . By Assertion 1 there is anvembed-
ding @ (lau)—~ U, »  R(5)-close to { , such that
Y= %;‘ °og, ~ on U2 nuﬁ and =i on ujnuj \ufnuj,

+ Extend {p onto UF letting =i on
Ui unuf » and define ¢, = $,°Y » Now we can define
an immersion 50’:(1:' UUé‘ — X letting o'@)= l(‘ 9"3(_,«(%' , xely’

| - ¥, @, xe Ut
In fact g" ig clearly aﬁmbedding provided & is small,

Moreover, Aassetrion 2 implies K \ VU U co (usyput
' ey S F LT U

provided & is small, Now the proof of Theorem B can be
completed by induction. The proof can be generalized trivi-
ally to handle the complement, ®W rnf\- % 7 L
143+ Properties of non-critical maps. .. ST
Let LcM™ ve a domain i Alexandrov's space,
?zu —aR" (km) be a continuous map, Peu » We say that .f;
s non~critical at p iff it satisfies some conditionas,
ligted in 3.1, 3.7+ Now we need only the following proper-
ties of non-critical maps, that will be eastablished in ¢ 3.
1e3e1e A get of non-critical polntas of a mep 1s open,
and a map im open Pear its non-oritical point, .
16342, If .f : u_cM“—-»la“ is non=critical at Ps then
2. maps homeomorphically some neighborhood of p onto a cube I':@

) in Rno )

7¢3+¢3. Let -f:UcM“-—yR\‘ be non-oritical and incom-
plementable at P s that is for sny function #1 in a neigh-
: kol — phtt -
borhood of p the map (4, f;) to R**XR =R is eriti
cal at P . Then there exists a function Xy and for suffi-
ciently small R>0 and R'>0 , such that 24(2R7J<R ,
there exists a continuous funotion h: Ui, =8‘,(m 172 ( I};m(n’)]-.[‘qlz]
\\"

. with the following properties

adh) <lpx) —  1if lpel> R | R
v) { is injective on S = h i) T ek
¢) { . is complementable at any point of U,NS 7 & \'Q o
a) 1r %eU; satieties X[|fm) £(S)]) <hix) them x . &7

i__"\. T4 -"{Q Voo




is non-critical for the map ({)) :l.ti---a»l?jvri
Moreover, for each \/eI‘iH (r/) there exist a conti-
nuous function kv:l,{i—a [oR] and a point 0, € -f-i(vJﬂ U,
such that
e) hi=0 & 20, h, @=R & L= (xefvnll)
£) Bach point x¢ {*\{,]  is non-oritical for
(4 h): U, >R
Remark, It 1s clear that pe¢ S , and we may take
hvz-,;la, for ve¢ £(9).
1+4. Pormulations and reductions,

Our aim in this sectlion is to prove the following asser-
tion. o‘oeﬂ

Theorem 1,41+ A propexr map -@ .-l;lc:M“_,p“ without
eritical points is a (locally trivial) bundle map,

In order to prove this theorem we need also the two
following assertions.

Proposition 1.4.2. Let {- UecMPsRE  be nonmoriticsl
and incomplementable at p , Then

a) for R>( sufficiently small
(B, (R 472 (4(e), B (R4, p)

2 (Rp (08, (RN (#p)), 38, RN 47 (4631, p)
b) for R'>0 amall enough comparing to R , there is
‘& homeomorphisn

p: (Bp RINY 1(I (R ’))?BF(RJM"(IHP,( RY))—
(B, RN §™*(4(p)) x L;(,(R'J 28 RJnf L(4(») ))xIm,,(R’)

which respects g that is { =preQ.
¢) The map (¢, lP’ |) is non-critical at points of
"DB? (R)N -‘- (‘P P))

Proposition 1,43, A level set 07y} of emap }:
Ke Mre R“ 1g homeomoxrphic t0 an MCS-space provided

it does not. contain critiocal points,
The case k=v. of Teduly 1s4.2, 144.3 follows imme-
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,-f; dintely from 1,3.,2, Theorem 1.4.1 for '(-_-f, follows from
@ 14442, 1ede3 for k 2£ and Theorem Ao. Proposgition 1.4.3

e for k<{ follows from 1.4.2 for k=4 and 144.3 for

. ks . It remains to prove that 1.4.1, 1.4.2, 1.4.3 for

L k>d  imply 1.442 for k=l .

- 1¢5¢ Proof of 1,441, 14442, 14443, o
N Assume 1.441, 14442, 1.4+3 to be true for k>4  amnd o> 1~
%’ let §: NeM -t be non-critical and incomplementable

at P:take R’)R’Jxlz I'\.,L\v,ui‘s 88 in 1.3.3. Then 1.4.2.cC é“\fv

A - 18 clear. We prove first an assertion slightly generallzing

N\ Te4e2e8. Lot = £ 2R M0

™ Assertion 3. Let ye tl (p’) satlaly ;E{(Iv,.ﬁ () <RosR .

fv)a WwiloR] 8T, b %

> Then (§7)aWrhR] FEE)a MR > (R(z)2).

¢ ¢ If @, =R then the houneomorphimn above maps O, to the —
\ apex of the cone.

S Progfe 1.3.3.a, 4 dimply that (7, h) has no eritical

points in™ %98, (R)nU, 4 hence Lw. (R) T by 1e4.1
5 for k-£+4 .+ Furthermore 1.3:3.e, f imply that (4 h,)
hasa no critical points in -ﬁ I(V)n hi (O,R] + hence for any

\»’ 0<R, <R, ¢R we have
\\ LW tn W8 LR, R, D, £ Ak (R, FIA KL (R)) = (2xL2xded, Zx i),

' '\-I"

R ,‘ 'and therefore (i) n B ®),§'w n?g ®).0,) = (EI’[I)*EJ{]' At last,
M,? choose R, such that x( v, %(S)IVR (R , and obgerve that
" J‘ (£k) has no critical points in K¢ ER“RJH-F tv) 4 hence

(rte) aWiIR R] FAWIARE(R,), FiWn KR = (IXT, Exfo}, Exai)s
o (PMaRARRT, 7' a bR, £ ONWYR,))

and

o (PR R, T AR R 2 (8700 A 1oR), ik (R)) = (REE)Z).

£

B _"AJ-,{_.
R R
A From now on we may assume I +{ gince {(=n  other-
wiBe, \u)""* i g\.‘) \! -
‘-_:é}:\"_ : .‘ oo %\ \?‘*\\ [\ ,I.‘Q\I'._‘I.‘ [ '.{‘_‘ il- :, “.
Cogh T C ;.\I\ - \J \ N : li
_ e ‘
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In order to prove 1.,4,2.b we oconstruct a special cell
decompositi?n of U i\ S with cells homeomorphic to S x ™
or K(Z)xI™ v el » We use cella of 3 types,

The cella of type I are of the form C =K{R)n I (] ”‘i)
O<R <R , ]' < I{’()(Q) « We assume that ?»(IV{-’(SJI)<Q¢
for Ve I"'-‘ Y and let C =h* (R ) n f-i(l'r’;i

The cells of ype 1]‘_ are of the form CF’ k(R ,R.p)nf (T )
0<R <t%p, R, I CI% (R} o We agsume that

'aezuvgfs)l)a} “for ekt ana 1ot G=K1IRIRS ]n )

The cells of type I are of the form QK =t (E;Rx))“f T ""K)
{
O(Q <R, I‘r <1 (Q‘) « We let 3-'\‘1([092‘])“

€(e)
n §* (I ‘) and aasume that ’JC(lv M) <R,  for ve I
and that for any cell C / such that C‘r CJ" , WO have
a,. nS = o

o’ A
It f£ollows from 1.4+1 for k=€ +4 and 1.3.3,4 that a

closed cell CJ of type I 1is homeomorxphic to 2 -'l;:ﬂ"L
regpecting | , and a cloged cell qa of type T 1s homeo-
morphic to $x I'”‘P x1 respecting ({,l,) o At last
1e3e3sCy 14442 for k>l , Assertion 3, 1.4.3 for k={+4
and the complement to Theorem A imply that a cell Cx of
type &L aatiafiea (Ca G (K (2) A I, ¥ K(T) x f""r)
reapecting ,E

For preliminary oonstructions we need also cells of type
N 5 their only distinciion from the cells of type I 1is
that the very last assumption is replaced by the opposite
one: there exists a cell C‘ » such that E';,:D C and
Ca.! NS+

We proceed by an infinite sequence of steps, Before the
(-th step we have a decomposition of U, in%o i’initét%'f -
cells of types I- IV , such that |

the boundary C ~@ of any cell consists of whole celis
and all cells of type Jf have Ry=2¥‘R  and dliam I Vx:

=g g! (for m, >0 ), where h, are integers satisfying '

| ,) Indzed Asstnkion 3 impliy that (F 0N W oRT) x R(3). KZI I8 & Compact s

Simet, 2 i5 @ Mfa.c:b MCS  spaer f} 4.3, for kalssy. 1.3.3.¢ auwd 14,2.8 Mbé’
"r’; that each poiet of G has a preduct wighlovhood wrt §. At last, fix R{’
Suddt that x(lv3($)|)<k’f-R tor off veI" ad olseme Hat (™)
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=t oy, %2R 2R . Tt follows from our de-
finitions that the boundary of a cell of type [V ocontains
only cells of types I,V and any cell of type [V isa

contained in some closed top-dimensional cell of type B .,

To perform the (¢ -th step we first aubdivide each cell

k2 [0, 2" RN (1Y) of type ¥ into 2™ "mu) cells

Wt [o, 2" ) A £ f‘“&_’) in a regular way, and obtain se-

veral cells of types N,V . Second, we subdivide some cells

of type I in K¥(2'"R) to ensure (L)) + At last, we

subdivide each new cell ki [o, 2t R)ng-i (™) (osn‘u.su}of type IV

tato 3 cells K'Lo2RIn {2(178) | 11t (pir)n (79,

L"‘(z"‘k,z"‘R)ﬂ E-i(I;";f,g of types W 4 I » T respectively
!

The result of the infinite sequence of such steps is a lo=-
cally finite decompoaition of U Y  into cells of types
LTI , Satisfying (L) .
Now we are going to define the required homeomorphism

U, 5K(E) XI{FU (R) We may view Kk (T) as & quotient

iﬁsg)txeﬂ:‘jpe [a,R.]]/.V and define R(z):BL for 2 - @-‘,g)e
€ X(z) +_Thus we have naturally defined functions ¥ 7,....
T¢ on R(Z)HI&)(Q’J, fi»---f, being the coordinate func-
tions on T¢ (e » Define the corresponding cells in
R(Z) % If, (¥ by the same inequalities as in W, , with
Tx instead of [l . We obtain the corresponding cell
decompoai.tion of K(Z)} IF&(» (RON{FY » £(S) , where % denotes
the apex of K(X) . Now we define ¢ +to map a cell in
WS  onto the corresponding cell. Firat we define { on
the cells of type t in Ki(R) , then extend it to the
closed cells of type X in h“[ #,R] , starting Lrom
low-dimensional ones, next -~ extend it to the closed cells
of type I in KA[R, R4 1 , estece It is clear that
can be defined on the cells of types I I to veapect (fi),
At last we extend § vrespecting [ to the cells of type W
atarting from the low-dimensional ones. It remains only to
use 1.3.3«b and define p: 3= {FIx 4(S) respecting {.

The bijectivity and continuity of 50 are gbvious, =n
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2+ Preliminary lemmans
All functions & in this section may depend on the pa-

rameter, denoted by €& ,
2+1. Consecutive approximations.

2¢1.1. Let P L cpM™ Rk be a differentiable map from
e domain in Alexandrov's space, and let Jl-Il = denote a momm
on Rk. Suppoge that for any xe¢ll and Ve Rl‘ ’ such
that L(x)aw » there exists a direction teZ, such
that WE()-vlig (§)<-¢€ o Then ¢ is clearly ¢ -open
werets W.ll (that is, given xell and veR‘" such

that 8, (Mfu-vii-&™%) =L ,» there exists a point ¢ LL
guch that  }(y)=v and eyl <&t pag-vh  , c.2.°[1.5.3))
2.1,2, In particular suppose that f.{f, ..., {} U e M RE
satlsfies the following condition:
For any pell there are such directions ¥ 4¢isl,
E“ :I.n Z, that ”’J(Pl (5+)]<% for U£] '?‘(Pftf‘”)é .
.f (g") <-£ for all { .
Then § 18 <¢(¢) ~open w.r.t. euclidean norm in R » (‘F<cta)}
2¢7.3. Let [: UM >R%  be a differentiable & -open
map, let pell . , ze Z be such that 4}“@)—.—:0 .
Then given neighborhoods V' of ¢ and U, of p there
exists a point geU,n{ (f(p) such that ¢’c)’ + In
particular, given a finite set of differentisdle functions
g; il =R we can choose ¢ el n 173(f(p) to satisfy the

P

inequalities g; (:;) <2:(p) it g%p (§) <o  end
%:4)>9:0p) 12 g, (>0 ~ (o.fs [1.12.6]) |
202, Lemma, A complete K -dimensional Alexandrov's Tal )
space with ourvatures - { can not contain h+3 compact
subsets A; such that JA4 A7 -¥ for E  o [ A4>
S Th+ & for [ ®3,7 (B<cw)
Proof., We use induction on N , the case h=4i being
obvious. We may assume that Az is a point P ., Consider
the sets of directions A; CZ , 1L € pe 2 « We have

I,AJ\ £2% - er,|-1A1AJ}<1-c(£) Gey) s IApl g or- bA, 1= A4, Y em-cce),
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Hence the comparison theorem implies |A A l? ~2(8) (ivj) A/ AR
> 714,;;(5) {23 , and this ig a contradiction with the induc-
tional asaumption. -

2¢3e Lemma, a) Let M" be a complete Alexandrov's
space with curvatures 24 , {A;], Lsisksz (ockew)
be compact subsets of M™auch that [A¥AY)> -5 (%)),
\A,Al>T4+€ ((4#1) . Then there is a point x¢M™  guch
that IxA V= Wy (£23), IxA)>B+CCe) , [xAl < —ClE) (s<cie)

b) The assertion holds true if we replace the assuuption
AL >4 +E by 1AA,1>T -5 and the conclusion
le:‘_\ > Y+ e &)} by lXA'j_l > “‘é-—’é’@(ﬁ‘).

Proof of a)., We use induction on h , the case h=1
being obvious., First we move & point of A, towards A; to
get a point X, such that IxA;l= % (i>2}, (XQA;LI:» iyu;
M= c(€) « Next we construct inductively a sequence of
points x, € M™  and subsets I, < {3, ..., k+2 } (0elel) much
that #I, =¢ , L, 2T . and. the following set of ine=-
qualities is satisfied with =x, as x ;

(1) IxAl =%, for ieX, , Ixat2T% for (>2,id],, lxéilag-bmgi‘ln.l,

whant .= el€) iy Q.u..\ (2] hjjw
Assume that X, are slready oonstructed for m <l

(<k) and let CC = fxeM": x satisfies (1) } .
Choose any 4. >2 , Jﬁé T, and let x,, .  be the clo-
sest to A, point of I, + Then x, satisfies (1) with
I€+1= U{joﬂ in’atead of I + Indeed, we have [x, LAl
- c(¢) for all ¢ and therefore for any 4 in aoma
neighborhood of My, the comparison theorem implies
A Al ST -2 (8) (i#),ij42), INA N> Th +c(e) (i>2) in E& .
Hence the inductional assumption allows us to apply 2.1.2 and
conclude that the map {£()=(lAy,\, ..., 4,,.']) 18 c@/-open
in some neihgborhood of Fesy' * Again by the inductional
assumption we can find a direction J;e ., » such that
|At§\ My (F42,5), |A]{ yl»VN ri< % . Hence either
lx A, A= or, by 2.1.3, there :I.s a point near Xeos:

which satisfies {1) and is cloger to Aj ~ than Xeoy =
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a contradition.
Now we have a point X\ that satiafies all the requi-
rements of our assertion except the last one. Let 2C be the
set of all points XxeM" such that IxAl=" (i23),
% A1|~;1'4' t, and let X be the closest to A, point of X,
To prove that t'iAzk I ~c(&) it suffices to show that the
assunption I;’Azb% — 22 (5) leads to a contradiction, In-
deed, this assumption allows us to get a contradiction using
the argument above, with X,A, instead of X, , A;,
and (la,1,..., 1A ,']) instead of {() . (In case k=n
the reference to the inductional assumption in this argument
must be replaced by the reference t0 2.2:) e
Proof of b). We use induction on n and reverse induc-
tion on k while h ig fixed. Repeat the first part of the
proof of &) with = -2 (5) 1instead of = c(f) , to get
a point X, , such that bx, “‘£|=§' (iz3), (Xk"’u'”Eff&)'g/ztl*gﬁo‘-,}ﬁ.-ﬂﬁi,hmw.
It lxk Al < F-cig) e ;'vx?u%m done, Othexrwise we have
Ix A) > Z - x(yj’hmﬁﬁéﬂfore in case kan we can
take %, as A, and apply the assumption of the reverse
induction, and in case k=n we get a contradiction to |
242, .: " ' ;""&\;im“‘* i \:-._. R S _’.;ﬂ, K .;n.u.e. ,t. AN _' . ’ '.I'
2+¢4, gorollary. Under asgsumptions of 2.3.a) there is
a point xem* such that IxA \-Th (i>2), A>T vc @)
Indoed, consider the cone K(M") with apex p and
unit sphere identified with M™, It follows from 2.3.a) and

2.1.2 that §()=(In,, ... 1a, 1) i1sa dir:ierentiable ¢ ()=
open map near p . Take a sequence fvii cR* L vis L
guch that Vj' = |Aj“ ol (j22), ’ V,f - M,ﬂ s and let

pre K (M) be such that {(')=vi. c@) bhl <l .
Then any limit point of (Pi)" in Z=M“ satisfles our
conditions, m=

245 Volume estimates. ;
2.5.1, Let M* be a complete Alexandrov's space with'
curvatures »4, A<M | Alq,0,7= {xeM: a, dAxicq,}.

Let 0 g, <9,<d,<d,, otwg minfa~a, §~4 7.

!
f
n
: r
! - j
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Then

g (Al a)s e P30 6, (18,61

/]
Indeed, the general case followa easily from the case Q,-Qq, =

ch-bs0 o Let P ATC-w, 81 —Al,-w,2,) sends

a point X to a point () on a shortest line xA , such

that  |Apl = /g, [Ad o It follows easily from the compa-

rison inequalities that o) yl(y)l= %, Ixyl for any

%ye All-w, ¢&,] , and this is enough for our estimate.
2.5.2. 1% :followa from 245.,1 and [I.9.3] that there

exigts a constant C >0 4 such that Fgw (AL " % -5, /+SJ)£

¢ C. 5 w provided pcw<T

3+ The definition and properties of noncritical maps,

All functions X in this section may depend on the
parameter denoted by £, L

3e1. Definition. A map f=({,,.., 0 ):UcM* —R" (k=0)
is called ¢ 3 -noneritical at Peu. if it satisfies
the following set of conditions:

.. 4 ¢-1 ¢,
1. $: = “'\?4 By o & C) =g, ( Iﬁfcy.‘l)Jrc:Ei iy (£, (D« cy,

where ¢, ek ¢+ Ay are compact aubaeta o2 My o,
?‘J have right and left derifatives, y-d, are lipschitz
functions with lipschitz constants <4 ¢.y @&re inoréa-
sing functions, satisfying @, (v=0, cix-gls Iy OOy L) Je &£ ix-gl,

2+ The sets of indices Ii(p) ={y: {;(p)= %‘(Pl}
satisfy i E[P) £e1 end there exists p=p(p) >0 such
that for all i  §;0) <y, (W P for xeR(p), x4 T Gk

30 Z Aaphyp > -5 for i£]y A€ k), PETG).

4. There is a point W= Wip) eMr auch that
Z My pW >Tp+e  for  yeli(p) o

It is clear that the aet of (¢,5)=nonocritical points




of | is open and { is differentiable at any such point.
3+2+ Proposition. Suppose that {:lUC M“——)R“ has no
(¢3) ~eritical points in /U , Then kg¢h  and f is
C(¢)=-open, Furthermore, if k=n then f is a local
(vilipachitz) homeomorphisnm,
. Proof. Conditions 3.%1e3, 4 dimply that assumption
k> contradicts to 2.2, It follows from 2.3.a, 2.4 that
for any peU there arei such directions Ef , g{cz
{4¢i¢ lﬂ) that l Aj(” EL |=‘72' Li'ﬂ]) ) IA;'(?) E;l‘Té-C(E),

' - T ; _ ,
|Ag(r3 S fy +C(E) + Where AE(P" éé"zfp) Aly It. Therefore

we can apply 2.1.,1 to the noxm llvl| —--_f: 53‘|v1| onR".
L=f

Let k=n"' and assume that {(J={(y) , X#ty
for X,y 80 c¢loge to P that 34143, 4 hold for x
or y instead of p with the same W . Assume Wi <[Wyl.
It ;,3 are sufficiently olose comparing to |,Wl, |pA
(ye & (p)) then we have &L Wxy> -5, £ Ayxy > T -3
for y €I (x) o We get a contradiction to 2.2 for 2, .m

3.3« Proposition. A level set of nonoriticsl map has
locally an intrinsic metric which is equivalent to the indu-
ced one. More precisely, let §:Uuem™—sR" be  (¢3)-none
critical at pe W . Let M=27* ($p), po=min éiy(p),?-lwp)pl,,
$ . lA,;d.pl ( 153_5.[(,3@3:(91)} , 4xe€NnB (p) . Then there
is a ouxrve on 1 of length < c(&)lqzl with endpointa 9,7 .

Proof. Assume that IW(P)c}I ¢ 1Wep) <) o Then the compari-
son inequality implies that [ W'p) x| >Ty =2¢(5) 1in z1 . |
Moreover, we have |A';‘ wp) > Yo tele), ALvI>T -%6) (yen ),
and | Ay A:h‘-', > % ~oesr (4], o€ I (q) ,pel}(?)) o Wle apply

i |

2.3.b to X, and find a direction re such that

y = : = . d ! < W .
‘Ac’.(ci)g\ = v& (Atc?} X&'(?) Aag J an I El é’/ (¢)
Hence by 2.1.3 there is a point q, <l near 9  such

that leg, | < g1~ cle) 149,] « Now the comstruction of the
required curve on 1 is standard. w :
3e4s Lot § L eMt— RX Ye (,3) =nonoxrdtical at-
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peU . Assume that Vo (Zp)>€ . It follows from the
volume comparison theorem 2,5.1 that Vo, (8, (e1)2 C (&)
(w'e W'(p)) o Thus for & very small number w, o<w<?&,
we can construct a set of points W, €W such that #f“ﬁ}"}

L™ L=cte), W pWa >w whp), ZW phy > %+ % (veli(p) 12 ik)
Let a neighborhood V ot 'p be so small that ZWJ_XWﬁ >
(g}, Z‘-‘LXA-E{ > Tyt (yelip),15ik), LArxAin> -5 (it ol (p),

FEE(P]); I"Pl“ig‘;&@)“’%,,'f%‘}and -ﬂiﬂ (V£ ep (y €0 ) for

all xe o Lot &(x) denote the mean value of | W.x| .

Agsertion 1. let x,&ev be suchi that H(x)]ﬂ(g)l( '
4$-Ix31 o Then either the map (¢, Lx, o) s Vs REH is
(c@), 2®) -noncritical at Yy or 6(y)-6(> c(¢) lxéil

Asgertion 2, Let xyeV be such that [fofiyl<sixyl
and X be @ point of a local maximum of the function
6l,.5,, e Then 2 W, yx> Y% +c(g) for aome & .
) 2 >0

Proof of 1. The conditions 3.1.1, 2, 3 for ({, x|
are cleaxrly satisfied., Take a point on a shortest line Mg
cloge to a8 a candidate for W(g) « To satisfy 3.1.4 1t
suffices to choose <« such that )x'W/|>%, +c() in &, ,
On the other hgnd, we have 6(y)—6(x > C(¢) hfgl provided mean
value of Coy Ix'W;| 1is greater than c¢(¢) .+ Since # {w,}>
>Lw!™  and (by the volume eatimate 2.5.2) # {w, :flw x|~
.-.-’Vzlza}'- <C,a w™™ (a>w), one of the conditions ebove on

< t
M\x_-IJnust be satisfied. wm

Proof of 2, It suffices to chaeck that for some o we
nave \w/y'l < Ty-c(g) in T, o Pake axc(f),b=c(E) pguoh
that C,a < (L-C.a-Ci8)-sinh  , where Cn 18 from 2.5.2.
Assume Wyl % T -a for all o and let O =faslwiy’l¢

eMra o Q= fo:yl>%ral, Watp W o apply 2.3.a
to the sets W‘;a!) :u])-”’ AJI:O:J inzx (A';w:ﬂl-{‘;w AE&'J » and
£ind a divection ¢é 3, such that |gAlyl=17, | W=

= 2 te(a) . Let sz Yaleaz ; “‘{;FI} %'Pﬂ} o Then
(06, 6)<-4a, b +#0, <0 - (L-C,a-C,0-smb)ul™<o,
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and 2.1.3 gives a contradiction to the local maximality
egsumption, W

3.5« A map f:UCMh'—’Rk is called (£5) =comple-
mentable at p , 1ff there is a function 9 such that the
map (#,g} is (45) =noncritical at p .

Proposition, Let f:lU<M"™—R% be  (&5)-nonoritical
at pew , Vo ,(Z,) =€ . Then either § ds (c(¢),n(s)-
complementable at p or for sufficiently smsll R >0
there exists a continuous function h in U, =f4(tk (Sfﬁ))n
NB(R)  such that fie)

1. h{u)=loR), hid=lpxl 12 lpxl >R

2. § 1s injective on S= ko) .

3. § 1s (c(g), %(5) -complementable at any point of
UpnS

4e (fh) 1a (gca,aec §)) -noncritical at any point X elU,
such that {2f(S)|<I°h).

Proof, Let R>0 be go gmall that general agssumptiors
of 3.4 hold in U, . Using 3.4.1 choose M =cC(¢) din such
a way that j’. is (cCEJ,%CSJ) -complementable at any point
of U NS  where S=fxell, : 6K-0(y)=Mixyl for all

ye Uy satisfying 1f0dfpl<Sixgl ) o+ Clearly S s
compact and nonempty provided { is not (c(), 9e(s)) -comple-
mentable at b . Obviously, § 18 injective on S and more-
over, it follows from  C()-openness of § that l;’.@){!(é{)b

> My Ingl  for all xye€ S , where M, =c(E) o lhportiatar, SeB (c)SR),

Define a sequence of finite subsets S < S in s
following way: S{-’n%p} . Sj o Sj 4 . f(SJ) is a
maximal SR -net in £(S) *. Define hix) = ing. \‘La ()

he Vs

where

_ kb’(x): Fsintp (|p!xl)i-éiio M;i |J3¢(xJ -f, (p))  tox pe ‘gJ-L NP

LLJ (X)= min {TSR fo') ‘Zé 10 'q: [#t{X]“<Fe(P)| y 1& ?% (IPxU 4 R/q } fﬁl‘ r3=Pl

1%) that \v,,vzlj 25"R 4 Vv, e £65) and  Vvef(S) 3 ved(S): fvyle R,




. e

‘;“-WJL.\ " Assume no Mx : and €S \S. Then N
“'\;‘J’ (-f. N w 3 [ = X . PH So do- » o L

RSy éhat | “P x,,) {!(M[( 53.’4* R « Obgexrve that the choice of |,

AN

“?2] =
(@)= &
0- —

Ix 2a-7,Q>%

It 18 clear that h'(0}=S, h(U) <To,R] ana hi(x)=Ipxl (
iz lpxl >R/ . To check the condition 4 it suffices to <7
prove the following assertion 3 and to refer to 3.4.(. A

Aagsertion 3. For XeUL\S let ['(xl= {x : l\x {x) = (x}f. It
oo §( N <3551 then there exists 4€S  such that
ey $(3)] < 5% |x3| and [P,r‘llfs"Sf'  for all yel(x) .
MoreOVerﬁ# Fix) £C .‘\_( e o w s LRT BN o

Proo 3 There exists j e.i% Py € Sj such that

(:'-*)' l\“’" Fn(ﬁf;ﬁl“é"'i()'S“"sR, leﬁl » §itg

Indeed, the case }(Jef(S) 4 _ 18 clear, Otherwise choose

eS such that L Hyl <355h(x) , j such that
§eR< 1Ry $00 <8R, and p €S, such that 1{(,)Hp,)]<
< 5J+SR_ « Then l-F(x){'—(pJ)l <410 §SR and 35‘_’“‘1 < 5% hix)¢
< 28%Ipx| + 5% k40 Mt W 1ufip)] < 25° Ipxi +200k M $¥OR | hence
[py x| > sHHR
Let ;, be the minimal value of | that agrees with
(1), and  4=p,  Vve the corresponding point of S + Then
yel'® implies pyeS, « Indeed, let p = 3 Sy .
Then
hy 0 =hy, 00 % Pyinap Cpgtt) = Fie g (pg X0+ tZL:l 10 M. (14,(p)- £, ) -

e lr)- 4, ) Fyizg bl p)- Bisg Opp e 102 2 4o )1 -

AN U] 7 S ~s VR =2l gl o) pl- 20k SR >0 e
: 4‘4\ P f}i ,
1

0% by Wm0 3-2 1 b O M R (0 8o ~20 L Lfp bl 5

henoce | ¢(p)8(p, )| a5l 5*Sp  and all pointa PEESi S Sjot N oy’
satisfy our assertion, AR

I8 jovo then there is a point Py, € S; such
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implies lxml <5%R . Assume that prS L and

yel(x) -~ , Then O» hy(x} <k, L0 = l’t'ﬂ "Ift "l*ioMi"" ”‘(Phr”{ﬁi”'
- 20 k Mzt R o) 40 > GME ] ) #(py)) - 23k M7t R o
hence Te g, 4 Go)] € 3k sl*'g and all points Py € S 3 -4 o
satisfy oux assedtlody - m '
3¢6+ Propogition. Let f:luecM " RE be (88) w-
noneritical at pew , Vo, (ZFH)ZE€ , Let R>p  be
80 aanall thai general asaumptions o:l:' 3+4 hold in Y, = 3 (RN
n i3 IHPJ (s°R)) » Suppose that
—-£(2) For all xelf, such that IR <lpxlgR y holds &(p)-6(x)>
k » Mlpd  ,M=c(e) o Then for any veI; ($5R) there
1 exists a continuous function U1->[o,R] and a point
0, € Ugn (v such that
1. For xei{tvinlU, noid hy =R & fpxl=R
hy(®W=0 & x=0, .
2¢ (§5hy) has no (c(e), ® (%)) -oritical points on

Uy n @'1(VJ\[0‘,}. ‘
Proof, Let .0,,‘ be the point where € , RIOLYA attaing
its maximum. Since £’ _ is e c(e)wopen.:.t follows from (2)
that 1,0, ldR » Define 'R

a,Qgr
La-t,azr,

The first asgertion is ?ow ohvioui '.l‘he seoond aasertion
follows easily from 3.4.2,1 *’ neectsst

3¢7« The Pro;:oaitiona ody 345, 3.6 Justify the follo-
w:l.ng '

Definition. Let ®em™ be a domain in Alexndrov's
space, and let ¢, = f-hf Vl',‘,_1 (E‘ s 0 (!l.‘h:l.s is always true if W

is compact, see [I,9 7] de A map f:ll =oR%  (0<kgn+d)

is called nonoritical at p  if it 18 (&) -nonoriticel

at p in the sense of 3.1, with £<,, §¢ Ay (e) o where
By k {(¢) + 1is a positive function, defined inductively

(using réverse induction on k , starting from k= Vl’ri ) in

such a w#y that (¢§) -noneritical maps f: (L -+R "“_'h

."\l‘
[
oA




———

D

g<g, * <A} §) satisfy 3.2-3.6 and the pairs
(cce), 2(8)) @appearing in the formulations of 3e4s'y 345
C 3.6.. satlsfy 2(8’)(' Ah,kii (C(E)) .
It is clear that noneritical maps satisfy all the condi-
tions 1.3 ‘

4e The stability theorem and its corcllaries.
4.1+ Canonical neighborhoods and framed setg,

Pix £,50 o Let U SM™  pe a domain in Alexand-
rov's space, such that Vzn_i (.ZPJ Z2&  for any peLL .

A subget ;U is called an (£,3) —canonical neigh~
borhood of PEUL of vank k (ogken) 12 U, = E—r (R)N
n s :F(kpl ( 35'2)) » where { :u\—*Rk is (£,8/ =noncri-

tical at p, and R>O is so small that general assump=
tiong of 3.4 aud the second elternative of 3.5 hold true in
(; « A canonioal neighborhood of rank k dis an (£5) =cam

nonical neighborhood of renk k with &<€,8<n, ) (&),

It follows from 3.5 that any point Pe(,(, has a canonical

neighborhood of some rank, Lgss\\y o)

A compact subset P <l is called Kk ~framed 1f it
is covered by a finite set of open domaina U &@ L s Auch
that each [,(y‘ is a canonical neighborhood of gome P epP
of rank >k , ana PnU=U n{* (H 1 (Jgj OJ)) s Where

H, is an affine coordinate plane in Rk ', containing L)
and each Oj 18 an ortant in R with apex £ (p.) N

Clearly Ikaﬂ’d.) ﬂH‘tﬁ (jlé)]*b:jj is an MCS-space, hence by

Teds2.vaand 144,3, P 1a an MCS-space.

We say that the framing ‘Sud} respects a map f:u_-—-)Re
on a compact subset K<P 1f the first £ coordinate
functions of § coincide with § on U, provided U.ak+a.

4.2« Corresgpondence,
Let W, Ji™  be (complete) Alexandrov's spaces with

4

m{,‘-’w"\l.v

e o.«up‘h
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the same lower hound of curvatuves, O:M"—F(™ satiafy
|Ix1- [ Beosigh] < for xyell  , where LeM™ is
a fixed domain with compact closure, We call 6 a V =ap-
proximation on U . Let T ={xeM"“:Juell:[x0|<y§ o If
Yy >0 is gufficiently small then there is a poeitive lower
bound for Ve, (ZT;) (FeT) and \/zh_i (Zp)  (pet),
which is independent of 2,0,V (Indeed, by [1,9.7] it
suffices Yo have a positive lower bound for Vo (W . But
the existence of & h -strained point in U  implies (when
y»0  1is smell enough) the existence of a domain in ¥ ,
which is bilipschitz equivalent to euclidean ball of vadius

bounded avay from zero, hence Vz, {a) is also bounded
away from zero). Let &, denote this lower bound.
Let ;f' 395 -’Rk be (¢5) =nonexritical at Peu, s

€& ,8< 4, L (¢) + Define e corresponding map ’]}sﬁ"_alak
using the same formulas with K‘:I instead of A, , where
ﬁ"d T __1is a compact set such that the Hausdorff distance
between -"r;J and B(Aq) i3 less than VY . (We assume that
AyclL ), 12 Y>>0  4is small encugh {depending on M™,
f, U, p ) then there exista a point Fell such that
Th) =4(p) and !ﬁqf)f < CLE) s and f is (&%) -non~
critical at any such point. This follows rrom ¢ (t) =Openness
of nonoritical meps. If () =B(p) nl? (I (s°R)) 1s an
(£5) -canonical neighbourhood of p , then we let T (p)=
= BT (T4, (°R) 2or e poins T satistying Tip) - (),
lp 9(p)J < cleyy » Clearly, Wp) satisfies general assump-
tions of 3.4 (use W, =©(W,) instead of W, ) but may sa-
tigfy the first alternative of 3.5 instead of the second one,
However it satisfies the assumptions of 3,64
Let P<U  be k-framed by the covering {(, (pJ} .
Then a compact aubset Pele is oorresponding to P if it

is covered by { U, (B } and Fnﬁ' f.”‘t (H,.n (U O.)
Clearly a compact Alexandrov's gpace M“ ad.q:l..t “ua\v-_‘%”mna«
ming and ™ 48 corvesponding to 4" a fma

enoughes Now we are in a position to prove the following
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generalization of the atability Theorem 0.3.
4¢3 Thgg_:c_%,_ Corresponding subsets are homeomorphic.
More precisely, let ALY, A" be complete Alexandrov
spaceswith the same lower bound of curvatures, Pcil c M™
ve a k =framed compact subset, P<cU < X&™ be correspon-
ding to P weret. V -approximation & ., Then there exists
a homeomorphism 9’:?-4',[3' which is %(v) -cloge to ©
® depending on M",P , Moreover, if the framing of P
respects a map g:u—;tﬁ on P and amap (fh): U->RH
on a compact subset K<P , then @' can be chosen to
satisty f=T00’ on P, (Hh)= (k6" on K,
where X depends now on M% P, £, h, K.
Proof. We are goihg to u e the complement to the Theoren
B. F:Lrst observe that any tw‘@‘?bints of P can be connected
in P by a curve of emall diameter. Indeed, since J4 are
c(e) «~1ipschitz and C(¢)~open in ’u; » thilis assertion
follows eagily from 3.3, Thus +to apply the complement to the
Theorem B it suffices to construct homeomorphisms 6,4, )~
- (T ,up,,) R %(v)-cloge to & , such that L, Q =£, .
It k- then we can take O,=f.10f, . Otherwise we use
reverse induction on k
Let WU, =U, () =6 (R)nL" (Iﬂf) (s°R)) be an element
of the &k -:l’ram:l.ng of B, K :u~>loR] be the func-
tion constructed in 3.5. Fix a number Vg 20 and congidex
a preliminary finite cell decomposition of u‘,;_ » conatructed
in 1.5, such that each cell of type [N has diameter <V .
Let P; denote the union of closed cells of types I, I H,
K, denote the union of the cells of type I . Then there
exists a (k+1) ~framing of Fi that respects §, on P
and respects (f,h,) on K, . Consider the corresponding

cell decomposition of U= T, (F) and let P, X, Ye
cell-corresponding to Pi, K_t o By inductional assumption
we can construct a homeomorphianm B,L'tpi-. P, which iz

%2() —close to 6 and satisfies J, o8 = § on P, ,
(L, %)o e =(f h) on Ki. How § can be extended to




£°

&
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the cells of type I  to get the required homeomorphism &,

((»)+¥,} =~close to @ provided these cells and the cor—
responding cellaﬁin ’Uoﬁ. satisfy (C',Cd)z (F(E)XIC, b xIe)
respecting £, () » where = 28, (R)n fX(4.(p) o The
last condition follows from 3.6 and the inductional assump-
tion, that guarantees that 985 (RVAL* (F, (A=, (Use the
argunents of 1,5 - the proof of Assertion 3 and the desorip-
tion of the topology of the cells of. type T )¢ mm

4e4s Proof of Theorem 0.1 on spherical neighborhood.

Let pe M be a point in Alexandrov's spaces Theo-
rem 1e+4e1 implies that (EP(R),??BP{R))Q’(K (DB‘,(RD,}BP(R))
for small R>0 .« Indeed, the function {p,] is nonoriti-
cal et points close to P , excluding P itself, It remains
to show that 28,(R) =% for amall R>0 , This is
a corollary of 4.3 applied to 1 -framed ocompaot subset
Z.C K(Zp) as P and the correaponding subset I8y (1)
in' (R°4. M™ p) » which converges to (Kr( % J'P) in Gromove
Hausdorff sence as R=o . -

4.5, Theorem, A complete Alexandrov's space M" with
curvetures »1 eand with diam (U") >74 ia homeomorphic
to a suspension’ on a compact (h-4)=dimenaional Alexandrov's
space with curvatures 21 .

(This is a direct generslization of the Diameter aphere
Theorem of Grove and Shiohama [ GSh] )

Proof. Let pq  be a dlameter of M", Then clearly
ercy >V, +€ “ for some £>0, depending on Ifofl , 8Bnd
for all x#p4 « Hence the function Ip,]  ia noncritical
in M {pe}  and by 14441 M "z S(28,(r) Zfor any

0<R< lpal o But B,(R) ~ Z for amall R>(C , hence
M“‘%S(Z’r). -

4.6, Theorem. The boundary points of an Alexandrov's
space are distinguished from the interior ones by the topo-
logy of their conical neighborhoods. The boundaxry of Alexand-
rov's gpace 1a closed. ' '
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Procf. It suffices to establish the following charactow
rization of the boundary pointss: 4 point belongs to the
boundary (to the intexrior) of Alexandrov's apace iff its
conical neighborhood is homeomoxphic to R‘x K(Z) . for
some { , where ¥ 18 a compact Alexandrov's space with
curvatures 24 with nonempty (empty) boundary, Thusg our
theorem is reduced to the following

Aagertion, If X 3, arevhilexandrov's spacea,
RxK(Z),.,pfix K(Z,) and = has nonempty bYoundary, then

>, 8lso has nonempty boundary.

Proof of the Assertion. We uge the induction on the di-
mension of X , and the gecond induction on dln =, to
establish the base of the first inductlion. The base of the
second induction is clear:. Rt" K(I) ig not homeomorphn.c
to R x K($%) oo, ew o Assume that RUx K(T)w
o~ R,-‘ x K (23_) '» Where ﬂi </€ and 2, has empty boun-
dary. Then there 1is a point in RIxx (a1 s Such that the
corresponding point in R‘ x K{Z,) does not tie in
R be x {apen] o Considering the conical neighborhoods of this
point we get REx K(1) = R x K(f }o where S5, 18 a com-
pact Alexandrov's space with empty boundary. dim % = dim Z-1,

At 1ast, assume that KX K('ZI)NR tx K(Ii) , and X
has empty ‘boundary. Take again a point in kY. K{(2Z) and
the corresponding point in R,"‘ x K (Xg) and conslder their
conica neighborhoods. We get either R Hak(E) = t‘ xK(Z),
or RUNK( = RE X k’{z'i) , where 4, &  are compact
Alexandxrov's apaces, z has nonempty boundary, Z'i hes

ty boundary, and _ dim B=dmE-4 |
o y4.7. s__:s;.lm Let M™ 'be Alexandrov's apace. p oM™,

Then =~ ~ RALM™, ARAMY, p) converge to
( K(ZF ?K(Z' )= K(azl, ) in Gromov-Hausdorff sense asg

. A ‘muall apherical neighborhood of p in WM™ is
homeomorphic to K (32) .

- 3\(&/'0 )




5. The Doubling theorenm.

S5¢1e Let Van. be & complete Alexandrov's space with
boundary N#@ . Let p:M™—>M{ be an isometry. It
followsfrom 4.6 that MM = ¢(¥) . The doudbling A"  of

M" is defined to be the quotient A" = M"UM /A, where
X~y 1£e xeN ,y=p(x) or YeN, x=yry) + To
simplify the notation we view points of & as lying in
MPA MY, We define the canonical metric on MA™ by
( byt %ge M™ or xu €Ml
Piry)= min, ixela el xen®, ya My ° Thie is obviously an intrine-
sic metric.

5.2, The Doubling theorem. The doubling M = of M™
a complete Alexandrov's space (with the same lower bound of
cwrvatures) with empty boundary.

Proof, We proceed Py induction on N , the cage h=4
being trivial. Obaerv‘"‘“" shortest line in M" can touch the
boundary M by its endpoints only (unless it lies onN ).
This i3 a corollary of 4.6 since the tangent cone varies cone
tinuously (in Gromov-Hausdorff topology) when its base point
méves within a shortest line (see [I,7.15]). Therefore, a
simple reflection argument shows that a shortest line in M™
can go through the common boundary of M"™ and MU only oncos

Lot P’\,PA:L ) be two shorteat lines in MN™ . PéN .
For local consideration near p we may assume that each of
them lies in M"™ or M} and has a direction A’ (A7) in

3, or 21', « We are going to prove that

(1) < App = Um  nd Tpx = IA'A]]

where the distance is taken in ZP -~ the doubling of Zl’
Clearly, it suffices to check thig identify for A'e Z YD AN
AGXF\JZP o« Let xepACM Xy € pASM), ¢ = Xx, 0N

Then & xpxy 3 ZXpY +Lypx, » £Xpy + 4L Ypxg =203 |A) +| a1 el-ty o
for gome e 7z, , where V>0 can be made as small :
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as we like, taking X x, sufficiently close to p = this
1s a consequence of 4,7, Hence « ApA > |A%A]| « On the
other hand, let ¢ <27, and  yeN satlsfy lau]l+v>
Z Az s lag3l ' fg’flxﬂ’ y |AAll<e »-4Y o Then we can
ChoOSe xepA | X € pA, in such a way that L xpx €
< xpy +ngxz < [A%l+lA(§l 429 < (a%]] +3Y » hence

Ay S INA] ‘
APIt :follows from (1) that if APAi is a ghortest

line then |AA/[=7 and since by inductional assumption
Z} is a compete space with curvatures 321 , we have

(2) 'A';IH;A{I:&SW for any g—ef;,

In particwar, if BeN , and a’ez,, s B, ez; are
directions of symuetric shortést lines ,B in un and M
reapectively, then

(3) [a'R) +{Aa{B]] <,

since clearly [a/B'| 2 (Af8]!.

Now we are going to prove the angle comparigon inequa-
lity for a triangle BAA, with BeN, AeMN N, 4y € MMV
Let p= AA, NN y NEZ, Ai’ez;f, be the direc-
tions of the shortest lines pA,pA, » and B€Z, ,
B:L GS‘. be the directions of symmetric shortest lines

B . Then ZBph + TBpAr< IAB| + 178/ g7 (by (3))
hence by Alexandrov's leuma (see [I, the bottam,of p.6])
Z BAA, < ZBApScBAy = £BAA, | and

(t)—Z A BA

Now it i8 cesy to see that {&m thi Z A Bh T »0,
_ - +0
where At eAB, [AA@I=t , Since this is true for all such
trianglea, it followa that L ABA, exists and satlsfles
the angle comparison inequality. :
Now we may conolude by (1) that for any PeV the
space of directions of M™ at p exists and coincides with

Zr'

- - e
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At last, the angle comparison inequality for general
triangle ABC (say AB eM"™W ,CeMMWN ) follows from
Alexandrov's lemma. Indeed, if p=ACAN , AR’ C'eE
denote the directions of shortest lines pa,pB, pC s then

ZApB + Z8C < |AFI+ 0 <7 by (2).
7™ hes empty boundary ihe described above spaces of
directlons at points of X" have empty boundaries by induc-
tional esssumption.

6, Convex sets and complete noncampact spaces of
nonnegetive curvature.

6s1e Theorems Let M"™ be a complete Alexandrov's space
with cuxrvatures 20 (2k>9)  with boundary /& , Then
the diatance function {(*) = IN,-l  is (atrictly) convex
(that 18 § becomes (strietly) convex belng restricted to
any ashorteat line). .

Proof. We consider the case of curvatures 2O ; the ca-

se of curvatures 2| >0 is similar, Let x be a ghox-
test line, q lie within Xy . Clearly fi,"(¥)+ f0,(s)<0
where “X',y'e Zﬂf denote the directiona of shortest lines
§%59 & e Thus 1t suffices to prove that
L= +0 2

< where (}[{-.) €Xq, l?(ﬁJfS}‘:f o Agsume that for a sequence
t, = +0 we have {(3))2f(3)+t,fg) (<) gty £>0 « Clearly
q ¢V (see the beginning of the proof of 5.2)s Let peN

be the closest to 9 point of N , q,’C- Zp be the set

of directions of shortest lines pq .« Then 1t follows from
447 that {9512 "4 . If ¢/ 18 the image of 9’
under reflection werste ?EP in "Z} ¢+ then we have |9’f;; |2
%7 e« Honce @' 18 & point, Zp is the spherical suw
spenaion on"bzp . lq,’§|=7‘72, for any ¥ €92p
Let 9 €Zp denote the direction of a shortest line
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pali), £, €%, be the projection of g’ onto 23,
(that is 9/ e9g'y; Yo FE2Zp be a limit point of
3.5 = £ G®)Ipy=1I9{ 91, g = Z9t1) pg; p e matisfy
leril=lq ttplsing, , P2 s (see 4.7)./ We: eat;.mate

cos leiof; | = cosls; g | eoslpy 5 , hemee 1p/G) £ = + o (=)

a4 2 prpa, (6 < < pupg (b0 = |prar] & T~ tolliis 7 —Prro(t).
Now considering the quadrangle made up from friangles on the plane

ToF g () and  §le)pg we conclude that

flatt) < lp qttad] < /pg/- t; cos Zq t)op tolt?) ¢ f/y}h‘z,{’;;jx*)% o(4)

- g contradictions

6.2, Lot M"™ be & compact Alexandrov's space with cure
vatures 20 with boundary AN #Z , Then the distance
function {(-) =/#,¢]/ has a maximal value & >0 , It folw
lowa from 6.1 that S = £-!(a) is a convex subset of M™%,
and olearly dim S, <n , S, itself can be congidered as
compact nonnegatively curved Alexandrov's space, If S; has
nonenpty boundary then we can repeat the operation and obtaln
a convex subset S, <S;, with dm S, <dim S, After £i-
nite number of atepa we get a convex subset S without bounw
dary, that can be callad & soul of M"™, Clearly £ 4s non-
oritical in ™ (€,a~g) for any &€ >O , hence by the
Stability theorem 0.3, 4¢7, 1401 (MY N)= (£ ¢f07,

FUe) = (Pra-2,0], £a-)) « We prove in 6,3 that S, is a
deformation retract of M™ and therefore S is a deforma-
tion retract of M,

The same construction can be applied to a complete non-
compact nonnegatively curved M" , using the minimum of a
suitable combination of Busemann functions inatead of f on
the first step. In this case M" & £ (a-g,a7 and 5
is a deformation retract of M",

Let M"™ bve compact Alexandrov's epace with curvatures
»k»o « Then 6.1 implies that (- 5,=§ is a point, In
this case (MM WNM)=m (R(Z) Zg) + To prove this assertion
by reference to 1.4.1 take a funotion f,=min{f,y (13847




where R, y, ¢, are chosen in such a way that for some
0<R,y <R, <R 0. (x) = ) 12 1Sx =Ry £1 ()= pReR o,

on M= {xeBy(R): Ix I8, (R)|=R-R,J; k¥ 3gand  §,  is noncriticel in
it [o g:(R—R]H:] R To make such a choice find vy=>0

auch that 4.3 is applicable t0 the 4 -~framed aubsect :
. H)c Ks (3¢)» considered as a level set {xe By(2):lx 3B (2)]=4}
Now take R>0 g0 small that for any x& B¢ (R) there

exists ye ?Bs(R) such that Z xSy <y . It follows
that for R;>0  sufficlently emall the level set [T,
= {xe Bg(R) : [x 2B, (R)] = -2[52,_.?, is 1”;"-’1'/2 close to 'BB (221)

and there exists a / ~-approximation 6: B 3 K (ZS)—o
2 e BSG)DR;1~M“ . Hence the level set ﬂR:= {xeBS (RJ :
Ix B (RN =R-Ry}= {xe Bg (2R, ): Ix(l,p, }= Ra} 18 homeomorphic
to g .+ To check the noncriticality of f, at x &
I o@R-R)*e, ) take W(x) near x on the shortest line
xS o Other conditions are easy to satisfy provided R, is
amall enough. .

6.3, The Sharafutdinov's retraction.

Let M" Dbve & compact Alexandrov's space with cuxrvatu-
res 20 , with boundary WN#@, £()= [N,/ , (1" =[qal,
S,= f"*(a). et xe&M™\S, , M~LT[fma) « By 6.1

,,C/x ia a compact nonnegatively curved Alexandrov's space
with boundary A,= f/%///) . The apace of direoctions =,
of My at x 4is a compmot Alexandrov's space with cuxvatu-
res »4 , with nonempty boundary, hence it containsm the soul

E‘ -
¥ Asgertion e lz g1 <7 for any fes, .
Proof. It follows from 5.2 that |;3%) <7, o Lot
y €2, be (one of) the closest to &  point of 2% ,
Then 2, 1s a half of the spherical suspension on 22, with
apex ! € 3, (aee a sinilar argument in 6+1)s Hence for
any yegx, we have £ §4 § £ %, o On the other hand

A

g frx y £ "%, tor at least one such , sgince ¥, ia -\
the soul. Now the asmertion follows from the angle cor {gon
inequality. g
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Assertion 2. o (5.) = sin 1535120 (V5 (5 )*
Proof. Let |§, 22]=£ . Let ¥/ =2; denote the set of
directions of shortest lines ;—‘xz » such that /€02,

g, pl=e; Z,={eeZ « I3ple BT :%zfgezfx:g’dzsls;zdsg’}

Clearly Z}x =2, VU2, mne engle comparison inequality impli-

@s |74l €ci@  provided the direction of the shortest line

3. lies in Z;, . We apply volume estimates 25.2, [I, 9.2,

9.3] and get Vo, ,(Z,)<C€  and Ve, (Z) <cE . ‘wm
Flx ¥>0 and consider paths >, x;... X, nade up from

shortest lines X; x;,,; of two types. Segments of the first

type must satisty g, X5 I €v  1n v Ixpxag] < via,

‘F("wﬂ 7’/1:("' )+ ’&f (E.» ‘ *t“uuf oo by s -
.., Seghents o.f the second type must satisfy § (m,)‘?j?{x)
and the sum of their lengths must be < v (f(x,.)-L(x)).
e« It ip easy to see that staxrting from arbitrary
point X, € M" onecan oconstruct such a path with $£(x.)>a-).
(Otherwise assume Sup £(x,) =4 <a-y
and come %o a contradiction).
Assexrtion 3. Let %,” --- %, and Yo 4., ba@ paths as ebove,
zem® o HEaf) « Then |

lax,] < lzx‘]Hiova'ia_ for O<j sisvwig
h‘ENj' < %9, +2€71 l[!(x;)-ﬁwjjl toave™ for o¢igwm, ocjsl,
wh ene. = ind #(X] () for XxeM™ fx)sf(x,), #(Jg)

(Assention 2 mpuu thak  £>0 povided f(x;), Pyl < a)
Exoof. Por the segments ) x of the Lirst type we

have :2 xou'i !3 xd' 29 l‘l«l Kddril < ‘EX ' N qva"i (F(X.Cﬂ) P(&))
provided [Ex lzva  since L& x, < %+ o For seg-

menta of the second type we have lzx, |« (2314 Iy, Xgagl -
Summing up we get (EX < 12Xl +{0avet  The proof ¢o# the
second inequality is similex,

Assertion 3 implies that paths with 2ixed starting poink
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X converge (as V—-O) to a " coptinuw}jcurve X (€)
fw gt o, such that {(x () =t . Moreover, xg ] 2
7 1y, (6 ¥y (¢/]  provided max { f), fipfstca , and f!xitlglé
€ Iyl Provided f(x)£t< fi¥)sa. o Therefore we may define
Xx,0¢t ¢ §x '

a doformation ¥ (yt)= { » thet satisfies

5 (e, fix)etea

[P0, T (5.8)] 517 (ots) Flyta )] for o0sty <t,<a; F(xa)es,.

6+4. In contrast with the case of Riemannian manifolds,

there exists a nonnegatively ourved complete noncompact
Alexendrov's space which is not homeomorphic 0 a (locally
trdviel) bundle over its soul. For example, consider the na-
" tural orthogonal projection 7:Kp (€P2) = K, (&PY) 7(212,,2,,8)-
= (e 2‘1»3,;) , Whexe 'Lz(lz'flz“lzs'z): v ( iZ,I"HZ&i’W lEdlz),
end take M7 =77%(8&,(4) (we assune that €P> has canoni-
cal metric with sectional curvatures between 1 and 4). It
is easy to see that M° 18 a convex subset of K ( ¢P?) ,
hence it is a complete noncompact nonnegatively curved Alexan-
drov's space. The doubling M° of M® has the doubling

S o B2 <K, (€F) as its soul. But M° can not be
homeomorphic to a fiber bundle over S wsince S is homeomoxs:
phic to the J3 =sphere, and M° has two singular points.
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