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Introduction

These lectures were a part of the geometry course held during the Fall 2011
MASS Program at Penn State (www.math.psu.edu/mass/). The online version
of these lectures [22] also contains video illustrations, hints and solutions for
most of the exercises, and a minimalistic section covering preliminaries.

The lectures discuss piecewise distance preserving maps from a 2-dimensional
polyhedral space into the plane. Roughly speaking, a polyhedral space is a space
that is glued together out of triangles, for example the surface of a polyhedron.
If one imagines such a polyhedral space as a paper model, then a piecewise
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distance preserving map into the plane is essentially a way to fold the model so
that it lays flat on a table.

We only consider the 2-dimensional case to keep things easy to visualize.
However, most of the results admit generalizations to higher dimensions. These
results are discussed in the Final Remarks, where proper credit and references
are given.

Acknowledgments. We would like to thank Arseniy Akopyan, Robert Lang,
Alexei Tarasov for their help. Also we would like to thank all the students in
our class for their participation and true interest.

Notations. All the necessary background material is discussed in the first three
chapters of the book “Metric Geometry” by Burago–Burago–Ivanov [10].

Let us list the less standard conventions which we use in the lectures.
� The distance between two points x and y in a metric space X will be

denoted as
|x− y|, or |x− y|X ;

the latter notation is used if we need to emphasize that the distance is
measured in the metric space X.

� A metric space X is called a length space if for any two points x, y ∈ X
and any ε > 0, there is a curve α from x to y such that

lengthα < |x− y|X + ε.

� Let f : X → Y be a continuous map between two metric spaces. Then

◦ f is called distance preserving if

|f(x)− f(y)|Y = |x− y|X

for any pair of points x, y ∈ X;

◦ f is called distance non-expanding if

|f(x)− f(y)|Y 6 |x− y|X

for any pair of points x, y ∈ X;

◦ f is called length-preserving if for any curve α in X, we have

lengthα = length(f ◦ α).

� A length space P is called a polyhedral space if it admits a finite triangu-
lation such that each simplex in P is isometric to a simplex in Euclidean
space.

1 Zalgaller’s folding theorem

Let P be a polyhedral space. A map f : P → Rn is called piecewise distance
preserving if there is a triangulation of P such that for any simplex ∆ in the
triangulation, the restriction f |∆ is distance preserving.

1.1. Exercise. Show that any piecewise distance preserving map is continuous,
length-preserving, and distance non-expanding.
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The following statement might look obvious, but try to prove it rigorously.

1.2. Exercise. Suppose that an m-dimensional polyhedral space admits a piece-
wise distance preserving map into Rn. Show that n > m.

In fact, the converse of the statement in the exercise is true. In other words,
dimension is the only obstruction to the existence of a piecewise distance pre-
serving map into Euclidean space. The following theorem asserts this for the
case where m = 2.

1.3. Zalgaller’s theorem. Any 2-dimensional polyhedral space admits a piece-
wise distance preserving map into the Euclidean plane.

Imagine that you have a paper model of a 2-dimensional polyhedral space
P in your hands, and you fold this model so that it lays flat on a table.1 This
is an intuitive way to think of a piecewise distance preserving map f : P → R2.
To make it closer to the actual definition, one has to imagine that the layers of
paper can go through each other. Zalgaller’s theorem says that such a “folding”
is always possible; see also Exercise 5.3.

The following exercise shows that in this process, new folds may need to be
introduced across the triangles of the given triangulation of P .

1.4. Exercise. Let ∆ be a non-degenerate 3-dimensional simplex in R3 and let
∂∆ be its boundary, equipped with the induced length metric. It is a polyhedral
space glued from 4 triangles — the faces of ∆.

Show that ∂∆ does not admit a map to R2 which is distance preserving on
each of the 4 faces of ∆.

Describe explicitly a piecewise distance preserving map

f : ∂∆→ R2

which is distance preserving on 2 out of the 4 faces of ∆. (You will have to
subdivide the other 2 faces into smaller triangles.)

Below we give two similar proofs of Zalgaller’s theorem: the first with cheat-
ing and the second without. In the first proof, we use the following claim without
proof.

Ê Any 2-dimensional polyhedral space admits an acute triangulation, that is,
a triangulation such that all of its triangles are acute.

1.5. Exercise. Show that any triangle admits an acute triangulation.

Notice that there is more to proving Ê than simply subdividing each triangle
into acute triangles. One must be careful that the subdivisions of two triangles
that share an edge are compatible on that common edge. The claim Ê was
essentially proved in [23], see also [7].

Proof using Ê. Fix an acute triangulation T0 of P provided by Ê. Mark all its
vertices in white and denote them by {w1, . . . , wk}.

1We recommend that you create such a paper model, say the surface of a cube, and then
try to fold it on the table.
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The Voronoi domains within one
triangle.

For each wi, consider its Voronoi domain
Vi, which is the subset

Vi = { x ∈ P | |x− wi| 6 |x− wj | for any j } .

Denote by S(wi) the star of wi, which is the
union of all simplices of the triangulation T0

which contain wi.
Since an acute triangle contains its own

circumcenter, it is impossible for the Voronoi
domain of a vertex of a triangle to cross the
opposite edge. From this it follows that

Vi ⊂ S(wi)

for all i. In particular, for any point x ∈ Vi, there is a unique geodesic [wi, x],
which is a line segment in a single triangle or an edge of T0.

Note that in each triangle of T0, we have one point where three Voronoi
domains meet and three points on the sides of triangle where pairs of Voronoi
domains meet. Let us bisect each edge of T0 and subdivide each triangle into 6
triangles as it is done on the picture above (solid lines only).

In this way we obtain a new triangulation T1. We mark all the new vertices
of T1 in black.

Note that
1. Each Vi is a union of all triangles and edges of T1 which have wi as a

vertex.
2. Each triangle in T1 has one white and two black vertices.
3. The triangles in T1 come in pairs of congruent triangles, they share two

black vertices and have different white vertices.
Given a point x ∈ P , set

%(x) = min
i
{|wi − x|}.

Notice that if x ∈ Vi, then %(x) = |wi − x|. Given x ∈ Vi, we denote by ϑi(x)
the minimum angle between [wi, x] and any edge of T1 coming from wi.

By Property 3, if x ∈ Vi ∩ Vj then ϑi(x) = ϑj(x). In other words, the
function ϑ given by

ϑ(x) = ϑi(x), x ∈ Vi
is well-defined on the set P\{w1, . . . , wn}. Moreover, ϑ is a continuous function.

We now describe the map f : P → R2 using polar coordinates on R2. We
define f(wi) = 0 and f(x) = (%(x), ϑ(x)) if x ∈ P\{w1, . . . , wn}.

Subdividing each triangle by the angle bisector at the white vertex (see the
dashed lines on the picture above) gives a new triangulation T2 which satisfies
the conditions of the theorem for the constructed map f .

Now we modify the above proof so it does not use Claim Ê. The only property
we really need for the triangulation is that Vi ⊂ S(wi). On one hand, this
inclusion does not hold for a general triangulation. A simple example of this is
obtained by gluing an equilateral triangle to the longer side of obtuse triangle.
On the other hand, by increasing the number of Voronoi domains, we can arrange
that this inclusion holds without making the triangulation acute.
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A triangle ∆ of T0 with marked white
points and the intersections of their
Voronoi domains with ∆.

Proof without using Ê. Fix a triangula-
tion T0 of P that is not necessarily acute.
We will construct new triangulations T1

and T2 of P by subdividing the trian-
gles of T0, and we will define a map
f : P → R2 which is distance preserving
on each triangle of T2. The vertices of T1

will be colored either white or black in
such a way that each triangle of T1 will
have two black vertices and one white
vertex.

We shall first describe the set of white
vertices.

Fix a small number ε > 0. We mark
in white all of the vertices of T0, as well
as the points on the edges of triangles of
T0 with the property that the distance to the closest vertex of the edge is an
integer multiple of ε. In this way we mark a finite number of points white.
Label the white points by w1, . . . , wk.

As in the previous proof, let Vi be the Voronoi domain of wi, so that

Vi = { x ∈ P | |x− wi| 6 |x− wj | for any j } .

We also let S(wi) be the star of wi in T0, which is the union of all simplices of
T0 which contain wi. By the following exercise, we can assume that Vi ⊂ S(wi)
for each i, by taking a suitably small ε.

1.6. Exercise. Let ` be the minimal length of the edges in the triangulation,
and let α be the minimal angle of all the triangles in T0. Show that if ε < `·α

100 ,
then Vi ⊂ S(wi) for each i.

Fix a triangle ∆ of T0. Note that for any wi ∈ ∆, the intersection Vi ∩ ∆
is a convex polygon. This follows because for any two points wi, wj ∈ ∆, the
inequality

|x− wi| 6 |x− wj |

describes the set of all points x ∈ ∆ which lies on one side of the bisecting
perpendicular to wi and wj . Let us color the vertices of all of the polygons
Vi ∩∆ in black, if they are not already white.

If T0 contains an edge E which is not a side of a triangle then color the
midpoint of E in black.

We’ll now describe the triangulation T1. The vertice of T1 are the black and
white vertices. A white point wi is connected by an edge to each black point in
Vi. A pair of black vertices b and b′ are connected by an edge if it forms a side
of some Vi ∩ ∆ (for some ∆ and wi ∈ ∆). In this case wi, b and b′ also form
a triangle of T1. Notice that each black-black edge is a side of two congruent
triangles of T1 with different white vertices.

The remaining part of the proof is the same as before. We define

%(x) = min
i
{|wi − x|P }
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and ϑ(x) for x ∈ Vi as the minimal angle between [wi, x] and any edges in T1

coming from wi. Then define the map f : P → R2 so that f(wi) = 0 for each i
and f(x) = (%(x), ϑ(x)) in polar coordinates.

Further subdividing each triangle of T1 in two along the angle bisector from
the white vertex produces a new triangulation T2. It is straightforward to see
that the constructed map f is distance preserving on each triangle of T2.

Use Zalgaller’s theorem to show the following.

1.7. Advanced exercise. Any 2-dimensional polyhedral space is isometric to
the underlying set of a simplicial complex in Rn, equipped with its induced length
metric.

We end this section with an entertaining exercise.

1.8. Exercise. Let T be a triangulation of a convex polygon Q in R2 such
that each triangle is colored either black or white. Show that the following two
conditions are equivalent.

a) There is a piecewise distance preserving map Q→ R2 for this triangulation
which preserves the orientation of each white triangle and reverses the
orientation of each black triangle.

b) The sum of black angles around any vertex of T which lies in the interior
of Q is either 0, π or 2·π.

2 Brehm’s extension theorem

2.1. Brehm’s extension theorem. Let a1, . . . , an and b1, . . . , bn be two col-
lections of points in R2 such that

|ai − aj | > |bi − bj |

for all i and j, and let A be a convex polygon which contains a1, . . . , an. Then
there is a piecewise distance preserving map f : A→ R2 such that f(ai) = bi for
all i.

In other words, if F = {a1, . . . , an} is a finite subset of a convex polygon
A, then any distance non-expanding map ϕ : F → R2 extends to a piecewise
distance preserving map f : A→ R2.

Proof. The proof is by induction on n.
The base case n = 1 is trivial: we can take

f(x) = x+ (b1 − a1),

which is distance preserving on all of A.
Applying the induction hypothesis to the last n− 1 pair of points, we get a

piecewise distance preserving map h : A→ R2 such that h(ai) = bi for all i > 1.
We will use h to construct the desired map f : A→ R2.

Consider the set

Ω = { x ∈ A | |a1 − x| < |b1 − h(x)| } .

We can assume that a1 ∈ Ω; otherwise h(a1) = b1 and we can take f = h. We
make the following claim.
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Ê The set Ω is star-shaped with respect to a1. That is, if x ∈ Ω then the line
segment [a1, x] lies in Ω.

Indeed, if y ∈ [a1, x] then

|a1 − y|+ |y − x| = |a1 − x|.

Since x ∈ Ω, we have
|a1 − x| < |b1 − h(x)|.

Since h is distance non-expanding (see Exercise 1.1), we have

|h(x)− h(y)| 6 |x− y|.

Combining the above with the triangle inequality, we see

|a1 − y| = |a1 − x| − |x− y|
< |b1 − h(x)| − |h(x)− h(y)|
6 |b1 − h(y)|.

This proves y ∈ Ω, which establishes Claim Ê.

A

Ei
Ti

a1Ω

∂AΩ

Z

blind
zone

Recall that ∂AΩ denotes the boundary of Ω considered as a subset of the
space A. This may be different a different set than ∂R2Ω. Note that

Ë |a1 − x| = |b1 − h(x)|

for any x ∈ ∂AΩ. To see this, consider a sequence of points in Ω that converges
to x and another sequence of points in A\Ω that converges to x, and then use
the fact that h is continuous (Exercise 1.1).

Further, note the following.

Ì The boundary ∂AΩ is the union of a finite collection of line segments E1, . . .
. . . , Ek which intersect each other only at the common endpoints. Moreover, h
is distance preserving on each of these segments.
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Indeed, fix a triangulation of A so that h is distance preserving on each
triangle. Note that for any point x ∈ ∂AΩ, this triangulation has a triangle
∆ 3 x such that ∆ ∩ Ω 6= ∅. Fix such a triangle ∆. Since h is distance
preserving on ∆, the restriction h|∆ can be extended uniquely to an isometry
ι : R2 → R2.

Set b′1 = ι−1(b1). Note that

|b′1 − x| = |b1 − h(x)|

for any x ∈ ∆, because ι is an isometry and ι|∆ = h|∆.
Observe that a1 6= b′1. Assuming otherwise, we see

|a1 − x| = |b′1 − x| = |b1 − h(x)|

for any x ∈ ∆, which gives the contradiction ∆ ∩ Ω = ∅.
Denote by `∆ the perpendicular bisector to [a1, b

′
1], which coincides with the

set of all points equidistant from a1 and b′1. By the definition of Ω, for any
x ∈ ∆ we have that x ∈ Ω if and only if x and a1 lie on the same side from
`∆. Therefore ∂AΩ is the union of the intersections ∆ ∩ `∆ for all ∆ as above.
Hence Ì follows, as there are only finitely many such ∆.

For each edge Ei in ∂AΩ, consider the triangle Ti with vertex a1 and base
Ei. Condition Ë implies that there is an isometry ιi of R2 such that ιi(a1) = b1
and ιi(x) = h(x) for any x ∈ Ei.

Let us define f(x) = h(x) for any x /∈ Ω and f(x) = ιi(x) for any x ∈ Ti.
This defines f on A\Ω and on all line segments from a1 to ∂AΩ.

This completely defines f on A in the case where ∂AΩ = ∂R2Ω. If Z =
= ∂R2Ω\∂AΩ is nonempty, then the points which lie on the lines between a1

and the points in Z form a “blind zone” — this is the subset of A where f yet
has to be defined.

Note that the closure of the blind zone is a union of a finite number of convex
polygons Q1, . . . , Qm which intersect only at the common vertex a1. Each Qi
is bounded by a broken line in the closure of Z and two line segments from a1

to the ends of this broken line.
So far the distance non-expanding map f is defined only on the two sides of

each Qi coming from a1, and by construction it is distance preserving on each
of these two sides. From the exercise below, it follows that one can extend f to
each of Qi while keeping it piecewise distance preserving.

2.2. Exercise. Let Q = [a1x1 . . . xk] be a convex polygon and b1, y1, yk be
points in the plane. Assume that

|b1 − y1| = |a1 − x1|, |b1 − yk| = |a1 − xk|, |y1 − yk| 6 |x1 − xk|.

Then there is a piecewise distance preserving map f : Q→ R2 such that f(x1) =
= y1, f(xk) = yk and f(a1) = b1.

Let us finish this lecture with some additional exercises.

2.3. Exercise. Let a1, . . . , an and b1, . . . , bn be two collections of points in R2

such that
|ai − aj | > |bi − bj |
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for all i and j. Let A = Conv{a1, . . . , an} and B = Conv{b1, . . . , bn} be their
convex hulls. Show that

perimA > perimB,

where perimA denotes the perimeter of A.
Is it true that

areaA > areaB?

The following exercise is a 2-dimensional case of Alexander’s theorem [4]. It
has quite a simple solution, but it plays an important role in discrete geometry,
check for example the paper [6] by Bezdek and Connelly.

2.4. Advanced exercise. Let a1, . . . , an and b1, . . . , bn be two collections of
points in R2. Let us consider R2 as a coordinate plane R2×{0} in R4 = R2×R2.

Construct a collection of curves αi : [0, 1] → R4 such that αi(0) = ai =
= (ai, 0), αi(1) = bi = (bi, 0) and the function `i,j(t) = |αi(t)− αj(t)| is mono-
tonic (i.e., increasing, decreasing or constant) for each i and j.

2.5. Exercise. Use Brehm’s extension theorem to prove Kirszbraun’s theorem,
stated below, in the special case where Q is a finite set.

2.6. Kirszbraun’s theorem. Let Q ⊂ R2 be arbitrary subset and f : Q→ R2

be a distance non-expanding map. Then f admits a distance non-expanding
extension to all of R2. In other words there is a distance non-expanding map
F : R2 → R2 such that the restriction F |Q coincides with f .

3 Akopyan’s approximation theorem

Let P be a polyhedral space. A map h : P → Rn is called piecewise linear if
there is a triangulation of P such that restriction of h to any simplex ∆ is a
linear map. This means that if v0, . . . , vk are the vertices of ∆, then for any
x ∈ ∆ we have

h(x) = λ0 ·h(v0) + · · ·+ λk ·h(vk),

where (λ0, . . . , λk) are the barycentric coordinates of x.

3.1. Exercise. Show that if P is a 2-dimensional polyhedral space, then any
piecewise distance preserving map f : P → R2 is piecewise linear.

We shall be interested in approximating piecewise linear maps by piecewise
distance preserving maps. Since all piecewise distance preserving maps are dis-
tance non-expanding, it only makes sense to try this approximation for distance
non-expanding maps.

3.2. Akopyan’s theorem. Assume P is a 2-dimensional polyhedral space.
Then any distance non-expanding piecewise linear map h : P → R2 can be ap-
proximated by piecewise distance preserving maps.

More precisely, for any ε > 0 there is a piecewise distance preserving map
f : P → R2 such that

|f(x)− h(x)| < ε

for all x ∈ P .
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Akopyan’s theorem implies the existence of many piecewise distance pre-
serving maps from P into R2. In particular, it implies Zalgaller’s theorem (1.3).
To see this, consider the constant map h : P → R2; i.e., the map which sends
the whole space P to a single point. Since h is piecewise linear, we can apply
Akopyan’s theorem to produce piecewise distancing preserving map f arbitrarily
close to h.

As you will see below, the proof of Akopyan’s theorem will not use Zalgaller’s
theorem. We still consider the proof of Zalgaller’s theorem to be important
because it gives a very clear geometric description of the piecewise distance pre-
serving map. In constrast, the maps produced by Akopyan’s theorem will rely on
the recursive construction of Brehm’s theorem, which is harder to understand.

3.3. Exercise. Show that if P is a convex polygon in R2, then the above
theorem follows from Brehm’s extension theorem (2.1).

The main idea in the proof of Akopyan’s theorem is to triangulate P and
use Brehm’s extension theorem on each triangle, as in the previous exercise.
Unfortunately, it is not that simple. The big technical issue that arises is that if
two triangles share a common edge, we need to ensure that the maps produced
using Brehm’s theorem agree on that common edge.

h(z0)

h(z1)

h(x)

. . .

h(zn)

wn(x)

To address this issue, we will use the following
zigzag construction. It produces a piecewise dis-
tance preserving map which is close to a given a
distance non-expanding linear map defined on a
line segment. For the construction, we fix a unit
vector e in R2. The choice of e does not mat-
ter, but the same e must be used uniformly in all
zigzag constructions that follow.

Zigzag construction. Let E be a line segment and
h : E → R2 be a distance non-expanding linear
map. Let ` = lengthE and `′ = lengthh(E).
Since h is distance non-expanding, we have `′ 6 `.

Fix a positive integer n, and subdivide E into
n equal intervals. Denote by z0, . . . , zn the endpoints of these intervals.

Note that the image h(E) is either a line segment or a point. In the first
case, let u be a unit normal vector to h(E); otherwise, let u = e.

Given x ∈ E, set

sn(x) = min
i
{|zi − x|},

wn(x) = k·sn(x)·u+ h(x),

where k =
√

1− (`′/`)2. If we subdivide E further by adding the midpoints
between any two consecutive endpoints, then wn is distance preserving on each of
the resulting subintervals. This shows that wn is piecewise distance preserving.
Moreover

|wn(x)− h(x)| 6 `
2·n

for any x ∈ E, because k 6 1 and sn(x) 6 `
2·n .

The piecewise distance preserving map wn is the result of the n-step zigzag
construction applied to h.
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Given a triangulation T of a polyhedral space P , let T 1 denote the 1-skeleton
of T . Notice that T 1 is a 1-dimensional polyhedral space when equipped with
its induced length metric, which is different from the subspace metric it inherits
from P .

The following proposition is the main technical step in the proof of Akopyan’s
theorem.

3.4. Proposition. Let T a triangulation of a 2-dimensional polyhedral space
P , T 1 be its 1-skeleton and let h : T 1 → R2 be a piecewise linear map such that

|h(x)− h(y)|R2 6 |x− y|P

for any x, y ∈ T 1. Then for any ε > 0, there is a piecewise distance preserving
map w : T 1 → R2 such that

|w(x)− w(y)|R2 6 |x− y|P

for any x, y ∈ T 1 and
|w(x)− h(x)| < ε

for all x ∈ T 1.

Proof. First we prove the statement under the following additional assumption
on h:

Ê For some fixed δ > 0, we have

|h(x)− h(y)|R2 6 (1− δ)·|x− y|P

for any x, y ∈ T 1 and
h(v) = h(x)

for any vertex v of T 1 and point x ∈ T 1 such that |v − x|P 6 δ.

Let S denote the subdivision of T 1 such that h is linear on each edge of S.
Subdividing S further if necessary, we may assume without loss of generality
that each edge of S which comes from a vertex of T 1 has length δ. (To perform
this subdivision, we have to assume that δ in Ê is sufficiently small.)

Denote by ` the maximal length of the edges in T 1. Let us apply the n-step
zigzag construction to each edge of S. Since the maps from the zigzag con-
struction agree at the common vertices of different edges, we obtain a piecewise
distance preserving map wn : T 1 → R2 such that

Ë |wn(x)− h(x)| 6 `
2·n

for all x ∈ T 1.
We shall show that the inequality

|wn(x)− wn(y)|R2 6 |x− y|P

holds for all x, y ∈ T 1, provided n is sufficiently large. Notice that

Ì |wn(x)− wn(y)| 6 |x− y|P if x and y lie on the same edge.

This follows since |x− y|P = |x− y|E whenever x and y lie on the same edge E
of T 1, as well as the fact that wn is distance non-expanding on E.
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From Ê and Ë, we see that

|wn(x)− wn(y)|R2 6

6 |wn(x)− h(x)|R2 + |h(x)− h(y)|R2 + |h(y)− wn(y)|R2 6

6 |x− y|P +
(
`
n − δ ·|x− y|P

)
for any x and y in T 1.

Now suppose |wn(x) − wn(y)|R2 > |x − y|P for some x, y ∈ T 1. Then from
above, we have |x− y|P < `

n·δ , which shows that

Í |x− y|P < C
n .

for a constant C which does not depend on x or y. Thus, Ì and Í imply the
following.

Î For sufficiently large2 n, if |wn(x)−wn(y)| > |x− y|P then both x and y lie
on different edges which come from one vertex, say v of T 1, and

|x− v|P , |y − v|P 6 δ.

Let x, y and v be as in Î. Take the point x′ on the same edge as y such that
|v−x′|P = |v−x|P . It follows from the construction of wn that wn(x′) = wn(x).
(Notice that by Ê, wn is produced by the zigzag construction in the case where
the image of h is a point.) Therefore

|wn(x)− wn(y)|R2 = |wn(x′)− wn(y)|R2 6

6 |x′ − y|P =

=
∣∣|x− v|P − |y − v|P ∣∣ 6

6 |x− y|P .

δ δ

The graph of qδ on one edge.

Thus we have shown that if n is sufficiently
large, then the inequality

|wn(x)− wn(y)|R2 6 |x− y|P

holds for any pair x, y ∈ T 1. Let w = wn for
such an n which additionally satisfies `

2·n < ε.
Then from Ë, it follows that

|w(x)− h(x)| < ε

for all x ∈ T 1. Thus we have proved the propo-
sition under the assumption Ê.

It remains to be shown that the general case
can be reduced to the case where Ê holds. We
shall achieve this by approximating h by a map that satisfies Ê.

2The size of n does not depend on x or y. To ensure x and y do not lie on disjoint edges, n
must be large enough so that C/n is less than the minimal distance between any two disjoint
edges. To ensure that both x and y are within δ of v, we must choose n large enough in a
way which will depend on the minimal angle in any triangle. For both issues, we are using
the fact that T has a finite number of triangles.
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For small δ > 0 (say less than half the smallest edge length), consider the
map

qδ : T 1 → T 1

which smashes the δ-neighborhood of each vertex of T 1 to the vertex and linearly
stretches the remaining part of the edge, as in the figure.

Let Lδ be the optimal Lipschitz constant of qδ; i.e., the minimal number
such that

|qδ(x)− qδ(y)|P 6 Lδ ·|x− y|P
for all x, y ∈ T 1. Notice that Lδ → 1 as δ → 0+. Then the map

hδ
def

== 1−δ
Lδ
·(h ◦ qδ)

is piecewise linear and satisfies condition Ê. Moreover, we can choose δ small
enough so that

|hδ(x)− h(x)| < ε
2

for all x ∈ T 1.
By the previous part of the proof, there is a piecewise distance preserving

map w : T 1 → R2 such that

|w(x)− hδ(x)| < ε
2 , |w(x)− w(y)|R2 6 |x− y|P

for all x, y ∈ T 1. By the triangle inequality,

|w(x)− h(x)| < ε

for all x ∈ T 1.

Proof of 3.2. Fix a fine triangulation T of P , one for which the diameter
of each triangle is smaller than ε

3 . Let T 1 denotes the 1-skeleton of T . By
Proposition 3.4, there is a piecewise distance preserving map w : T 1 → R2 such
that

|w(x)− h(x)|R2 < ε
3

for any x ∈ T 1 and
|w(x)− w(y)|R2 6 |x− y|P

for any x and y ∈ T 1.
We shall use Brehm’s extension theorem (2.1) to extend w to a piecewise

distance preserving map on P . To do this, let S be a subdivision of T 1 so
that w is distance preserving on each edge of S. Fix a triangle ∆ of T . Let
a1, . . . , an be the vertices of S on the boundary of ∆, and let bi = w(ai) for each
i. By applying Brehm’s theorem, we obtain a piecewise distance preserving map
f∆ : ∆→ R2.

Since w is distance preserving on each edge of S, the maps f∆ and w coincide
on the boundary of ∆. In particular, if ∆ and ∆′ share a common edge, then
f∆ and f∆′ agree on that common edge. Therefore the collection of maps {f∆}
determines a single piecewise distance preserving map f : P → R2.

We’ll show f satisfies the conclusion of the theorem. Let x ∈ P be arbitrary
and let y be a point on the edge of a triangle in T that contains x. Then

13



|x− y| < ε
3 by our choice of T . We see

|f(x)− h(x)| 6 |f(x)− w(y)|+ |w(y)− h(y)|+ |h(y)− h(x)| =
= |f(x)− f(y)|+ |w(y)− h(y)|+ |h(y)− h(x)| 6
6 2·|x− y|+ |w(y)− h(y)| <
< ε,

because w(y) = f(y) and the maps f, h are distance non-expanding.

We close this section with a counterexample explaining one way in which we
cannot improve Akopyan’s theorem. One might expect that a stronger state-
ment holds, namely that the map f in Akopyan’s theorem can be constructed
so that it coincides with h on a given finite set of points. The following exercise
shows that this cannot be done in general.

3.5. Exercise. Consider the following 5 points in R3:

o = (0, 0, 0), p = (0, 0, 1), a = (2, 0, 0), b = (−1, 2, 0), c = (−1,−2, 0)

o

p

a

b

c

Let P be the “tripod” which is the polyhedral space
consisting of the three triangles 4opa, 4opb and
4opc in R3, and equipped with the induced length
metric.

Note that the restriction of the coordinate pro-
jection π(x, y, z) = (x, y, 0) to P is distance non-
expanding and piecewise linear. We have that

π(o) = π(p) = o, π(a) = a, π(b) = b, π(c) = c.

Show that there is no piecewise distance preserving map f : P → R2 = R2 ×
× {0} such that f(a) = a, f(b) = b and f(c) = c.

4 Gromov’s rumpling theorem

Recall that S2 denotes the unit sphere in R3, which we equip with its induced
length metric. Here is our main theorem.

4.1. Theorem. There is a length-preserving map f : S2 → R2.

Such a map f has to crease on an everywhere dense set in S2. More precisely,
the restriction of f to any open subset of S2 cannot be injective.3

In the proof of the theorem we will use the following exercise.

4.2. Exercise. Let K be a convex polyhedron in R3. Given a point x in R3,
show that there is a unique point x̄ ∈ K which minimizes the distance |x − x̄|.
Moreover show that the projection map

ϕ : R3 → K, ϕ(x) = x̄

3To prove this, one can show that if f is injective and length-preserving on an open set
U ⊂ S2, then f maps (sufficiently short) geodesics to straight lines (this requires the Domain
Invariance Theorem, see for example Section 2.9 in [3].) It follows that the restriction of f to
U is locally distance preserving, which is impossible.

14



is distance non-expanding.

Proof of Theorem 4.1. Consider a nested sequence K0 ⊂ K1 ⊂ . . . of convex
polyhedra in R3 whose union is the open unit ball. Let Pn = ∂Kn denotes
the surface of Kn, equipped with the induced length metric. Note that Pn is a
2-dimensional polyhedral space for each n.

Let ϕn denote the projection onto Kn, as in Exercise 4.2, which is a distance
non-expanding map. Since Kn ⊂ Kn+1, it follows that ϕn(Pn+1) = Pn. Note
that one can triangulate Pn and Pn+1 in such a way that the restriction of
ϕn to any simplex of Pn+1 is an orthogonal projection onto some simplex of
Pn. In particular the restriction of ϕn to Pn+1 is piecewise linear4 and distance
non-expanding with respect to the length metrics on Pn+1 and Pn.

We claim that for any point x ∈ S2, there is unique sequence of points
xn ∈ Pn such that xn → x as n → ∞ and ϕn(xn+1) = xn for all n. The
uniqueness follows since the maps ϕn are distance non-expanding. To show
existence, fix any sequence zn ∈ Pn such that zn → x. Consider the double
sequence yn,m ∈ Pn, defined for n 6 m, such that yn,n = zn and yn,m =
= ϕn(yn+1,m) if 0 6 n < m. Then set

xn = lim
m→∞

yn,m.

4.3. Exercise. Show that the limit above exists and ϕn(xn+1) = xn for any n.
Then show that xn → x as n→∞.

Let xn → x ∈ S2 be the sequence as above. Define ψn : S2 → Pn by ψn(x) =
= xn. We have that ψn is distance non-expanding, ψn = ϕn ◦ ψn+1 for all n,
and for any p, q ∈ S2,

Ê |pn − qn|Pn → |p− q|S2 as n→∞,

where pn = ψn(p) and qn = ψn(q).
The desired length-preserving map f : S2 → R2 will be a “limit” in some

sense of a sequence of piecewise distance preserving maps fn : Pn → R2. The
maps will be constructed recursively to satisfy

|fn+1(x)− fn(ϕn(x))| < εn

for a carefully chosen sequence (εn) of positive numbers that decays rapidly to
0.

Recursive construction of fn : Pn → R2 and εn. Assume we have a piecewise
distance preserving map fn : Pn → R2 and a given εn. The composition

fn ◦ ϕn : Pn+1 → R2

is piecewise linear and distance non-expanding. So we can apply Akopyan’s
Theorem 3.2 to construct a piecewise distance preserving map fn+1 : Pn+1 → R2

which is εn-close to fn ◦ ϕn.
Let M(n+1) denote the number of triangles in a triangulation of Pn+1 such

that fn+1 is distance preserving on each triangle. Set

Ë εn+1 =
εn

2·M(n+ 1)
.

4See the definition of page 9.
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In this way, we recursively define the construction of fn and εn. It goes as
follows:

1. Choose an arbitrary ε0 > 0 and take a piecewise distance preserving map
f0 : P0 → R2, say the one provided by Zalgaller’s folding theorem (1.3).

2. Use ϕ0, f0 and ε0 to construct f1.
3. Use f1 to construct ε1.
4. Use ϕ1, f1 and ε1 to construct f2.
5. Use f2 to construct ε2.
6. and so on.5

It remains to prove the following claim:

Ì The sequence of maps fn ◦ ψn : S2 → R2 converges to a length-preserving
map f : S2 → R2.

Since εn decays faster than ε0
2n , the sequence (fn ◦ ψn)(x) ∈ R2 is Cauchy,

hence convergent, for any fixed x. We define f : S2 → R2 by

f(x) = lim
n→∞

(fn ◦ ψn)(x).

By the recursive construction of fn, we have that

|(fn ◦ ψn)(x)− f(x)| < εn

for any x ∈ S2 and any n. Since each fn ◦ ψn is distance non-expanding, f is
distance non-expanding as well.

It only remains to show that the constructed map f : S2 → R2 is length-
preserving. Note that it suffices to show that

Í length(f ◦ α) > |p− q|S2

for any curve α between two points p, q ∈ S2. For the remainder of the proof,
we will need the following definition; it should be considered as an analog of
length of curve.

4.4. Definition. Let X be a metric space and α : [a, b]→ X be a curve. Set

`k(α)
def

== sup

{
k∑
i=1

|α(ti)− α(ti−1)|X

∣∣∣∣∣ a = t0 < t1 < · · · < tk = b

}
.

Note that given a curve α : [a, b]→ X, we have

`1(α) 6 `2(α) 6 `3(α) 6 . . . ,

`k(α)→ lengthα as k →∞,
`k(α) 6 lengthα for any k.

Moreover, if
`k(α) = lengthα

then α is a chain made from at most k geodesic segments.

5The procedure is similar to walking on stairs: you take a right step, which makes it
possible to take a left step, which in turn makes it possible to take a right step, and so on.
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The following exersise states that if two curves α and β are sufficiently close
then `k(α) ≈ `k(β). Note that the value | lengthα− lengthβ| might be large in
this case.

4.5. Exercise. Suppose that α, β : I → X are two curves which are close in
the sense that

|α(t)− β(t)|X < ε

for all t ∈ I. Show that

|`k(α)− `k(β)| 6 2·k·ε.

Now we come back to the proof of Í. Set pn = ψn(p) and qn = ψn(q). Let
β be an arbitrary curve from pn to qn in Pn. Note that one can find a shorter
curve γ from pn to qn whose image in any triangle of the triangulation of Pn
is a line segment, and moreover the endpoints of these line segments lie on β.
It follows that fn ◦ γ is a broken line in R2 with at most M(n) edges, whose
vertices we denote, in order, by

fn(pn) = z0, z1, . . . , zk = fn(qn).

Note that k 6M(n) and each zi lies on the curve fn ◦ β. Therefore

Î

|pn − qn|Pn 6 length γ =

= `M(n)(fn ◦ γ) =

= |z0 − z1|+ · · ·+ |zk−1 − zk| 6
6 `M(n)(fn ◦ β);

Fix a curve α from p to q in S2. By Exercise 4.5 and Ë, for all n we have

Ï |`M(n)(f ◦ α)− `M(n)(fn ◦ ψn ◦ α)| 6 2·M(n)·εn = εn−1.

Given ε > 0, we can choose n large enough so that εn−1 6 ε
2 and

|p− q|S2 − |pn − qn|Pn 6 ε
2 ,

which can be arranged by Ê. Applying Î for β = ψn ◦ α and Ï, we see

length(f ◦ α) > `M(n)(f ◦ α) >

> `M(n)(fn ◦ ψn ◦ α)− εn−1 >

> |pn − qn|Pn − εn−1 >

> |p− q|S2 − ε
2 − εn−1 >

> |p− q|S2 − ε.

Since ε > 0 was arbitrary,

length(f ◦ α) > |p− q|S2 .

Hence Í follows.
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5 Arnold’s problem on paper folding

This lecture is meant to be entertaining. Here we will discuss the following
problem posted by V. Arnold in 1956 [5, Problem 1956-1].

5.1. Problem. Is it possible to fold a square on the plane so that the obtained
figure will have a longer perimeter?

M M ′

q q
The answer to this problem depends

on the meaning of word “fold”.
For example, one can consider a se-

quence of foldings in which all layers
are folded simultaneously along a line.
By the following exercise, perimeter can
never increase under a folding of this
type.

5.2. Exercise. Show that each fold described above indeed decreases perimeter.
(Note that in general, the intersection of the line q with the polygon M in the
picture may be a union of line segments.)

Using only the foldings described above makes it impossible to unfold a layer
which lies on top of another layer, as shown in the following picture.

Note that the unfold increases the perimeter, although not beyond the perimeter
of the original square. It is still unknown if it possible to increase perimeter by
a sequence of such “folds” and “unfolds”.

Japanese crane. Now let us consider a more general definition of folding.
Imagine that we mark in advance the lines of folding and start to fold the paper
in such a way that each domain between folds remains flat all the time.

If you understand “folding” this way, then the answer to the problem is “yes”.
In some sense, this problem was solved by origami practitioners well before it
was even posed. The possibility to increase the perimeter slightly can be seen
in the base for the crane. This was known by origami masters for centuries6,
but mathematicians learned this answer only in 1998.

The base for the crane has four long ends and one short end. Two ends are
used for wings and the other two have to be thinned, as one is used for the
head and the other for the tail. Thinning twice each of the long ends makes it
possible to produce a base which can then be folded into the plane to obtain a
figure with larger perimeter.

6It appears in the oldest known book on origami, “Senbazuru Orikata,” dated 1797; but
for sure it was known much earlier.
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On the picture above, you can see the net of folds, the base, and the base with
opened out ends. On the net of folds, you can see the number of the layer in
the base. The dashed lines are the folds which appear at the opening out. The
perimeter increases by about 0.5%, and there are 80 layers in the end. We do
not know of a way to increase the perimeter with a smaller number of layers.

If a is the side of original square then it takes a bit less than a to go around
each of four needles and it takes about (

√
2− 1)·a to go around the short end,

resulting in a longer perimeter. Thinning the ends many times makes possible
to increase the perimeter by a value arbitrarily close to (

√
2− 1)·a.

The following picture describes another way to increase the perimeter, based
on an idea of Yashenko [25]. It can be obtained by recursive application of one
simple move. If one repeats this move sufficiently many times, we obtain a figure
with a longer perimeter. Since each iteration adds two layers near the concave
corner, the total number of layers in this model is much larger than in the crane
base.
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The sea urchin and the comb. It turns out the perimeter can be made arbi-
trarily large. This can be seen in the origami model for a sea urchin constructed
by Robert Lang in 1987 [19]. In 2004, a complete solution was discovered in-
dependently by Alexei Tarasov [24]. Tarasov constructs a folding of a “comb”,
which is shown in the picture on the right. More importantly, he proves that the
comb can be folded in a true way, in particular without starching and crooking
the paper as is often done in origami.

The online version of this lectures [22] also contains three movies which
describe Tarasov’s solution.

Foldings in 4-dimensional space. One can de-
fine a “folding” as a piecewise distance preserving
map from the square to the plane. These fold-
ings are yet more general than those which appear
above. The following exercise shows that it is not
always possible to realize such a map by folding a
paper model.

5.3. Exercise. Consider the part of regular tes-
sellation in the square � as on the picture.

Show that there is a map f : � → R2 which is
distance preserving on each polygon in the tessellation and such that it only
reverses the orientation gray polygons.7

Show that it is not possible to make a paper folding model for f .8

The obstructions described in the above exercise disappear in R4; i.e., one
can regard piecewise distance preserving maps as paper folding in 4-dimensional
space. Moreover, one can actually fold the square in R4, as prescribed by a given
piecewise distance preserving map.

By this we mean one can construct a continuous one parameter family of
piecewise distance preserving maps ft : � → R4, t ∈ [0, 1] with fixed triangula-
tion, say T , such that
� f0 is a distance preserving map from � to the coordinate plane R2 × {0}

in R4 = R2 × R2,
� the map f1 is our given piecewise distance preserving map to the same

coordinate plane,
� the map ft is injective for any t 6= 1.

7Less formally you need to “fold” along each segment in this tessellation.
8More formally, we need to think that the plane lies in the space R3, and we need to show

that the map f cannot be approximated by injective continuous maps �→ R3.
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The proof of last statement is based on Exercise 2.4. Let a1, . . . , ak be
the vertices of T and b1, . . . , bk be the corresponding images for the piecewise
distance preserving map. Set ft(ai) ∈ R2 × R2 to be

ft(ai) =

(
ai + bi

2
+ cos(π ·t)· ai − bi

2
, sin(π ·t)· ai − bi

2

)
;

so f0(ai) = (ai, 0) and f1(ai) = (bi, 0) for any i. We can extend ft linearly to
each triangle of T . Direct calculation show that `i,j(t) = |ft(ai) − ft(aj)| is
monotonic in t; in particular if |ai − aj | = |bi − bj | then `ij(t) is constant. This
proves that ft is piecewise distance preserving.

Further, direct calculations show that for any x, y ∈ �,

|ft(x)− ft(y)|2 = p− q · cos(π ·t)

for some constants p and q. Therefore if x 6= y then |ft(x)− ft(y)| > 0 for any
t 6= 1. In other words, ft is injective for any t 6= 1.

It follows that for the paper folding in R4, the existence of perimeter increas-
ing folds follows from Brehm’s theorem. It is sufficient to construct a distance
non-expanding map f from the square to the plane so that the perimeter of
its image is sufficiently long. Then applying Brehm’s theorem for a sufficiently
dense finite set of points in the square, we get a piecewise distance preserving
map h which is arbitrarily close to f . In particular we can arrange it so that
the perimeter of the image f(�) is still sufficiently long.

The needed map can be constructed as follows: Fix a large n and divide
the square � into n2 squares with side length a

n . Let d(x) denotes the distance
from a point x ∈ � to the boundary of the small square which contains x.
The function d : � → R takes values in [0, a

2·n ]. Further, let us enumerate the
squares by integers from 1 to n2. Given x ∈ � denote by i(x) the (say minimal)
number in this enumeration of a small square which contains x.

f−−→

Now for each i ∈ {1, . . . , n2} choose a unit vec-
tor ui ∈ R2 so that ui 6= uj if i 6= j. Consider the
map f : �→ R2 defined by

f(x) = d(x)·ui(x).

It is straightforward to check that the obtained map
is distance non-expanding. The image f(�) consists of n2 segments of length a

2·n
which start at the origin. So the perimeter of f(�) is equal to 2·n2 · a2·n = a·n.
So by taking n large enough, one can make the perimeter of the image f(�)
arbitrary large.

(The picture shows the case n = 4. In this case the perimeter of f(�) is
4·a, which is the same as perimeter of the original square. However for n > 4,
it gets larger.)

Final remarks

Zalgaller’s folding theorem. Zalgaller’s theorem holds in all dimensions: any
m-dimensional polyhedral space P admits a piecewise distance preserving map
to Rm.
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In [27], Zalgaller proved this statement for m 6 4. The trick described in
the “proof with no cheating” makes the proof work in all dimensions. This trick
first appeared in Krat’s thesis [17].

One may call a higher dimensional simplex acute if it contains its own cir-
cumcenter — this provides a natural generalization of an acute triangle to higher
dimensions. The existence of acute triangulations in higher dimensions seems
to be unlikely, but as far as we can see, nothing is known about these triangu-
lations.

Brehm’s extension theorem. This was proved by Brehm in [9] and redis-
covered independently many years later by Akopyan and Tarasov in [2]. The
proofs are based on the same idea.

Brehm’s extension theorem holds in all dimensions and it can be proved
along the same lines.

Kirszbraun theorem. This remarkable theorem was proved by Kirszbraun in
his thesis, defended in 1930. A few years later he published the result in [16].
Independently the same result was reproved later by Valentine [26].

The paper of Danzer, Grünbaum and Klee [11], which is delightful to read,
gives a very nice proof of this theorem is based on Helly’s theorem on the
intersection of convex sets.

Akopyan’s approximation theorem. This theorem also admits direct gen-
eralizations to higher dimensions. Moreover the condition that f is piecewise
linear is redundant. This is because any distance non-expanding map from a
polyhedral space to Rm can be approximated by piecewise linear distance non-
expanding maps.

The 2-dimensional case was proved by Krat in her thesis [17]. In [1], Akopyan
noticed that Brehm’s extension theorem simplifies the proof and also makes it
possible to prove the higher dimensional case.

Much earlier, an analogous question was considered by Burago and Zalgaller.
They proved that any piecewise linear embedding of a 2-dimensional polyhedral
surface in R3 can be approximated by a piecewise distance preserving embed-
ding; see [7] and [8].

Rumpling the sphere. Theorem 4.1 admits the following generalization,
which can be proved along the same lines.

5.4. Gromov’s rumpling theorem. Let M be an m-dimensional Riemann-
ian manifold. Then any distance non-expanding map f : M → Rm can be ap-
proximated by length-preserving maps. More precisely, given ε > 0 there is a
length-preserving map fε : M → Rm such that

|fε(x)− f(x)| < ε

for any x ∈M .

This result is a partial case of Gromov’s theorem in [13, Section 2.4.11]. The
proof presented here is based on [21]; Gromov’s original proof is different. The
proof in [21] also makes it possible to construct surprising examples of spaces
which admit length-preserving maps to Rm, such as sub-Riemannian manifolds.

Gromov’s theorem roughly states that length-preserving maps have no non-
trivial global properties. This is a typical “local to global” problem. Here
the length-preserving property is “local” and the only “global” consequence is
trivial: it is the distance non-expanding property.
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For such “local to global” problems the answer “no non-trivial global prop-
erties” is the most common, but it does not mean that it is easy to prove. There
is machinery invented by Gromov which makes it possible to prove this for many
local to global problems. This machinery is called the “h-principle” (homotopy
principle). The h-principle is not a theorem, it is a property which often holds
for different geometric structures. There are a few methods to prove the h-
principle, including the one which is described in the proof of Theorem 4.19.
Gromov’s rumpling theorem is one of the simplest examples. Other examples
include
� The cone eversion theorem, which states that there is a continuously vary-

ing one-parameter family of smooth functions ft(x, y), t ∈ [0, 1], with-
out critical points in the punctured plane R2\{0}, such that f0(x, y) =

−
√
x2 + y2 and f1(x, y) =

√
x2 + y2. See [12, Lecture 27] and read the

whole book; it is nice.
� The Nash–Kuiper theorem, which in particular implies the existence of
C1-smooth length-preserving maps S2 → R3 whose image has arbitrarily
small diameter.

� Smale’s sphere eversion paradox, which states that there is a continuous
one partameter family of smooth immersions ft : S2 → R3, t ∈ [0, 1] such
that f0 : S2 → R3 is the standard inclusion and f1(x) = −f0(x) for all
x ∈ S2.

� Combining the techniques of Smale and Nash–Kuiper, one can make sphere
eversions ft in the class of C1-smooth length-preserving maps.

For further reading we suggest the comprehensive introduction to the h-
principle by Eliashberg and Mishachev [15].

Paper folding. The aspects of paper folding related to geometric constructions
are discussed in [14]; this paper is very entertaining. Interesting aspects of paper
folding in the 3-dimensional space are covered in [12, Lecture 15].
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