ABSTRACT: On the basis of the notion of CXire
stratification of Aleksandrov space that takes in:ﬁ‘lal
metric singularities, and establish a p, S 1nto

of these is the quasigeodesicity of the strata which ia

INTRODUCTIDN

ne present paper continues the study of finita A: -
(wigl clfw?ture bounded from below) stayrt:g ?1? 1[t?f:] ..dgniesnas]lsonal i
6. We will freely use the notions, results and Standard ngtgl
mentioned. e ieksand

As shown 1n [6], an Aleksandrov space posseccec - ey _
son whose strata are topological maﬁifolgs ?STelizzsrearr?alr;?n:tail:zpOlogm?’l Stratiﬁc%
singularities may be an_‘a.nged chaotically, constituting n(; strata s;me Lme, gt
ential” metric singularities often constitute Strata, for example wh evexl'tlhele3§ R
the result of factorization by a group of isometries. e e

In this paper we describe a stratification of an Aleksandrov space that takes into
account both 1ts topological and metric singularities: the closures of its strata are
al possible primitive extremal subsets of the space (see Subsection 3.8). We also
establish a number of natural properties of this stratification, the most important
of them being the “total quasigeodesicity” (in a natural sense) of the strata, see
Theorems 5.2 and 5.3. The latter property is a natural generalization of a classical
theorem of Liberman. ‘

Historical remarks. Liberman’s theorems [4] describe external geometric properties
of the shortest curves on convex hypersurfacesin R” . They are based on an important
observation: if a cylinder whose directrix is such a shortest curve is transversal to the
hme{surface, then the shortest curve is a convex curve with respect to the (ﬂgt) inner
metric of the cylinder. The convexity will be preserved if we replace the ?Ylmde_f by
lah?lzztwith vertex inside the convex body and with the same directrix. It is precisely
- ‘@tstatement that we call here the Liberman theorem. . _
Iﬂdependenﬂy of Liberman’s theorems, in the fifties A. D. Aleksandrov deﬁ;ﬁd
urface in R® ([1], see also [2]). 1he
of geodesics (that

sure of the class ' (th
d constructions admit no

gsely connected with
tion from the papers

ed_quasigeodesic curves on a convex S
. >24EsIC curves constitute exactly the closur -
R shortest curves). Aleksandrov’s definitions an
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direct gcncrah altions to higher dimensions. For polyhed;
a"c"lp[cd | Mllkﬂ [5]‘ ‘ ‘ d Such 1
[n the secon¢ ® Jthor's MS thests (Quasigeodesics i BeNery,.
drov Space: with curvature bounded from below, L{:nir] multidip, “a
hereafter reic ed 10 a8 [Pet]) an entirely different dcﬁn.]g:"“d State “NSion,
Aleksandrov ! pace (wnhcur:valurc bounded from belo 1Hon of 4 Uni, :_’[" \lg such that
given, 3[1(1 ome Of the ba:s.lc pI'OpCI'liCS of qUaSigcod\T)* of ilrhilrl.lm%li{‘ft:;L‘f | (jf p Bu
oint of vieW of this definition (S€€ Subsection 5.1 ltslcs were Ty ‘“n:’f'”"- " desired-
~an be restated - the following Way: each gcodcsic' o1 )f’lnw), the ]‘“’,‘Uniim (3. De
a quasigeodesic for the corresponding cONVER Pody « 3d convex h ’4111{;“_% Fry | nean the
of nonnegative -urvature. The present paper gives egarded ac f“}““f‘mn . 1 pi € F s
Liberman theoremnl. The proof uses only th | a generaliza *‘] Aleke. “Cln F this d
o y the contents of ¢ 2 tion of andy,
3.2(2). of §1 and FI thig ¢, 'y cet of di
d of q,. Orm e
i [n the course of the paper M will & . 5 FC3
Aleksandrov space with curvaturc >0, n>2 enote a com i
valid for any other lower bound of the C“Wat: & (All the asser Pact .4 Pn?of &
or need only a slight modification. As a ey re; the proofs eith tions DT(J,WFT"“* point, 2
when an assertion is formally Wfo;lg s rule compactness is i €r Carry m_“cn o obvious
its relatively compact domains.) 2 W"llr 4 noncompact spac Inessentjg). T Verby minimt
=, and 10 Slmpllf e > . /111 al‘ways denote D €, 11 st1l] K S N the ., curves
| TR y C base Step -of th s a compl Ol-dgf,_
spaces of dimension ] (a segment of the inductive argu Plete space Or g pEF
and even spaces of dimension 0 t of length < =7 andg FICNLS we dggff“ﬁé. we find
segment and the point b nsion 0 (a point il Do a circle of len. .
T DO point being regarded pair of poi length . .
€ pair Of polnts 11 | €A as Spacc 5 poInts at di Bl ¢,
nts are regarded as spaces with s with boundary distance 5 Let S
§I D . thout boundary_ , While the Cm‘. tend 1
1. DEFINITION OF
THEIR ELEME F EXTREMAL SI
[.1. Definiti R e PROPERTIE:IAL T s
“*Ion.A : , AND
function f = di AlosecdisubsetiFac M- is sai EXAMPLES On the
Ifof- o 1st(g), g€ M, f 1s said to b
has a local mini ’ f(p) = I : e extremal if f
maximum type f minimum on F at pq|, the following co ’Zla[ 1t for any digg
- - > {or v AL & D : N 1'[* N IRT Nl
fon M,ie, point p # ¢, then p S
IS a critical pomn: So |g;
I lim (f(p:) = f(p)) that't
'n the case wh | Pi€EM , pi—p <) large \
addition th F C Z is empt S, In the case of curvai To
space i at dlamz | Dty Or CONnsl , urvatures > |
ce itself is its oy S /2 o 181sts of one poi s > |, one more condibe PN
. - vltS()wnext or ZCB( one point pez thes max
1.2. Examp] remal subset p(m/2), respectivel , then we requit’ oce %
with each ples. Let F ) 2 ' ly. It is obvious tha® gy
wh 1 11S poin “ C M be to &
B A 0 lleigl;ltbp 0o subset satisfy which
€omorphism caorh'OOdS are h;n?ll points ¢ ffotﬁ ;fmg the following condit® single
POl i L 0 P) Bl to 2 ome neighborhood C hold,
’ on 4.6 hen F isane conic neighborhood of 7 -
m bc’lo of the first authoifremal subset. In particul’ I 1.4.1,
€ extrem w II, 1991”) and s preprint “Aleksandr®’ s follov
s 1al subset nd the closures of the strt of Pro
6], a smaunge]:“ar point of f m;x‘mum type for the iltﬂftt“ﬂ‘; Proof
1ghborhood of . Therefore, by assertion }"‘,;. a poi
t p can be tOpologically trn'lf‘l:.“: since

50 We can find

o Of POims p; — p Wlth f(P:‘ ()N



th < 2n)

y distance
hlled:

1 point of

¢ a conic neighborhood of cach Pi 1

| | I8 ROM A . 217
ha L i : MCoOmMornhin «
5llCh d] nt then Pi & F* and £ 1S Not g DOim .. mo_rphlf— 0 a COnoF atarnis .
. Bu Of local min: Cneighborhe
0‘. F:'e'd d mlnln]u[]] rﬂ[ f. & Ur!hU(Jd
i . f n ‘- s 1
d&l y AS

I Deﬂniﬁﬂn' By the tangent space X F (g 4 -
13 0 cet of limit points in X, of the direptinn. o>t F at a point n « o

e Fthi?l — P - (Ewdenll}', ZpM — Zp v) W{:L“*Ons of shorte | el i we
ffhis definition is equivalent to the standarg definit;
;' Of dichtl

'S empty or consists of one

_ tapoint ¢, Then
has at ¢ g strict global
n /2. We send Oout some
sider a sequence Pi —p
: o : converging to each p,
ind a point g; on 7() and a point r; on {(f) with e
Pgil - cos |[n¢| = |ppi| = |pry| - cos|¢¢|.

let 5; bea minimum point of dist(g;) on F. Note that since the dj

end to n and those of ps; cannot have limit points in B, (né) \ {&}

im P4l - sinfen]
15|

goitls & there are 7, { € T, such that the functiag dist(n)

. coum On EPF e léCI and_ ‘é'fl < m/2 and anc >
mini™ n(t) and {(¢) in the directions n and ¢ and cop
pcm- El F, with the directions of the shortest curves pPp; '
we

On the other hand, |g;s;| < |¢ip;| and
7 |P4gi| - sin [n¢] s
1q;Di| '
S0 |g;si|/|gipil — 1 and the limit set of directions of ps; lies in B,(|n€|) . It follows
that these directions tend to &. But then £g;s;r; — 4n&¢, that is, for i sufficiently
large we have £g;s;r; > /2 , which contradicts the extremality of F . The first part
of Proposition 1.4 is proved. w A B
To prove the converse statement note that the condition of extremality of F at
p means that the situation in which for some ¢ € X, both [CZ,F| 2 “./ 2 a_nd
maXyes, |En| > /2, is forbidden. Suppose to the contrary that such a ;ltuat:;J;
ecurs. Let # be a point of X, farthest from ¢ and let { be a point of 2, nea )
W¢. If £, F has at least two points, we can assume C# M, and then AfCé? ;ni/s ;
¥ich contradicts the extremality of I,F at (. Alsoif %L =2 O )"
gleton and 7 = ¢, then according to our definition the relation Enl < '
"0, a contradiction. O

4.1,
f‘ | .”

1

il I_'.
ri"
S 13

low us to prove the

The arguments proving the second part of 1 4 also al

AVHOW
b,
.

tof T andlet p be the point of
S 1o p isatmost &2
' m F, we can find
e e other hand, £pra < /2,
e mal. The second part of the PI'OOf or 1.
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G.Y
, modification of Lemma 2.3 ¢ 6

rtion und there (Subsection 2 | ),

1so be fo L ,.
oxtremal subset, let fi € DER(y) . ' dimens

‘f{he class _  he an _ . 1 | ( .
0 Lo, - el F C ) :f:: min,’,&j("(-ﬂ : /J>) > 0. Then ) i W 0 [6] )
Propos™ " sssume that & = = Main

2) peF: ﬁl(:f’i1 e that F # @, since the condition digp, y

P!'O(?f First O d mp[ion (ﬁ ’ ﬁ,‘f_*_l)‘ <' 0. TO prove (1 )& we first hﬂd Rl
1ict the -aSSU Jlities in (1) (this 18 pOSSIbIC by *6’_‘ Lemma 2'3] 'Df”if-t o

inequail ~ nearest tO q . Clearly, q({l < 7{/2 (gu:ﬂ dnd -r |

we have (fi, Xg)q 2 0, whence 1, Hl]‘:- ol !

[6, (2.3)]) we see that for ; — Meg,,,.
[6, ( )1) r JH-(JH“‘* and 1

0<i<Kk;

':r"

/)

L]
| &~

(ff’g*")q I r b3 q)>8. ; Jil
(— coS ,qql)s(z)gi;opmf\;fgd ;:1 the same way as assertion (c¢) of (6. i 3.1.
Assertion 1 = "4 only for X we should take the set {¢ ¢ . i Bl

using Proposition 1.
o<kt

1.6. -Corollary: Let
Lipschitz function on
Then iy _ R

)=¢& and min () < —e.

It suffices to apply 1.5 to the case 2 = 2, .

F c M be an extremal subset, let p ¢ F ;.. A,
' b or

M with f; € DER(Z,). Assume that ¢ = max,., i

Proc
The extremal subsets, as well as the space M itself, possess a canonical sz, = i
tion whose strata are topological manifolds. To construct this stratification we 1y
use an analog of elementary Morse theory described in [6]. curA\
Le_t _F C M be an extremal subset. Admissible mappings are defined z i Jeo
restrictions to F of admissible mappings of M to RX (1t must be pointed out the 1h g
:aelu?sal;i aFdlStI}Ia_ion betweqn the restri‘ctions of different mappings even if the: the
ik ::ltll:Clde). A point p € F 1s said to be regular for such a mapping: 55
W (Indecegor;esponghng mapping of M . Then Properties 1..0-1!3 ol ¥
BB it of thé a;zgerges l.q gnd 1.1 are trivial; Property 1.2 1s prorea‘.f:‘
property for M was provede ‘ r%p S IULNE same way as the coresprs
(O F 813 formal conses In [6] on the basis of Lemma 2.3. Finally, Propert
nonemptiness conditio 9 ence_(_;,f this property for A, with the exception 0 : N
formulatig o X, 8k+1(0) N g~1(v) # @, which could be omitted 1 I

HOWeVer the nra v
Ky \ g7 (0) Baenp t’;"’f of Main Theorem 1.4 of [6] does not hold for F: " (
€an be rescued 4 f'c.rlil out to be empty for various values of k. Neverlhfrlf”[;' are

‘ s By analgg with MCS-spaces of dimension / (ol

F lon]) ‘WC <7 P | ‘ y
1 of a por o define MCS-spaces of dimension < 7, requi““iﬂf;f é
conv ™ Sup,

MC: o Such a space be homeomorphic to the open === s
. dlm_ension S 7 — 1. In the same way as 0 the ;"“i 179
A cal stratification into topological manifolds, ! “ﬂ
e Spaces the strata of lower dimension ¢al b lgpt

§2. TOPOLOGICAL STRUCTURE OF EXTREMAL SUBSETS

N, r
s (N

% have different dimension at differen! PO‘"pa 0 tan,

Main Theorem 1.4 of [6] replacing MC>*




SUbset containing p, and 0 < R < €%/2, then we can ¢cox

3 Nowy ivalence of the tWO

E " t Y _
| %~
e il | J |

?};2‘1 (diSt(P))Eq)(é) > g

rérgf(disl(cﬂ):p)(é) > &

@)ifp€M and F C M is an extremal subset with ( < |pF | < &%, then

max (dist(F)) () > e.
proof. To prove (1) it suffices to notice that for small ¢ > 0 and 0 < Ipq| < &2 we
«an use volume estimates (cf. [3], 8.6) and find a point x € M with |px| > 3¢~ |pg|
andso @ — & < £xpq + £xqp ) such that for the direction ¢ € £, of some shortest
airve px we have |minyeqics, (I€7| — 7/2)| > 3e.

Assertion (2) is proved similarly: one of the alternatives of (1) is excluded, since
if g€ F is a point of F nearest to p, then maxgcy, (dist(p));q)(é) < 0, because of

the extremality of F. O

32. Corollaries. (1) Under the notation of Lemma 3.1, let the point p lie in an
extremal subset G. Then the conclusion maxees,(dist) > & can be replaced by
maXees g(dist)’ > & and mingcy g(dist)’ < —¢.
Indeed, this follows from 1.6.
(2) On each extremal subset G an inner metric is
itis dominated by the external metric times ¢~'.
Indeed, if p, g € G, we can apply Corollary 3.2(1)
toncluded in a standard way. e AR
3) If under the assumptions of 3.1(1) we have P € > i ‘
e extremal subsets, then there is a point I € FNG with max{|pr|,
Ahis follows from 3.2(1). 28 '
4) If under the assumptions of 3.1(2) we have P Ionstruct a point p € G Wwith

locally induced and, moreover,
. and then the proof can be

where F and G
qr]} < &'lpal-

LR S

PI=R and pF| > ¢R.

L1s fol

ollows from 3.2(1).

IkI : ]F"Q

J_
7S

AN j,;j /€ are able to prove the equ

-

section 1.3.

6Nt space for extremal subsets; see Sub
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Let F C M bean oxtremal subset, p € F, &
) in the direction & and runnin g < 5
g over | I'he,
, | ‘f;“?r’

PrOposition. _

e starting from P n th
or ac small 0 > 0 a number R

(r)‘) S0 : :

(2) ¢

a cury
proof. 1118 sufficient 10 find fO 1 _
on &) such tha! rany K€ (0, R(d))) there is a point
. Bi(0) € z,. After that the proof will be easil: M TTCF wi Not 4
42 | uded py . 2] <5y [N
Let g7 P be a point near p such that ¢’ C Bs(6/4) C 3 USing R [ = Z
for any X:V © B,(pql). Set R) = pal/2. To jus Zp and 0l on dim
arbitrartly small » >0 2 sequence 2o, ---» ZN € FJUS‘_“fy our é}':f{.l«’ o FnG
|zizi+1] <V vi < N and ERWIth . 7 — , Oice . V< -
5 =D, [n, We g °) lﬂql_gw(
= ¥ DZp| S 1 o in Pg
S Zapzi < 5 (2—lazil/lpg]) forall i e
: . - ' i > tre
We can easily make 2| satisfy these condition e 3 ext(r;)rn]
we can use Corollary 1.6 to construct the i anq IRthey are cat: o 5id
<mall 2> 0 1.6 allows us 10 e ne next point z,, € Satisfieq f. tiont €
J ;.1 near z; with i+1 . Indeeq ¢ OF then A
(3.2) Z | i ¥ i fOT arl . iy COﬂSid
dZiZi+l ST—4qz; Ollrgy and |
In particular, £qzip + u. and 1€
33 there
3 1gzis1| < |92 F we
| | S |44 — = | n
If u equals zero, then (3.2) 1 | s I=Y0)) 12125 1 . point
seen tha , then (3.2) immediately impli pr| <
en that x can be ch 1ately implies t =
It rem. , ¢ ChOSen SO SMé¢ Il IMPIICS that Lar
t remains to ensure P all that (3.1) will apzii) < 4 3.6
from zero. the i {?ZN] > |pgl/2 for ) ill hold for - S 4gpz;. 1t 6.
(see 0, the inequality 1s evident | r a suitable N Zi+1 1f it hol 15 €ag) Proof
3 i, SubSeCtiO _ ent by (3 3 25 . If IE'Z* . -Olds fO
3.4 print mentioned in 1 Bt s, o st throu
4. Our next aim i ned in 1.2 IS€ a Standarg g L
and aim 1s to show ) ard i comn
. G\F are also show that if F NI
N '€ also extremal subs : and G ar by in
mma. Let F and G | ubsets (if they are [€ extremal subs
(1) Z,(F N nd G be extremual y ar€¢ nonempt OSets, then Fn( 3
) Z(FNG)=3,, tremal subsets i y) (see 3 ,_ 1.
ey Bl AT subsets in M % -
Oaf' (l) The : | P' pF - AL Deﬁn
e eﬁx(:ezF p( nG)CZ subse
£ , §i = p pL'NZ,G a = L, F NZ,G is tri _
ANdi D — st and r; nd, using pU 18 trivial Propc
Dg; = i € G g Pro * S lo -
Some o i =pri. Then | S r ¥y position 3.3 PIOve the revers primi
Shortest cury, S el it oy s TR ns of pg;, pri Sh Th
2) Hew LVES pS; tend 19isi| = -applying C gi, pri tendigt
sy e ate lnclus‘ioten-q_t?__‘f_ﬁ_s_req@fl)* Hence foor(-)“ary 3.2(3) we can 3.8.
po‘TO Prove th n 2,G\ >, F Cq‘;:ll'eg. for i — oo the directions® subse
oints € re¢ ' G\ : '
us*llls Pi € G I'everse incluc; P(G\ F) is obvio g T do n
ing Corolls \F with th usion, we fix ous, since Z,(G\f)° de C
that ix - 1o 0 3 g bty of p(G'\ F) and a se ) d extrer
is a 1o @ 86quence of por. B, SUI Ppi converging te a sequence 7i 1
P Sultable R, = 42 gto &, Fix >0 Thet ST
lp,-[ , We can assume j <! (Inde‘
.

INE,F| 631‘ POINt for (e d'Oims be G
. 1S of shortestpéu:v: e s e i
A s pp; satisfies En| s

€ used p

rODOSI 4

POsition 3.3 for F.) So éeEG\Z”
F.) So, £ € L,0\4"




(see2), ‘_’:'ff:ﬁ;:ft’;‘l:’ﬂ (A) of Main Theorem 1.4 of [6]
B he closuro of cach sta? L e
Wose closure subset (cf. 1.2). Hence, £ being primitive, the
o ~v 1as nonempty interior in F , and ta are covered by smaller
“ | ; -9 (0]

“__.-;i on (with an evid Rk L a siy

i di[ncnSlO : (h iy ; e_nt base ko "glﬂlon, oy S|

‘;;nngc {p}, and let ¢ be the point of ¥ fcl‘rmg to:3 then 14 e e
¢ x/2. Supposc the contrary. The % S 10 1 P Induction {h,

Filgnf2: Suppose Uic contrary. Then the pcl 1O D. We hayg g  the

lﬂF‘( qn : | 1€ point ¢ 1itself’ Q; unction dist * YYC have 1o -

gke of definiteness that ¢ ¢ F, and h ince ¢ ¢ g, (9) ha Prove thag
¥ ality of £ (see 1.4.1). Chce |gF| s 7!/2(’ e

2) In this €a5¢ also, Proposition | .4 and Le;

jon O the dimension (with the evident ma 3.4(2) pe

'\ 3, F # @ by Lemn base ste S 1

men?:pG\ P i ma 3.4(2 - P). (No A

oonsidcred separately. It should be veg-if)inghe case M jl}@: that if , I

. B Sint r e F\ ¢ . P} m

mc::e has':: Egr; < rszF : {pI; alircar

F o | = , On the other ha ~ " . Becaucs

int of the extr emal subset G. But :hlg: (’::.v £7Pq < 7/2 sil;iee % extremality of
it these two inequalities are onr. AN iSOlated

ﬁ;]élpql and |pg|>7m/2. O

16. Proposition. The number of extremal subsets
t}:ﬁif_ ;Pgdhebe;i;hsmge tEhe function dist{p) has ni) .
-red neighborhood ot p, a | as no critic
mrough p. On the othef hallll(){ e{igrrl;al 3Subset' (LGN S?ll‘:h a neighbc
, Lemma 3.4(2) implies that two extrernaglrhosd passes
‘mal subsets with

ommon tangent space at p do coinci
: . : - oi1ncia |
by induction on dimension. C Ide near p. Therefore our proposition foll

' proposition follows

37. Now we are able t
0 decompose an arbi
s Pose an arbitrary extremal subset into primitive

Definition. An extremal subset i
10n. xtremal subset is said to be primitive if i
B Honempty relative interior. primitive if it contains no proper extremal
Proposition. A4n) '
oposition. Any extremal subset can b sented i
e 7 _ -an be represented in a unique wa) T
i e extremal subsets with nonempty relative interior e
: nis easily follows from 3.5 and 3.6. O
38. The stratification of .
L Th(:at:lon of an Aoleksandrov space. Let F be a primitive extremal
Subset . The main part F of F is defined as the set of all points of F that

do not lie

| | c m . gi5ie

Lr s other primitive extremal subsets. Clearly, F 1s open and everywhere
:on of all main parts of primitive

is true for extremal subsets
um of the canonical stratification of F

re is only one stratum
all other stra

. ed in a single stratum. as req

uired.)
al subsets g1ves the stratifi-

e ﬂ M by main parts of rimitive extrem
fined in compari o Pr . 1 topological one mentioned in Intro-
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§4. FACTORIZ TS

Let T he a compact group acting on M py, ISOmeyy,
» n. 4 | | i.j-'lr!

on and let F C M be an extremyq Subse; -

(the latter being an A leksandroy Space, then
Maate s o
3,46

¢l -

.mple, and we leave it to the reader. 0

The proof 18 SIT _ oy
ot A be a compact group aclting on M p,, o
let F be the set of fixed points of T' ang let 7. i‘;‘i let 1
 ral projection. Then n(F) is an extremal subset of )y /A M)
B art with the additional condition specific for
Prodl. *‘T;c IStl ), which can be checked easily. Ir}dceq, if By(n/ 2) £ 3/4
Deﬁéngo then the function dist(w™"(p)) —7/2) is strictly concave .
& /ir;mm point is unique and belongs to F', whence #(F)\ 0}
nsa‘: we turn to the general setting. Suppose that there are |
- 7 MJA with [5g] = [g2(F)| > 0 but £gpr > /2. Choose sop,
g € K“I(E), r S'T_I(F)' with Ip?' : lpq, 3 Iprl — l{?rl . ObViOUSl)’; -
any sel-q. Let Q= s€req ¥ C EP* Then IQQ‘ | > /2. Let 0
3, farthest from Q. It fqllowsi that @ 18 unique and |wq'| < g /2
of 1.4.1). Obviously, £ is invariant with respect to the induced action
and so  is a fixed point of this action. If a shortest curve comes out in
@, then it is also fixed under the action of I', and we obtain 1 contr

E DOim-S P .:‘:

convex hulls stated below. C

4._3. l_?ix > .0 and for an arbitrary compact set K consider the
Lipschitz functions f such that the set f ~1([0, +00)) is absolutel
K, and f is A-concave on this set. Let fx denote the minimum of all the

from this family. (It is clear that Jx itsel '
, _ y. (1t1 L Jx 1tself belongs to it.) Then the set £=!([0 <
is called the A-convex hull of K an s pten thesct /; (0,4

unique) is called the sou/ of this hull.

Lemm_,a on b | .
and M (mi?;cg C:D[nvex hulls. There exists a constant ¢ > 0 depending only o
that each . actiy, on the volume and the lower bound of curvature of M) %
( (L7 Compact K Ofdfameter 4
(For the proof e 4.5.)
4.4,

3810 Aconve oo Of cOmpact sets X; with diam K =
< ,g-ld' Ki of diametet hlull- Ofilameter S8 'd. ;In other words, ¢
. Choose in each -~ ln A‘Ji s d‘- IM‘ has nO Adf_convex hull 0{ .

b Pi and consider the Gromov-Hav

£5pq > 7y,
be lhe DQ‘
of T oo}
the dire.

3 ' : ' adiction v
|gF| = |gp|. If there 1s no such shortest curve, we can apply Lemma 4-31;130;:

family of 1
Y COnvex, contan
functios

d the maximum point of f (which is evier:

d < & possesses a )-convex hull of diameter ¢
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al
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where @ 1s det

Then the funct
depending on ¢
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some points CC
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assumptions.

3.1. Recall tha
then for any p
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O abl(
The same relat
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lengths of the c¢
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ly of all |-
X, contains
> functions
([0, +0))
5 evidently

only on
f M) such
eter ¢~'d.

. : --’ 1; ! 3 : - " ‘: : n I 2
¥: I'_, —;! R il . b gl 1 .
T =l ! | B b i}
B ey 1 (e

 atyy, g ssponding arcs of the geodesic.

EXTREMAL SUBSETS
S IN ALEKS
ERSANDROVY g5
’V SPACES

Fix & Jistances > 0. These points give ris

50 R zed s
7957 in the Gromo;—(_l-;_;usdorﬂ‘ sense, there is ¢ - _
fim b pomt X eb p(R ~WC can associate a set o, ofdtlf > 100 such that
. with ba(P) 2 a(X) + R/2. Now we can find R > l(;lO'EeaSt ;515" values

| L sSuch that for the

of @ ™. distance functions of points ¢
- nding G15 SOIpoINtsS g, =r. NS (R civn:
orresPO +R /3. Define a function #, Sétting p(R) similar Inequalities hold:

]ﬂapl 2 Iqax
S o7\ —1
b= (B) 3 o(dist(qa)),
a€SY,
chere 9 is determined by the conditions
p'(1) =1 for i SRIE D!
o'(1)=1/2 for ¢t> R+ 2R,
_ 1 5
(1) = for R-2R<t<R+2R.

8R

rhen the function / is 1-Lipschitz and A-concave in B,(2R) for some A > 0
depending on €, R, R, but not on x (the I-concavity of h, is proved in the same
way as Lemma 3.6 of [6]). Furthermore, obviously A.(p) > hy(x) + R/6. Now
# we transfer the construction of the functions A, to M; (that is, choose there
some points corresponding to the points g, by the Hausdorff approximation and
sse the same representation in terms of distance functions as for A, ), the functions
shtained will possess the same properties (the A-concavity is to be verified anew,
hut the verification is quite sim~i13r to the proof of Lemma 3.6 of [6]). Hence for i
sufficiently large the compact K; can be “separated” from any point Xx € S,(R) by a
function which is A-concave in BE- (2R) and 1-Lipschitz. Thus for sufficiently large

i the compact K; possesses a Adj-convex hull lying in B (R) . This contradicts our

ssumptions. [

§5. GENERALIZED LIBERMAN THEOREM

31. Recall that if three points a, b, ¢ lieona shortest curve 1
point on the base of

ien for any point e SRR

+ 10T any point - . SalDDIs where b is the

fboint p we have |pb| > Ip5| ity can be expressed
ature this

ral n triangle pac corresponding to b . This inequality L]
alytically in terms of the function f = dist(p). For nonnegative g

U % = }

“ion looks as follows:

B abl(2(c) - 12)) - [bel(£2(b) - (@) < (01 Ll

TheEes ' . ISy desic (that
® same relation holds for any three points @, 0> ¢ lyiogion & 85

i
g replace s the following definition

Ortest curve b| and |bc| bein _
_ e), |ab| 124 L faals
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. M is said 1o be quasigeod,y,

124 wre vV
L ectifiable TV 7 o 1d any point p € A if
lying on Y . | . Ccd with the Yy-arcC lC‘l]glhq ‘ } AN } 4
ol s |a | and lhr..'] replats SIS 1ab| anpg b NOW we
it et definition expressed in BEOMELIIC 1ErmS 1s givep, ; way:
An equi ale ‘ 1 1n “’t:l]‘ (5 5)
otionl IAE o 7 is a crucial step 1n the pro S
duThe follow1ng Theorer P Of of the ECner. (12
. 5 3- Ierhh
man Theor¢ : | vtremal subset. ¢ 1
,  Theorem. L€/ Fc M bean extremal subset, and let p , .
5.2. ' O . pore is at least one curve pq wh S F p,
.~ each other: Then there 1S @t L one CUrve pq which g € sufe
- e of F and is @ quasigeodesic in M . > Shop,,, ¢
(e IS ettt ‘der all the possible pol "
Proof. For any BKE Con:dearmong them chool::se ifﬁonal greaics g a
g €F, A~ Zy am =9 4 e OS€ with minim.i UReige s
m—1 4 wah.lfgr!;'
S=m Z Iafa.f+l[2' ‘
i=0
Note that the limit curves, 7%= o9, for these extremal polygo
Pt e F. .and S¥ tend b, . gonal geodeg;.
shortest curves pg 11 F, and S tends to [pg|°. (Indeed, op SIS gy ¢
consider the polygonal geodesic with vertices a@; dividing Diint C One hang | Now |
see that for an extremal polygonal geodesic we have § < ‘pqu O €qual pyp, . and 2
extremal polygonal geodesics, mMaXogi<m-—1 aIEE0" for [n Particyly ¢
curves lie on F. On the other hand, by the Schwarz inequality Zm“k- S0 the |
slc]) the length of the limit curve 1s not greater than lim,,_, \/§’< ! Fia“: \
shortest cuw?). Note also that the link lengths of an ex;?em __ 1“ Pq|, e, it b
appm;ach their mean value. More precisely, let |a;a;, | xtrema fOl}rgonal B600as
7 aiai| — |pg|, we have 77! ’ 2i8i+1| = @i + |pq|/m. They g
=0 14i%i+1] = |pq|, we have > ;- o — 0, and since
S = |pg|? S In ad
Pql” + 2|pq| Z a; + Z ma? — |pg|?,
we obtain = =
ndition for Sl o d
: ap;)rn for the limit shortest curve P4 ' Ther
M\ nglmatlng polygonal geodesic & pq|
be an arbitrary point. The exi’ : '
' =S) imply that 10/ |
whig
54 .l | . am W08 |
o> Whence by the comparison theo®™’ 3.3,
_ 2 an e.
Where A; = |ra;|* —|raj-1"
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_ three indices i) < j, « ;
No“’we fix 2 <13 and sum up the inequalitie % 225
ways 3(5.4) in a Special
2 2 .
9 (i2 — iy (Irai” = |rai|”) — (i3 - 2)(Irai,|? - |rq, 2)
iy | I
; - 2
_—-.-(12"'!1)(2 Af)“(’:i*tz) Z A
i=iy+1 Moo Y
et |
B 2 (A ay)
i=i+1 j=4+1
5 (i -4
= B+l :)(33‘—1'2)(fhzl)+
S ;(Awl A7) ()~ i1)(i3 — i)
< (13 — 32) Iaiai-i-llz(zf + 1 -2 Pt =
= l_) A (12. I]) Z Iafai+l|2(2i3 i 7 1)

~ I=12
Now let X1, X2, X3 € Pq and assume that g

' W(m) > 4; | : .
.nd x3, respectively. Then Wim) > Qiz(m) > and ajy(m) tend to x,;, x, .

45 I2(m)—1
|X12| = lim D laagy,|
f=f§(?H)
il (m) = iy(m)) - o 22
- TR |
=1y (m)
(53) 1. n(m)—i(m) -
= pq|.
[n addition,
fz(ﬂ!)-l
lim S P2 (01 1. ke
mh_{lga / Iaza:+l| (23 Tl 211(’"))
i=iy(m)
f_g}(m)-—l
=m1513¢ | af (2i + 1 = 2i;(m))
iI=iy(m)
fz(!ﬂ)—l e ; =21 ) i2(m)—1 g R
=) Z aiwwa.f@%- Z (2i+1-—211(m))
sl m PG, e
=i (m) I=1 (M)
(52,53), < » (i3 —i1)?
paf? - 271

ore, passing to the limit in (5.5) (after division by m and multiplying b

< Paxallx2xsl? + [x2xslxi %l

41 the case of nonnegative
is none other than the quasigeodesicity condition (for the case of nonnega
pressed analytically. Theorem 5.2 18 proved. O
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Generalzed Liberman Theorem. Any shortst cun' 74

- M is a quasigeodesic for M .

in the inner metric of
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G. YA pEREL
) of them we use som
& . 1o proofs. If the first ¢ basic pro,, Migg
we QUL ced in [Pet) o
geodesics establl olit pq into N equal parts by p =p,, p i
_ =Y tUS S y 79 7 6' i |
First prod/ - Le Pilicare exist some shortest curves DiPi+1 in the inge. " * b sl
gy Theorem J. for M. The curve (Pq) N compo ' Moy, ¥ - th
Y B sigeodesics for . - sed of % cue tf
which are quasi8 he inner metric of £, and to prove its quasige, l[“r,nf il f oi: M
shortest curvehml:oi“’ms p,- that the entrance direction at p; is D(}]H;L City ;& e
mvel?t;:; f(Two Sirections &, 1 ¢ ¥ are said to be pO]ar if |&¢] l?)j thy . ooly ¥
see [F€ -For some € > 0 take some points 7; On DID 1 and % 0. TS
{ € z.) = —¢. (From Theorem 5.2 it is clear that there exists X Shn g
4 "’}:, ;}',félf is quasigeodesic in M L_et Loy 0 al?ng SOIME sequence ;Unu‘l ¥
;ncoﬂe K, which < the Hausdorff limit of (8 M,p), K, is 1h£:£d d con >
i ( ._:.
space of directions Zp; - Al the same time, piPi+1 converge to rays in e gy,
s 3‘
quasigeodesic has both right and left directions at each point, and K, 5y
r : '
(0 a quasigeodesiC rs, since dimKp, = dim M ; see [Pet]. S, Onyg
For a cone K, x| will denote the distance from its vertex tg o 4
for K = K,, we have lrsi-lr|+ls[ [EE="15]| - X. T :
Lemma. Let y(t) C K be a quasigevdesic in a nonnegatively cyryeg .. .
y(0)]? = 2 + 2kt + C for some k and C. Cone, T, 6
)48
Proof. The assertion is equivalent to Wh}(z) 2 = 2. The inequality ey i

follows from the definition of a quasigeodesic, if we take as p the v E‘I’Ie\ A o

Further, taking as p the point at infinity in the directi
2, asrequired. O on y(f), we obtain (

i f ]
j"I .

For K = K, the lemma implies that
B s e s - Kl s + |,
and so, since ls[z — |r[2 , we obtain
= |rs|* + k|rs|,

i.C., k = —,F}l He -
I Fs|. Hence the distance froi AN =
cone K, equals ce from the midpoint of rs to the vertex of i

7512 /4 — |rs[2/2
. is these points coincide. Rt IrSI s

e ence, clearly, the direction of entrance of (P¢)*
pqpf and so (pq)y is a quasigeodesic. For N -0
1s also a quasigeodesic. Theorem 5.3 is proved -

of
of Theorem 5.2 replacing S by the expressior
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