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GAFA Geometric And Functional Analysis

PARALLEL TRANSPORTATION FOR ALEXANDROV
SPACE WITH CURVATURE BOUNDED BELOW

A. Petrunin

In this paper we construct a “synthetic” parallel transportation along
a geodesic in Alexandrov space with curvature bounded below, and prove
an analog of the second variation formula for this case. A closely related
construction has been made for Alexandrov space with bilaterally bounded
curvature by Igor Nikolaev (see [N]).

Naturally, as we have a more general situation, the constructed trans-
portation does not have such good properties as in the case of bilaterally
bounded curvature. In particular, we cannot prove the uniqueness in any
good sense. Nevertheless the constructed transportation is enough for the
most important applications such as Synge’s lemma and Frankel’s theorem.
Recently by using this parallel transportation together with techniques of
harmonic functions on Alexandrov space, we have proved an isoperimetric
inequality of Gromov’s type.

Author is indebted to Stephanie Alexander, Yuri Burago and Grisha
Perelman for their willingness to understand, interest and important re-
marks.

1 Parallel Transportation and Second Variation

1.0 Notation and conventions. The general reference for background
on Alexandrov spaces is [BGP], nevertheless we recall some notation here.
• M will always denote a complete Alexandrov space with curvature

≥ k (≥ 1), Σ, usually a complete Alexandrov space with curvature ≥ 1
and X, a length-metric space.
• C = C(Σ) will denote a cone over Σ, usually with curvature ≥ 0, and

o will denote its center. If x, y ∈ C then

|x| def= |ox|

〈x, y〉 def=
|x|2 + |y|2 − |xy|2

2
= |x| · |y| cos∠xoy .

An element of a cone C we will call a “vector”.
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• We also use C for a constant and it is ok to change its value even in
the same formula.
• Σp is the space of directions of M at a point p. For q 6= p we denote

by q′ or more specifically q′p a direction in Σp of some shortest path pq (see
[BGP, §7]). If H is a subset of M then

Σp(H) =
{
θ ∈ Σp; ∃qi ∈ H, θ = lim

|pqi|→0
(qi)′p

}
.

• Cp is the tangent cone at point p, where Cp = C(Σp). Cp can be
also defined as a limit Cp = limλ→∞(λM, p) (see [BGP, 7.7, 7.8.1]). We set
Cp(H) = C(Σp(H)) ⊂ Cp.
• For a ∈ Cp we say a = logp q if there is a shortest path between p and

q which starts from p tangent to a and has length |a| = |pq|. Note that in
a space of curvature ≥ 0, logp is a noncontracting map.
• expp : Cp → M maps every element x ∈ Cp to the end point of

some quasi-geodesic which leaves p in the direction of x and has length
|x|. (About existence of quasi-geodesics see [PPe2, §5])

Remark. The mappings expp and logp are defined in a nonunique way.
The only properties of expp we will use are

expp ◦ logp = id , logp ◦ expp(v) = v + op(v)

and ∣∣x logp(q)
∣∣ ≥ ∣∣ expp(x)q

∣∣+O(|x|2) ,
(for curvature ≥ 0 we can ignore the O-term).

Remark on orientability. With respect to the Riemannian case we
have an additional difficulty with the definition of orientability. It is easy
to define orientability in the standard way using the atlas of distance co-
ordinates. This atlas in general does not cover all our space, therefore for
the nonorientable case we will distinguish two different cases: locally ori-
entable and locally nonorientable. Locally orientable is if every point has
an orientable neighborhood, and locally nonorientable otherwise. Every
point has a ball neighborhood which is homeomorphic to the tangent cone
at this point (see [P1] or [P2]), therefore local orientability is equivalent
to orientability of all tangent spaces (or spaces of directions). There is
an equivalent topological classification: M is locally orientable if at every
point p we have Hn(M,M\p) = Z, where n = dimM . Indeed from the
same result of Perelman, we have Hn(M,M\p) = Hn−1(Σp), hence if Σp

is orientable then Hn(M,M\p) = Z.
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Also from Perelman’s result one has natural orientation on the tangent
cones from orientation on Alexandrov space.

Let us define the normal cone to a geodesic.
From [BGP, 7.15] if p is not an end point of a shortest path γ then

Cp = Lp × R (where Lp = {x ∈ Cp;x⊥γ}) .
Theorem 1.1. Let p and q be points of a shortest path γ in M , that are
not end points. Then

A. (Yu. Burago’s conjecture) Lp is isometric to Lq.
B. (Second variation) For any sequence εn → 0, there is a subsequence
{εn} ⊂ {εn} and an isometry T : Lp → Lq which preserves orientation
of a small neighborhood of the shortest path pq (if it is orientable),
such that∣∣ expp(εnx) expq(εnT (y))

∣∣ ≤ |pq|+ |xy|2ε2n
2|pq| −

k|pq|
6

σε2n + o(ε2n) ,

where σ = σ(x, y) = |x|2 + 〈x, y〉+ |y|2.
Remark. To simplify calculations we will consider only the case of non-
negative curvature. Therefore the formula in (B) reduces to∣∣ expp(εnx) expq(εnT (y))

∣∣ ≤ |pq|+ |xy|2ε2n
2|pq| + o(ε2n) .

1.2. Part (A) and part (B) will be proved separately. Sections 1.2-1.10
will deal with part (A) and sections 1.11-1.16 with part (B).

For completeness we prove the following well known folklore lemma.
Let K1 and K2 be two compact metric spaces. We say (as in [BGP,

7.13]) K1 ≥ K2 if there is a noncontracting map K2 → K1.

Lemma. Let K1 and K2 be two compact metric spaces, such that K1 ≥ K2
and K2 ≥ K1. Then K1 is isometric to K2.

Proof. Let f1 : K1 → K2 and f2 : K2 → K1 be non contracting mappings.
It is sufficient to prove that F = f2◦f1 is an isometry. Let Nε(K1) be the
maximal number such that there exist {ri} ⊂ K1, i = {1, 2,...,Nε}, such
that |rirj | ≥ ε (Nε < ∞ because K1 is compact). Then the finite subsets
Fn({ri}) are also ε-nets (because F is a noncontracting map, and if there
existed a point p ∈ K1 such that |pFn(ri)| ≥ ε for all i then there exist
Nε+1 points with the same condition, but Nε is maximal, a contradiction).

On the other hand, the sequence

an(i, j) =
∣∣Fn(ri)Fn(rj)

∣∣
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is nondecreasing and bounded (K1 is compact and hence an(i, j) ≤
Diam(K1) <∞), therefore

lim
n→∞

(
|Fn(ri)Fn(rj)| − |Fn−1(ri)Fn−1(rj)|

)
= 0

and hence

lim
n→∞

max
i,j

{
|Fn(ri)Fn(rj)| − |Fn−1(ri)Fn−1(rj)|

}
= 0 .

Let x, y ∈ K1. For every n we can find i and j, such that∣∣F (x)Fn(ri)
∣∣ < ε ,

∣∣F (y)Fn(rj)
∣∣ < ε .

Since F is noncontracting, we obtain∣∣xFn−1(ri)
∣∣ < ε ,

∣∣y Fn−1(rj)
∣∣ < ε .

Therefore∣∣F (x)F (y)
∣∣− |xy| ≤ ∣∣Fn(ri)Fn(rj)

∣∣− ∣∣Fn−1(ri)Fn−1(rj)
∣∣+ 2ε .

Passing to the limit as n→∞ and ε→ 0 we obtain the lemma. �

1.3. Let us define the projections:

prL : Cp → Lp , prL(x, y) = x ,
prR : Cp → R , prR(x, y) = y

where
Cp = Lp × R

(
Lp = {x ∈ Cp;x⊥γ} and y ∈ R

)
.

1.4. Let f and g be two points inside a shortest path. Define

π : Cf → Lg

by
π = prL ◦ logg ◦ expf

a b

r
exp(r)

log(exp(r))
pr(log(exp(r)))

f g
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Lemma. There is a constant C such that

π(rε)/ε ∈ BC|r|(o)
for any ε > 0 and r ∈ Cf . (Here o is the vertex of the tangent cone at g).

Proof. The idea of the proof is due to [BGP, 7.17].
From the definition of quasi-geodesic we obtain

| logg expf r| = |g expf r| ≤
√
|fg|2 + |r|2 − 2|r| · |fg| cos∠(r, f ′g)

= |fg| − |r| cos∠(r, f ′g) +O(|r|2) ;

and if a is the left endpoint of γ and b is the right endpoint, then

| logg ◦ expf r| = |g expf r| > |ga| − |a expf r|

≥ |ga| −
√
|af |2 + |r|2 + 2|r| · |af | cos∠(r, f ′g)

= |fg| − |r| cos∠(r, f ′g) +O(|r|2) .

Therefore

|g expf r| = | logg expf r| = |fg| − |r| cos∠(r, f ′g) +O(|r|2) . (∗)
Analogously

|b expg r| = |bf | − |r| cos∠(r, f ′g) +O(|r|2)

f

exp(r)

a g b

Using the last two equations together with the law of cosines we obtain

cos(∠̃b g expf r) = −1 +O(|r|2) .

Therefore
∠̃b g expf r > π − C|r| .

Hence

∠(logg f, logg expf r) = ∠fg expf r ≤ π − ∠̃b g expf r < C|r| (∗∗)
(compare [BGP, 7.17]). The last C depends only on the distance from f
and g to the ends of γ.

Now using (∗) and (∗∗) we obtain

|π(r)| ≤ C|r|
(
|fg|+O(|r|2)

)
≤ C|r|

and therefore
π(rε)/ε ∈ BC|r|(o) . �
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1.5. Let Qf = {ri} be a countable everywhere dense subset of Lf and
{εn} → 0 be a sequence of positive numbers. Then using the lemma from
1.4 and compactness of BC|r|(o) (see [BGP, 7.3]) we can pass to a subse-
quence, so that the following limit exists

lim
n→∞

π(r1εn)/εn .

After that pass to a subsequence again, such that there exists

lim
n→∞

π(r2εn)/εn

and so on. By choosing a diagonal subsequence we obtain a sequence such
that the following limit exists for every ri

lim
n→∞

π(riεn)/εn .

Thus we define the map

Π: Qf ⊂ Lf → Lg

Π(ri)
def= lim

n→∞
π(riεn)/εn .

Lemma. Π is a noncontracting mapping.

Proof. Let x, y ∈ Qf . Using (∗) and (∗∗) (see 1.4) we can estimate∣∣prR logg expf (xεn)− prR logg expf (yεn)
∣∣ = O(ε2

n) .

........
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..........

..........

..........

..........

..................log(exp(xε))

log(exp(yε))

O(ε2)

π(εy)

π(εx)

By the noncontracting property of logg (curvature ≥ 0) and fact that
Cp = lim(M/ε, p) we have∣∣ logg expf (xεn) logg expf (yεn)

∣∣ ≥ ∣∣ expf (xεn) expf (yεn)
∣∣ ≥ |xy|εn + o(εn) .
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Therefore∣∣π(xεn)π(yεn)
∣∣

=
√
| expf (xεn) expf (yεn)|2−|prR logg expf (xεn)−prR logg expf (yεn)|2

= |xy|εn + o(εn)

passing to the limit εn → 0 ∣∣Π(x)Π(y)
∣∣ ≥ |xy| . �

Construction of Π̃. For any v ∈ Lf\Qf take a sequence of vectors
xi ∈ Qf such that xi → v and there is a limit of the sequence {Π(xi)}
(we can find such a sequence using the lemma in 1.4). Now extend Π to
Π̃ : Lf → Lg, such that

Π̃(v) = lim
i→∞

Π(xi) (Π̃|Qf = Π) .

Remark. It is easy to see that Π̃ is a noncontracting mapping as is Π.

1.6 Key Lemma for A. For any x ∈ Qf ⊂ Lf and x′ ∈ Lg∣∣ expf (εnx) expg(εnx
′)
∣∣2 ≤ |fg|2 +

(
|x|2 − |Π̃(x)|2 + |x′Π̃(x)|2

)
ε2n + o(ε2n)

or equivalently∣∣ expf (εnx) expg(εnx
′)
∣∣ ≤ |fg|+ 1

2|fg|
(
|x|2−|Π̃(x)|2 + |x′Π̃(x)|2

)
ε2n+o(ε2n) .

Proof. To understand the proof of this fact, it is much more useful to look
at the following picture of Cg than to look at the formulas:

log(f)

log(exp(x π(ε

εΠ

ε)) x)

(x)

x’

In the proof we use only the definition of quasi-geodesic and the Pythag-
orean theorem.

It is easy to see that∣∣ expf (εnx) g
∣∣2 ≤ |fg|2 + |x|2ε2n .
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Further ∣∣ expf (εnx) expg(εnx
′)
∣∣2

≤
∣∣ logg expf (εnx) εnx′

∣∣2
=
∣∣ logg expf (εnx)π(εnx)

∣∣2 +
∣∣π(εnx) εnx′

∣∣2
=
∣∣ logg expf (εnx)

∣∣2 − ∣∣π(εnx)
∣∣2 +

∣∣π(εnx) εnx′
∣∣2 = ???

By the definition of Π and Π̃ we have∣∣Π̃(x)
∣∣2ε2n − ∣∣π(xεn)

∣∣2 ≤ (Π̃(x)εn + π(xεn)
)∣∣Π̃(x)εnπ(xεn)

∣∣
= O(εn)o(εn) = o(ε2n) ;

and also∣∣Π̃(x)x′
∣∣2ε2n − ∣∣π(xεn)x′εn

∣∣2 ≤ (|Π̃(x)x′|εn + |π(xεn)x′|εn
)∣∣Π̃(x)εnπ(xεn)

∣∣
= o(ε2n) .

Therefore we can continue:

??? =
∣∣ logg expf (εnx)

∣∣2 − ∣∣Π̃(x)
∣∣2ε2n +

∣∣Π̃(x)x′
∣∣2ε2n + o(ε2n)

=
∣∣ expf (εnx) g

∣∣2 − ∣∣Π̃(x)
∣∣2ε2n +

∣∣Π̃(x)x′
∣∣2ε2n + o(ε2n)

≤ |fg|2 +
(
|x|2 − |Π̃(x)|2 + |Π̃(x)x′|2

)
ε2n + o(ε2n) . �

1.7. We carry out the proof in sections 1.7-1.9.
Suppose the shortest path pq is divided into N equal parts by the points

p = p0, p1, . . . , pN = q .

Let us take some countable everywhere dense subsets Qpn ⊂ Lpn for any
n ∈ {0,...,N} and a sequence εn → 0. Construct ΠN : Qp0 ⊂ Lp0 → Lp1

for some subsequence {ε1
n} of {εn}. After that find a new subsequence

{ε2
n} ⊂ {ε1

n} and build a new ΠN : Qp1 ⊂ Lp1 → Lp2 and so on to {εNn } ⊂
{εN−1
n } ⊂ ... ⊂ {εn} and ΠN : Qpn−1 ⊂ Lpn−1 → Lpn for any n. Assume

εn = εNn . Now we can extend every Π to respective Π̃.

Set Π̃k
N =

k times︷ ︸︸ ︷
Π̃N ◦ Π̃N ◦ ... ◦ Π̃N : Lpn−k → Lpn .

1.8 Lemma. There is a constant C, such that∣∣Π̃N
N (v)

∣∣ ≤ (1 + C
N

)
|v|

for any v ∈ Lp.
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Proof. The idea of this estimate was prompted by G. Perelman.
Let x ∈ Qp, then∣∣a expp0

(εnx)
∣∣ ≤√|ap0|2 + |x|2ε2n ≤ |ap0|+ C|x|2ε2n

and∣∣ exppN (εnΠ̃N
N (x)) b

∣∣ ≤√|pNb|2 + |Π̃N
N (x)|2 ≤ |pNb|+ C

∣∣Π̃N
N (x)

∣∣2ε2n .

ba
N321 PPPP

From Lemma 1.6 and the triangle inequality it is not hard to get

|ab| ≤ |a expp0
(εnx)|+

(
| expp0

(εnx) expp1
(εnΠ̃1

N (x))|
+ | expp1

(εnΠ̃1
N (x)) expp2

(εnΠ̃2
N (x))|+ ...

+ | exppN−1
(εnΠ̃N−1

N (x)) exppN (εΠ̃N
N (x))|

)
+ | exppN (εnπ̃NN (x))b|

≤ |ap0|+ |p0p1|+ |p1p2|+ ...+ |pN−1pN |+ |pNb|

+
[
C|x|2 +

N

2|pq|
{

(|(x)|2 − |Π̃1
N (x)|2) + (|Π̃1

N (x)|2 − |Π̃2
N (x)|2) + ...

+ (|Π̃N−1
N (x)|2 − |Π̃N

N (x)|2)
}

+ C|Π̃N
N (x)|2

]
ε2n + o(ε2n) .

Hence (
N

2|pq| − C
)∣∣Π̃N

N (x)
∣∣2 ≤ ( N

2|pq| + C

)
|x|2 .

Therefore for x ∈ Qp ∣∣Π̃N
N (x)

∣∣ ≤ (1 + C
N

)
|x|

and as a corollary ∣∣Π̃N
N (v)

∣∣ ≤ (1 + C
N

)
|v|

for any v ∈ Lp.
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1.9. Take a sequence Ni →∞ such that there is a pointwise limit

f1 = lim
i→∞

Π̃Ni
Ni
,

on some countable everywhere dense subset Qp ⊂ Lp. One can repeat
the same “Construction” as in 1.5 to extend f1 to f̃1 : Lp → Lq. It is a
noncontracting mapping and from Lemma 1.8 |f̃1(v)| ≤ |v|. In the same
way we can construct such a mapping f̃2 : Lq → Lp. Using Lemma 1.3 for
K1 = BR(o) ⊂ Lp, K2 = BR(o) ⊂ Lq we obtain part (A) of the theorem. �

1.10. By Regular point of an Alexandrov space we understand a point
with Euclidean space as a tangent cone.

Corollary of Theorem 1.2(A). Let x lie on a shortest path pq. Then
Σx ≥ Σp and Σx ≥ Σq (see 1.3). In particular if p or q are regular points of
M then all points on a shortest path pq are regular. (In other words, the
set of regular points is convex.)

Proof. It follows immediately from the semicontinuity property of the space
of directions [BGP, 7.14] and Theorem 1.2(A).

Remark. It is true also that Σx ≥ S(Σq′(Σp)) and Σx ≥ S(Σp′(Σq)).
The proof uses a stronger version of the semicontinuity property, namely
if Mi → M is a sequence of Alexandrov spaces with curvature ≥ C and
pi ∈Mi such that pi → p ∈M then

lim inf Σpi ≥ Σp .

1.11. Starting from this point we are preparing for part (B) of the The-
orem 1.1.

Lyrical digression. One can see that the construction of parallel
transport almost contains the second variation formula, but when we pass
to the limit we lose everything. The rest of this section is very technical
dealing with this obstacle. There is nothing good in the proof below except
that it is, hopefully, right.

Lemma (Isoperimetric inequality). Let U be a metric space which is a
e±δ-bi-Lipschitz homeomorph to an open Euclidean n-dimensional domain.
Then for every compact K ⊂ U we have

Voln(K)1/n ≤ e2δωnVol1/(n−1)
n−1 (∂K)

where ωn is the constant in the standard Euclidean isoperimetric inequality.
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Proof. It is easy to see that for a e±δ-bi-Lipschitz homomorphism f : U →
Rn we have

Vol1/nn (K) ≤ eδ ·Vol1/nn (f(K))
and

Vol1/(n−1)
n−1 (∂K) ≥ e−δVol1/(n−1)

n−1 (∂f(K)) .
Further f(K) ⊂ Rn and hence we have

Voln(f(K))1/n ≤ ωnVol1/(n−1)
n−1 (∂f(K)) .

Therefore we obtain our version of the isoperimetric inequality. �
Let Bt(K) be the t-neighborhood of a subset K. Using the inequality

above it is easy to obtain the following

Corollary (Coarea formula). Under the assumption of the last lemma,
let Bt(K) be compact subsets of U for 0 ≤ t < ε. Then

d
dtVoln(Bt(K)) ≥ Voln(BtK)n−1/n · e−2(n−1)δω1−n

n

and therefore

Vol1/nn (Bt(K))−Vol1/nn (K) ≥ tcne−2(n−1)δ ,

where cn = ω1−n
n /n is the constant in the standard Euclidean coarea for-

mula.

1.12. Sections 1.12-1.15 will be devoted to proving the following

Key lemma for B. Given εn → 0, and Qp ⊂ Lp, Qq ⊂ Lq are countable
everywhere dense subsets of regular points. There is a subsequence {εn} ⊂
{εn} and an isometry T : Lp → Lq which preserves orientation of a small
neighborhood of pq, such that for any x ∈ Qp and y ∈ T−1(Qq)∣∣ expp(εnx) expq(εnT (y))

∣∣ ≤ |pq|+ |xy|2ε2n
2|pq| + o(ε2n) .

Proof. Let r be the midpoint of segment pq. Let us consider the same
construction as in the proof of (A) for pairs p, r and q, r and subsets Qp ⊂
Lp and Qq ⊂ Lq. We obtain a series of mappings Π̃N

N : Lp → Lr and
Π̃N
N : Lq → Lr. As in 1.9 we take some sequence Ni such that the following

limits exist

f = lim
i→∞

Π̃Ni
Ni

: Lq → Lr and g = lim
i→∞

Π̃Ni
Ni

: Lq → Lr .

From 1.9 these mappings f and g are isometries. We can assume that all
of Π̃k

N are defined for one subsequence of {εn}.
We claim that T = f ◦ g−1 is the mapping we need.
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It is easy to verify that T preserves orientation of a small neighborhood
of pq.

We have to prove that for any x ∈ Qp and y ∈ T−1(Qq)∣∣ expp(εnx) expq(εnT (y))
∣∣ ≤ |pq|+ |xy|2ε2n

2|pq| + o(ε2n) ,

or equivalently for any λ > |xy|/|pq|∣∣ expp(εnx) expq(εnT (y))
∣∣ ≤ |pq|(1 +

λ2ε2n
2

)
+ o(ε2n) .

Starting from this point we fix x, y ∈ Qp and some λ > |xy|/|pq| and
always assume that N ∈ {Ni}.
1.13 Warning. In the next few sections I’m trying to avoid unnecessary
indexes (not to confuse you but to make it easier to understand), do not
be surprised.

Let B(X) be the set of all subsets of X. Recall that Bt(Y ) is the t-
neighborhood of a subset Y ⊂ X. Let us consider the following map

Φ : B(Lf )→ B(Lg) , Φ = Bλ|fg| ◦ Π̃ .

Now using Lemma 1.6 we obtain that if x′ ∈ Φ(x) and x ∈ Qf ⊂ Lf
then∣∣ expf (εnx) expg(εnx

′)
∣∣ ≤ |fg|+ 1

2|fg|
(
|x|2 − |Π̃(x)|2 + λ2|fg|2

)
ε2n + o(ε2n) .

(#)
Therefore using that Π̃ is a noncontracting mapping (see Lemma 1.5)∣∣ expf (εnx) expg(εnx

′)
∣∣ ≤ |fg|(1 +

λ2ε2n
2

)
+ o(ε2n) . (##)

Consider a series of mappings ΦN corresponding to Π̃N .
Set

Φk
N : B(Lpn−k)→ B(Lpn) , Φk

N (x) =

k times︷ ︸︸ ︷
ΦN ◦ ΦN ◦ ...ΦN .

Putting together inequality (##) for different Π̃-s we obtain that if
x′ ∈ Φk

N (x) and x ∈ Qpn−k then∣∣ exppn−k(εnx) exppn(εnx′)
∣∣ ≤ |pn−kpn|(1 +

λ2ε2n
2

)
+ o(ε2n) . (###)
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1.13a. We can consider a series of mappings:

ΥN : Lpn−1 → Lpn

and

Υk
N =

k times︷ ︸︸ ︷
ΥN ◦ΥN ◦ ...ΥN : Lpn−k → Lpn

such that Υk
N : Lp0 → Lpk is an isometry with Υk

N (o) = o that minimizes

max
v∈B1(o)⊂Lp0

{
|Υk

N (v)Π̃k
N (v)|

}
.

for k < N .

Proposition. Let k = k(N), n = n(N) be any sequences such that
1 ≤ k ≤ n ≤ N , and x = xN ∈ Lpn−k be a sequence such that |x| ≤ R for
some fixed R. Then

lim
N→∞

∣∣Π̃k
N (x) Υk

N(x)
∣∣ = 0 . (####)

In particular limN→∞ΥN
N = f̃ where f̃ is from 1.9.

Proof. This is true because Π̃k
N is close to an isometry for large N (a direct

corollary of 1.9 and 1.5).

Lemma. Let k = k(N), n = n(N) be any sequences such that 1 ≤ k ≤ n ≤
N , and x = xN ∈ Lpn−k be a sequence such that |x| ≤ R for some R. Then
for any fixed ε > 0 we have

Φk
N (x) ⊂ Υk

N

(
Bλ|pn−kpn|+ε(x)

)
for sufficiently large N .

Proof. Let us prove first that there is R′ such that for sufficiently large N ,
|Φk
N (x)| ≤ R′. The following proof is very similar to the one in 1.8.
Take a sequence x0 = x, x1 ∈ ΦN (x0),...,xk ∈ ΦN (xk−1). We must prove

that there is R′ such that for any such a sequence we have |xk| ≤ R′. We
can assume that maxi |xi| = |xk|.

First of all ∣∣a exppn−k(x0εn)
∣∣ ≤ |apn−k|+ C|x0|2ε2n ,

and ∣∣ exppn−k(xkεn) b
∣∣ ≤ |pnb|+ C|xk|2ε2n .

Now

|ab| ≤
∣∣a exppn−k(εnx0)

∣∣
+
(
| exppn−k(εnx0) exppn−k+1

(εnx1)|+ | exppn−k+1
(εnx1) expp2

(εnx2)|+ ...
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+| exppN−1
(εnxk−1) exppN (εnxk)|

)
+
∣∣ exppN (εnxk) b

∣∣ ≤ ???

By inequality

??? ≤ |ap0|+ |pn−kpn−k+1|+ |pn−k+1pn−k+2|+ ...+ |pn−1pn|+ |pnb|

+
[
C|x|2 +

N

2|pq|
{

(|(x0)|2 − |Π̃N (x0)|2) + (|x1|2 − |Π̃N (x1)|2) + ...

...+ (|xk−1|2 − |Π̃N (xk−1)|2)
}

+ λ2|pn−kpn|/2 + C|xk|2
]
ε2n + o(ε2n) ≤ ???

Using |Π̃N (xi)xi+1| ≤ λ|pipi+1|, we have

|xi+1|2 − |Π̃N (xi)|2 ≤ 2λ|pipi+1|max
{
|xi|, |Π̃N (xi)|

}
.

Therefore we can continue

??? ≤ |ab|+
[
C|x|2+

N

2|pq|
{
|(x0)|2−|(xk)|2+2λ|pn−kpn|max

i
{|xi|, |Π̃N (xi)|}

}
+λ2|pn−kpn|/2 + C|xk|2

]
ε2n

+o(ε2n) .

Therefore for all sufficiently large N we have

|xk| ≤ |x0|+ 2λ|pn−kpn| ≤ R+ 2λ|pq| = R′ .

Reasoning by contradiction, we assume that the lemma is false. Then
there is a sequence of points y = yN ∈ Lpn−k such that Υk

N (y) ∈ Φk
N (x)

and |yx| > kλ|pq|/N + ε. Using that Π̃N are noncontracting mappings we
obtain∣∣Π̃N (y) ΦN (x)

∣∣ =
∣∣Π̃N (y)Bλ|pq|/N ◦ Π̃N (x)

∣∣e
≥
∣∣Π̃N (y) Π̃N (x)

∣∣− λ|pq|/N ≥ |yx| − λ|pq|/N .

In the next step∣∣Π̃2
N (y) Φ2

N (x)
∣∣ =

∣∣Π̃N ◦ Π̃N (y)Bλ|pq|/N ◦ Π̃N ◦ ΦN (x)
∣∣

≥
∣∣Π̃N (y) ΦN (x)

∣∣− λ|pq|/N ≥ |yx| − 2λ|pq|/N ,

after k-th step we have

|Π̃k
N (y) Φk

N (x)| ≥ |yx| − kλ|pq|/N .

From above |y| ≤ R′ for some R′, and therefore the properties Υk
N insure

that if N is sufficiently large we obtain |Π̃k
N (y) Υk

N (y)| ≤ ε. Therefore, for
large N

0 =
∣∣Υk

N (y) Φk
N (x)

∣∣ ≥ ∣∣Π̃k
N (y) Φk

N (x)
∣∣− ∣∣Π̃k

N (y) Υk
N (y)

∣∣
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> |yx| − kλ|pq|/N − ε > 0 ,

a contradiction. �

1.14 Lemma. If U is a neighborhood of x which is e±δ-bi-Lipschitz equiv-
alent to a domain in Euclidean space and for 0 ≤ i ≤ k

Φi
N (x) ⊂ Υi

N (U) ,

then

Voln−1(Φk
N (x)) ≥

(
1− l1.14(δ)

)
Vol(Bn−1

1 )
(
kλ|pq|
N

)n−1

where l1.14(δ) = 2n2δ and Bn−1
1 is a unit ball in Euclidean space.

Proof. This is an immediate corollary of the noncontracting property of Π̃
(see Lemma 1.5) and the coarea formula (see Corollary 1.11). �

Corollary. If U is an open neighborhood of x which is e±δ-bi-Lipschitz
equivalent to a domain in Euclidean space and

Φk
N (x) ⊂ Υk

N (U) ,

then

lim sup
N→∞

dH(Φk
N (x)), Bλ|pn−kpn|(Υ

k
N (x)) ≤ λc1.14(δ) lim sup

N→∞
|pn−kpn|

where c1.14(δ) = 2(2n2δ)1/n and dH is the Hausdorff distance between sub-
sets of Lpn .

Proof. Since Lpn is an Alexandrov space with curvature ≥ 0 (see [BGP,
10.2]), this follows immediately from Lemmas 1.13a and 1.14 and the fact
that the volume of a ball in Lpn does not exceed the volume of a ball of the
same radius in Euclidean space. �

1.15. Now we are ready to complete the proof of the Key Lemma for
B (1.12).

Let us consider a shortest path β between x ∈ Qp and y ∈ T−1(Qq) in
Lp. Assume z is the midpoint of β.

Claim. There is ρ > 0 such that for all sufficiently large N

Vol
(
Bρ(ΥN

N (z)) ∩ ΦN
N (x)

)
> 1

2Vol(Bρ(ΥN
N (z)) .

Remark. It is easy to see that if all points of the shortest path γ are
regular then this claim is a direct corollary of Lemma 1.14 and its corollary.
The following trick to treat the general case was suggested by Perelman.
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Proof. The points x and y are regular, therefore by the corollary in 1.10
all points on β are regular. It is easy to see that for any δ > 0 there is a
neighborhood Uδ of β which is e±δ-bi-Lipschitz equivalent to a domain in
Euclidean space.

Using the corollary in 1.14 step by step we will prove that for ε > 0
such that (1− ε)|pr| > |xz| we have

lim
N→∞

∣∣ΥN−[Nε]
N (z)ΦN−[Nε]

N (x)
∣∣ = 0 .

Indeed, take δ > 0 such that (1− 2c1.14(δ))(1− ε)|pr| > |xz|. Construct
an open neighborhood Uδ of β which is e±δ-bi-Lipschitz equivalent to a
domain in Euclidean space. Take a compact neighborhood U ′δ of β, such
that U ′δ ⊂ Uδ. By Lemma 1.13a for sufficiently large m ∈ N we have that
if x′ ∈ Υk1

N (U ′δ), then for any k2 ≤ N/m and sufficiently large N

Φk2
N (x′) ⊂ Υk1+k2

N (Uδ) .

(This will allow us to use Corollary 1.14 for such a point x′.) Also one can
assume that 2x1.14|pr|/m-neighborhood of β is in U ′δ.

Note that if x′ ∈ Φk1
N (x) then Φk2

N (x′) ⊂ Φk1+k2
N (x).

Now fix m, Uδ and U ′δ.
Let us divide the shortest path xz in m equal parts by points x =

x0, x1,...,xm = z. Let k = [N(1 − ε)/m]. It is easy to see that if N is
sufficiently large [Nε] + k ≥ N − km ≥ [Nε].

From Corollary 1.14, for sufficiently large N there is a point x′1 ∈ Φk
N (x)

such that |x′1Υk
N (x1)| < 2c1.14|pr|/m. Using the same corollary for x′1

we obtain existence of x′2 ∈ Φk
N (x′1) ⊂ Φ2k

N (x) such that |x′2Υ2k
N (x2)| <

2c1.14|pr|/m; and so on to obtain x′m ∈ Φmk
N (x) such that |x′mΥmk

N (z)| <
2c1.14|pr|/m. Using the same corollary again we obtain existence of x′′m ∈
ΦN−mk−[Nε]
N (x′m) ⊂ ΦN−[Nε]

N (x) such that |x′′mΥN−[Nε]
N (z)| < 2c1.14|pr|/m.

x y

U

U’
z

Now 2c1.14|pr|/m→ 0 when m→∞.
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Therefore we can find ε > 0 such that

lim
N→∞

∣∣ΥN−[Nε]
N (z)ΦN−[Nε]

N (x)
∣∣ = 0 .

Let x′ ∈ ΦN−[Nε]
N (x) be the closest point to ΥN

N (z). From Lemmas 1.13a
and 1.14 we obtain that for sufficiently small δ and ε and large N we have

Vol
(
Bλε|pr|(Υ

N
N (z)) ∩ ΦN

N (x)
)
≥ Vol

(
Bλε|pr|(Υ

N
N(z)) ∩ Φ[Nε](x′)

)
≤ 1

2Vol
(
Bλε|pr|(Υ

N
N(z))

)
.

Therefore the Claim is true for ρ = λε|pr|. �

Using this Claim we obtain that ΦN
N (x) ∩ ΦN

N (T (y)) 6= ∅.
Let z′ ∈ ΦN

N (x) ∩ ΦN
N (T (y)) ⊂ Lr. Then by (###)∣∣ expp(εnx) expq(εnT (y))

∣∣ ≤ ∣∣ expp(εnx) expr(εnz
′)
∣∣

+
∣∣ expr(εnz

′) expq(εnT (y))
∣∣

≤ |pq|
(

1 +
λ2ε2n

2

)
+ o(ε2n) .

This completes the proof of the Key Lemma. �

1.16 Proof of the Theorem, part B. Take a sequence of points pn, qn which
lie in the shortest path pq, with |pnp| = |qnq| → 0. Assume r is the middle of
segment pq. Let Tpn : Lpn → Lr and Tqn : Lqn → Lr be the mappings from
the Key Lemma for B (1.12). We can assume that all of these mappings
are constructed for some subsequence {εn} ⊂ {εn}.

Take countable everywhere dense subsets Qp ⊂ Lp and Qq ⊂ Lq, pass
to a subsequence {εn} and construct mappings Π̃pn : Lp → Lpn and Π̃qn :
Lq → Lqn (see 1.5). We can easily find sequences {pn} and {qn} such that
the limits f = limn→∞ Tpn ◦ Π̃pn : Lp → Lr and g = limi→∞ Tqn ◦ Π̃qn :
Lq → Lr exist. Exactly as in 1.9 we can see that f and g are isometries.

We claim that T = f ◦ g−1 is the mapping which we need.
Assume the statement B of the theorem is false for the constructed

mapping T . Then there are vectors x, y ∈ Lp and a subsequence {εn} such
that ∣∣ expp(εnx) expq(εnT (y))

∣∣ ≥ |pq|+ |xy|2ε2n
2|pq| + cε2n

for some c > 0.
Let Q′p = Qp∪x and Q′q = Qq∪T (y). We can construct Π̃′qn and Π̃′pn for

these subsets and a subsequence of {ε′n}. It is easy to see that Π̃′qn and Π̃′pn
can be taken such that Π̃′pn |Lp\x = Π̃pn |Lp\x and Π̃′qn |Lq\T (y) = Π̃qn |Lq\T (y).
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Note that the construction of T is invariant under changing Π-s to Π′-s.
Construct Φ′pn and Φ′qn from these Π′-s as in 1.13.

Now Φ′pn(x) ⊂ Lpn and Φ′qn(T (y)) ⊂ Lqn are open subsets and therefore
for any x, y ∈ Lp there are elements xn,∈ Qpn ⊂ Lpn and y ∈ T−1

pn ◦Tqn(Qqn)
such that xn ∈ Φ′(x) and Tn(yn) ∈ Φ′(T (y)). Using the Key Lemma we
obtain ∣∣ expp(εnx) expq(εnT (y))

∣∣ ≤ ∣∣ expp(εnx) exppn(εnxn)
∣∣

+
∣∣ expp(εnxn) expq(εnTn(yn))

∣∣+
∣∣ expp(εnTn(yn)) expq(εnT (y))

∣∣
≤ |pq|

(
1 +

λ2ε2n
2

)
+ o(ε2n)

if λ > |xnyn|/|pnqn|. But it is easy to see that limi→∞ |xnyn|/|pnqn| =
|xy|/|pq| and therefore we obtain that∣∣ expp(εnx) expq(εnT (y))

∣∣ ≤ |pq|(1 +
λ2ε2n

2

)
+ o(ε2n)

for any λ > |xy|/|pq|, or∣∣ expp(εnx) expq(εnT (y))
∣∣ ≤ |pq|(1 +

|xy|2ε2n
2|pq|2

)
+ o(ε2n) . �

2 Synge’s Theorem

2.0. The following theorem was proved by J.L. Synge in 1936 for Rieman-
nian manifolds. Here we generalize this theorem to the case of Alexandrov
spaces. Our proof is only a small modification of the original one; it is an
example of the application of our second variation formula.

Generalized Synge’s Theorem 2.1. a) If M is an even dimensional ori-
entable Alexandrov space with curvature ≥ 1, then M is simply connected.

b) If M is an odd dimension locally orientable (see 1.0) Alexandrov
space with curvature ≥ 1, then M is orientable.

In order to formulate the following Generalized Synge’s Lemma we need
a formal generalization of Alexandrov space.

Definition. A metric space will be called an Alexandrov domain if for
every point there exists a compact neighborhood which is an Alexandrov
space (with the same curvature bound).

In particular, every open subset of Alexandrov space is an Alexandrov
domain because every point has a convex neighborhood (see [PPe1, 4.3]).
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2.2 Generalized Synge’s Lemma. A. Let Γ be an Alexandrov domain
with curvature ≥ 1, γ ⊂ Γ be a closed path and one of the following be
true:

a) Γ is orientable and even dimensional;
or

b) arbitrarily small neighborhoods of γ in Γ are nonorientable and Γ has
odd dimension.

Then for every ε > 0 there is an ε-close path γε (ε-close means that for
some parameterizations |γε(t)γ(t)| < ε) such that

length(γε) < length(γ) .

B. Let Σ be an orientable Alexandrov space with curvature ≥ 1, T :
Σ→ Σ

a) Σ is even dimensional and T preserves orientation;
or

b) Σ is odd dimensional and T reverses orientation.
Then T has a fixed point.

Proof. We will prove this using the induction scheme Bn → An+2 → Bn+2...
and take as a base the trivial cases B0 and B1 (lower indexes indicate the
dimension).

(An → Bn) Let us consider the function

f : Σ→ R+ , f(x) = |xT (x)|
and let p be a minimum point of f on Σ. If f(p) = 0 then p is a fixed point
of T . Therefore assume f(p) > 0.

Let us consider projection to the quotient space of an ε-neighborhood of
a shortest path γ between p and T (p) by isometry T . The resulting metric
space Γ is easily an Alexandrov domain and γ is glued in a closed path.
Therefore using (A) we obtain that there is an ε-close path γε such that

length(γε) < length(γ) .

Let us consider any point on γε. It is easy to see that for the preimage
q ∈ Σ of this point we obtain

f(q)≤ length(γε) < length(γ) =f(p) ,

a contradiction.
(Bn → An+2) We may assume γ is a closed geodesic (locally shortest

path).
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Let us divide our closed geodesic into shortest paths pipi+1 such that
each of them lies in a compact convex subset which is an Alexandrov space.
For every such a path pipi+1 (p0 = pN ) consider the map Ti : Lpi−1 → Lpi
from Theorem 1.2(B). Using this theorem we can choose these maps such
that for some sequence εn → 0 and every i and x we have∣∣ exppi−1

(εnx) exppi(εnTi(x))
∣∣ = |pi−1pi|

(
1− k

2 ε
2
nx

2)+ o(ε2n) ,

and moreover Ti preserve orientation of a small neighborhood of the seg-
ment pi−1pi.

As a result we obtain a map T = TN ◦ ...◦T2 ◦T1 : Lp0 → Lp0 which pre-
serves orientation in even dimensional case and reverses orientation in the
odd dimensional case. T is an isometry, and we can consider the restriction
of this map to Λp0 , where Lp0 = C(Λp0). Therefore using (Bn) we obtain
a fixed point x0 ∈ Lp0 of this mapping. Assume xN = TN ◦ ... ◦ T2 ◦ T1(x0)
(xN = x0). Then using the second variation formula we obtain

length(γ) >
∣∣ expp0

(εnx0) expp1
(εnx1)

∣∣+
∣∣ expp1

(εnx1) expp2
(εnx2)

∣∣+ ...

+
∣∣ exppN−1

(εnxN−1) expp0
(εnx0)

∣∣ .
Therefore the broken geodesic

expp0
(εnx0) expp1

(εnx1)... exppN−1
(εnxN−1) expp0

(εnx0)

can be taken as γε for ε� εn. �

3 Frankel’s Theorem

3.0. The following theorem was proved by Theodore Frankel [F, Th.1] in
1961 for the Riemannian case. Unfortunately totally geodesic submanifolds
in a Riemannian manifold with positive curvature are very rare phenom-
ena. Thus Frankel’s theorem turns out to be particularly important for the
Alexandrov case because extremal subsets are always totally quasi-geodesic
(see the corollary below). Again the ideology of our proof is the same as
in the original; it is another illustration of the work of our second variation
formula.

3.1. Let H be a subset of M , and denote by |∗ ∗|H the intrinsic metric
in H.
Definition. A connected closed subset H of an Alexandrov space M is
called totally quasi-geodesic if

1. For any compact subset K ⊂ H there is ε > 0 such that

|pq|H < ε−1|pq|
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for any p, q ∈ K.
2. Any shortest path in the intrinsic metric of H is a quasi-geodesic

and moreover it can be prolonged infinitely on both sides in H as a
quasi-geodesic in M .

If H is totally quasi-geodesic then for any point p ∈ H we know Cp(H)
is a totally quasi-geodesic subset of Cp and Σp(H) is a totally quasi-geodesic
subset of Σp (here Cp(H) = C(Σp(H)) (see [PPe2, 2.3(3)] or [Pe, I 2.4]). In
particular from any point p ∈ H and ξ ∈ Σp(H), there is a quasi-geodesic
in H with this initial date, which is infinitely long on both sides.

Theorem 3.2. Let F and G be two totally quasi-geodesic subsets of an
Alexandrov space Σ with curvature ≥ 1, and suppose dimF + dimG ≥
dim Σ. Then F ∩G 6= ∅.

Corollary 3.3. Let F and G be two extremal subsets of an Alexandrov
space Σ with curvature≥ 1, where dimF+dimG ≥ dim Σ. Then F∩G 6= ∅.

Proof of the corollary. We only need to verify that any extremal subset is
a totally quasi-geodesic subset.

Part 1 of the definition is easily seen from [PPe1, 3.2(2)]. Part 2 of the
definition is a direct corollary of the generalized Lieberman lemma ([PPe1,
5.3] or [Pe, II 1.1]) and construction of quasi-geodesic (see [PPe2, 6.3(b)]
or [Pe, I 4.1(A′)]). Now we only need to apply the theorem.

3.4. Now we prepare for the proof of the theorem.

Lemma. For a totally quasi-geodesic subset F of a compact Alexandrov
space M and for arbitrary ε > 0 there is a function f : F → R such that

a) For any quasi-geodesic γ ∈ F we have (f ◦ γ)′′ ≤ ε, |(f ◦ γ)′| < ε,
|f | < ε.

b) If p is a singular point of F , i.e. Cp(F ) 6= Rk where k is the dimension
of F , then there is a pair of polar directions (ξ, ξ∗) ∈ Cp(F ) ⊂ Cp
such that

∂f

∂ξ
+
∂f

∂ξ∗
< 0 .

Proof. We claim that there is δ(ε) such that the function

f(p) = δ(ε)
∮
x∈M

dist2
x(p)dhn

is the function we need. From the definition of quasi-geodesic it is easy to
see that a) is true for δ(ε) ≤ εmin{1,Diam−2(M)}. It is easy to see that
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for all pairs of polar vectors (ξ, ξ∗) ∈ Cp(F )
∂f

∂ξ
+
∂f

∂ξ∗
≤ 0 .

Assume the inequality is exact. It means that for all such pairs (ξ, ξ∗) we
have 〈

λ logp(x), ξ
〉

+
〈
λ logp(x), ξ∗

〉
= 0

for almost all x ∈ M and λ ≥ 0. It follows that all pairs (ξ, ξ∗) are
opposite, i.e. there is a representation Cp = R × C ′p such that ξ = (|ξ|, o)
and ξ∗ = (−|ξ|, o). Thus there is a representation Cp = Rk′ ×C ′p such that
Cp(F ) ⊂ Rk′ × o. F is totally quasi-geodesic, therefore Cp(F ) is a linear
subspace of Rk′ × o. Hence p is a regular point of F . �

3.5 Proof of the Theorem. The proof is carried in sections 3.5-3.8.
Let h = |FG| = minp∈F, q∈G |pq|. If h = 0 then F ∩ G 6= ∅, therefore

assume h > 0.
Take some ε > 0. Consider functions f on F and g as in Lemma 3.4

and set
Ψ(p, q) =

(
|pq|+ f(p) + g(q)

)
for p ∈ F , q ∈ G. Let (p, q) be a minimum pair for Ψ. Lemma 3.3(b)
guarantees that p (q) is a regular point of F (G).

Therefore for any vector v ∈ Cp(F ) there is an opposite vector v∗ ∈
Cp(F ). Using that (p, q) is a minimum pair of Ψ we obtain

〈v, q′p〉 ≤ dpf(v) , 〈v∗, q′p〉 ≤ dpf(v∗) .

v is opposite to v∗ and f is ε-concave (see Lemma 3.4(a)), therefore

〈v, q′p〉+ 〈v∗, q′p〉 ≥ 0 , dpf(v) + dpf(v∗) ≤ 0 ,

hence
〈v, q′p〉 = dpf (〈v, p′q〉 = dqg) ,

for any v ∈ Cp(F ), (Cq(G)). In particular dpf (dqg) is a linear function on
Cp(F ) (Cq(G)).

Let us consider a shortest path pq, let r be the center of this shortest
path and {pn}, {qn} be two sequences of points on pq such that |pnp| =
|qnq| → 0. Let us consider two isometries Tpn : Lpn → Lr, Tqn : Lqn → Lr
as in Theorem 1.2(B). Then Tn = T−1

qn ◦ Tpn satisfy the inequality 1.2(B).

3.6. Now we start to construct mappings Πn : Cp(F ) → Lpn (Cq(G) →
Lqn). This construction is almost the same as the construction which we
made in 1.4, 1.5, 1.6 and we write only the necessary changes in these
sections.
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(Changes to 1.4) First of all F is totally quasi-geodesic, therefore one
can construct an exponential map expp such that expp(Cp(F )) ⊂ F . Using
this exponential map we can construct a map π : Cp → Lpn . For the
restriction π|Cp(F ) we can obtain the statement of Lemma 1.4, using the
same proof but with our function f(x) instead of |ax|.

(Changes to 1.5) Take a countable, everywhere dense subsetQp ⊂ Cp(F )
and pass to a subsequence of {εn} such that the following limit exists for
any v ∈ Qp:

lim
n→∞

π(vεn)/εn .

This defines a map

Π: Qp ⊂ Cp(F )→ Lpn

Π(v) def= lim
n→∞

π(vεn)/εn .

The same argument as in Lemma 1.5 shows that for any v, u ∈ Qp we
have ∣∣Π(v)Π(u)

∣∣2 ≥ |uv|2 − ∣∣df(u)− df(v)
∣∣2 .

Set
||uv|| def=

√
|uv|2 − |df(u)− df(v)|2 .

Therefore we obtain that our mapping Π is noncontracting with respect
to ||∗ ∗||.

Note that (Cp(F ), ‖ ∗ ∗‖) is flat and we have

(1− ε2)| ∗ ∗| ≤ ‖ ∗ ∗‖ ≤ | ∗ ∗| .
(Changes to 1.6) The same argument as in the proof of Lemma 1.6

shows that for any v ∈ Qf ⊂ Cp
f(expp(εnv)) +

∣∣ expp(εnv) exppn(εnΠ(v))
∣∣

≤ f(p) + |ppn|+
ε|v|2ε2n

2
+

1
2|ppn|

(
||v||2 − |Π(v)|2

)
ε2n + o(ε2n)

≤ f(p) + |ppn|+ ε||v||2ε2n +
1

2|ppn|
(
‖v‖2 − |Π(v)|2

)
ε2n + o(ε2n) ,

because if ε is sufficiently small then |v| ≤ 2||v||. Using that (p, q) is a
minimum pair for Ψ we obtain

g(q)+ |qqn|+
∣∣qn exppn(εnΠ(v))

∣∣+∣∣ exppn(εnΠ(v)) expp(εnv)
∣∣+f(expp(εnv))

≥ Ψ(expp(εnv), q) ≥ Ψ(q, p) .

Hence (
ε+

1
2|ppn|

)
||v||2 ≥

(
1

2|qnpn|
+

1
2|ppn|

)
|Π(v)|2 .
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3.7. Therefore for some C > 0

|Π(v)| ≤
(
1 + C|ppn|

)
||v|| .

Pass to subsequences of {pn}, {qn} such that there are the following
limits:

Tp = lim
n→∞

Tpn ◦Πn

and
Tq = lim

n→∞
Tqn ◦Πn .

From above (see 3.6, Changes to 1.5) Tp and Tq are noncontracting
mappings which preserve the norm. Therefore for any u, v ∈ (Cp(F ),||∗ ∗||)
we have

∠̃uov ≤ ∠̃Tp(u)oTp(v)
and this inequality is exact if and only if |Tp(u)Tp(v)| = ||uv||.

Using that (Cp(F ), || ∗ ∗||) is flat we obtain that for any two vectors
u, v ∈ (Cp(F ), ||∗ ∗||) there is a vector w ∈ (Cp(F ), ||∗ ∗||) such that

∠̃uov + ∠̃vow + ∠̃wou = 2π .

Therefore

∠̃Tp(u)oTp(v)+∠̃Tp(v)oTp(w)+∠̃Tp(w)oTp(u)≥∠̃uov+∠̃vow+∠̃wou=2π.

Since Lr is an Alexandrov space with curvature ≥ 0, the inequality is
exact and therefore Tp and Tq are isometries with respect to ||∗ ∗||.
3.8. Hence clos(Im f) and clos(Im g) 6= ∅ are linear subspaces of the cone
Lr. dimF + dimG ≥ dim Σ, therefore,

clos(Im f) ∩ clos(Im g) 6= ∅ .
Hence for any ν > 0 there is a pair of vectors u ∈ Cp(F ) and v ∈ Cq(G)

and sufficiently large n such that |Tqn ◦ Πn(v) Tpn ◦ Πn(u)| ≤ ν‖v‖, or
equivalently |Πn(v) T−1◦ Πn(u)| ≤ ν‖v‖. Set v′ = Πn(v) and u′ = T−1 ◦
Πn(u). We can assume that all mappings Πn and Tn are constructed for
one sequence {εn}.

Now let us put together inequalities:

Ψ(p, q) ≤ Ψ
(

expq(εnu), expp(εnv)
)

≤ g(expq(εnu)) +
∣∣ expq(εnu) expqn(εnT (u′)

∣∣
+
∣∣ expqn(εnT (u′)) exppn(εnv′)

∣∣
+
∣∣ exppn(εnv′) expp(εnv)

∣∣+ f(expp(εnv))

≤ Ψ(pq) + ε
(
||v||2 + ||u||2

)
ε2n
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+
1

2|ppn|
(
‖v‖2 − |Π(v)|2 + ‖u‖2 − |Π(u)|2

)
ε2n

+ |v′u′|2ε2n −
|pnqn|

6
(
|v′|2 + 〈v′, u′〉+ |u′|2

)
ε2n + o(ε2n)

≤ Ψ(pq)+ε‖v‖2(1+ν)2ε2n+‖v‖2ν2ε2n−
|pnqn|

2
(‖v‖2)(1−ν)2ε2n+o(ε2n) .

Therefore

ε(1 + ν)2 + ν2 >
|pnqn|

2
(1− ν)2

and this is impossible for sufficiently small ε and ν. �

Comments

We have seen that the constructed parallel transportation has almost the
same properties as parallel transportation in the Riemannian case. But
this construction has a lot of choices: we need to fix a sequence {εn},
exponential mappings and direction of transportation. We do not have
any example when it does really depend on these choices and it would be
interesting to avoid this, in particular it would give us a uniquely defined
integral curvature for Alexandrov spaces. Furthermore it would make the
second variation formula much easier to use.

It would also be interesting to find some connections between our paral-
lel transportation and other natural parallel transportations. For example:
the parallel transportation which can be constructed along a curve on a sur-
face in Rn; also there is a “direct” construction of connection on Alexandrov
space (see [P3, 4.3]).
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