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Abstract

Here we generalize quasigeodesics to multidimensional Alexandrov space with curvature
bounded from below and prove that classical theorems of Alexandrov also hold for this
case. Also we develop gradient curves as a tool for studying spaces with curvature bounded
from below.

In the second chapter we give some applications of quasigeodesics and gradient curves:
the Radius Sphere theorem, the Glueing theorem and the First variation formula for ex-

tremal subsets.
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1.

I. GENERAL CONSTRUCTION

§0 INTRODUCTION

0.0. Quasigeodesics are a natural generalization of geodesics to nonsmooth metric
spaces. They were introduced in a paper of A.D.Alexandrov [Al] for 2-dimensional convex
hypersurfaces in Euclidean space, as curves which turn “right” and “left” simultaneously,
and in [A2] for 2—dimensional surfaces with finite integral curvature. The detailed research
on these kinds of quasigeodesics can be found in a paper of A.V.Pogorelov [Pog] and in
a joint work of A.D.Alexandrov and Yu.D.Burago [AB], respectively. A.D.Milka [M1]
considered quasigeodesics for multidimensional polygonal metrics with positive curvature,
defining them as broken geodesics satisfying a preentry condition on the directions of exit
and entrance at vertices (see below 2.11 and A.1(B)).

For the general case of Alexandrov space these definitions do not work and we shall
see that it is much harder to generalize results about quasigeodesics to this case. These
proofs require considerable technical background such as the Stratification Theorem of
G.Perelman [P] and a construction related to V.A.Sharafutdinov’s retraction [Sh, Th.3].
Fortunately, quasigeodesics and gradient curves have many application in the geometry of
Alexandrov spaces. They are the main tool in questions about the intrinsic metric of ex-
tremal subsets, and the Gluing Theorem (see below). Moreover, quasigeodesics sometimes
give new and easier proofs of known results such as the Radius Sphere Theorem. Some-
times they offer a good language to simplify formulas, as in the proof of parallel transport
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and the second variation formula. Recently they were applied in Perelman’s proof that the
metric tensor of an Alexandrov space is a tensor of finite variation.

I would like to thank to Stephanie Alexander, Yury Burago and Grisha Perelman who
took care to read everything below and help to make this paper more or less possible to
read (if you are going to read this then you need to tell them “thanks” too), and also for

their interest in this work which was very important for me.
0.1 Notation and conventions

e As in [Bus], by “curve” we mean a continuous map of a real interval into a metric
space. Therefore a curve may have self-intersections. For brevity a curve with length
parameter will be called a natural curve.

e Si denotes the k-plane, that is, the sphere, plane or hyperbolic plane with constant

curvature k. Let

. fork>0
=| vk
(k) [oo for k<0

e M,(X) will always denote an Alexandrov space with curvature > k, (> 1), and X, a
length-metric space.

o All differential inequalities of the second order will be understood in the barrier sense,
ie.,

y,,|z=zo <C= C'(-7701 y)

means that in a neighborhood of zg

y < y(zo) + Bz — zp) + C(—m—:;o—)z- + o((a: - :1:0)2)



for some B. (It is easy to see that for a smooth function this is equivalent to the usual
definition.)

e ¥, is the space of directions of M at the point p and for ¢ # p we denote by ¢', or
more specially g;, a direction in X, of some shortest path pg (see [BGP §7]). If H is a
subset of M then

E(H)={0€Xy; ;€ H,0 = | lilln o(qi);}-
Pqi|—

o C, is the tangent cone at the point p, where Cp, = C(Z,). C, can be also defined as
a limit C, = limy o (AM, p) (see [BGP 7.7, 7.8.1]). We set Cp(H) = C(E,(H)) C Csp.

e C will denote any cone with curvature > 0, and o will denote its center. If z,y € C
then

|z} £ oz

2 2 2
def |Z|? + |¥)? — |zy
(z,y)-—gll |2 | |

= |z| - |y| cos Lz oy.
An element of a cone C will be called a “vector”.

o If C = C(X) then it easy to see that there is a standard embedding ¥ — C. Thus we
may consider ¥ as a “unit sphere” around o € C.

e For a € C), we say a = log, g if there is some shortest path between p and ¢ which
starts from p tangent to a and has length |a| = |pg|. In this notation o = gp- Note that
in a space of curvature > 0, log, is a noncontracting map.

e f usually denotes a scalar function on M. Let iy : AM — M be the canonical map.
The limit of (AM,p) for A — oo is Cp (see [BGP 7.8.1]). For any function f: M — R the

function dp f: Cp, — R such that

dpf = lim A(fois - f(p))

3



is called the differential of f at p.

e h, is n-dimensional Hausdorff measure.

e Let v be a curve in a metric space, Zp'y(a)‘"y(b) or Z’y(a)"'y(b)p is the corresponding
angle in the model triangle Apy(a)y(b) in Sy with sides |py(a)), |py(b)| and |a — b]. Note
that this is not the same as Zpy(a)y(b).

e By C§ we will mean the k-cone Cf = C¥(S,), i.e., spherical suspension, cone, or
elliptic cone with radial curvature equal to k (see [BGP 4.3.1, 4.3.2]). Mappings for C’,’,c
will be denoted by upper index k; for example, log’; M- C,’,c .

e For simplicity sometimes we prove only the case k = 0, but usually we formulate the

results for general k.

Reminder.

Let us say that a point is a 0-dimensional set with boundary and a two-point set is a

set without boundary.

Definition. A point p € M is a boundary point (p € OM) if £, has non empty
boundary.

Definition. A closed subset F C M is an extremal subset if for any distance function
f any extremal point of f on F is an extremal point of f on M.

The important properties of extremal subset are:

(1) The closure of all points with a fixed topological singularity is an extremal subset,
in particular the boundary and the space itself are extremal subsets.
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(2) The union of extremal subsets is an extremal subset.
(3) The intersection of extremal subsets is an extremal subset.
(4) The tangent cone of an extremal subset is an extremal subset of the tangent cone

of the space.

(5) For any compact subset K C F there is an € > 0 such that for any z,y € K

lzylF < €yl

where |* *|p is the length metric of F.

§1 QUASIGEODESICS

1.0. In this paragraph we give a definition of k-quasigeodesics for an arbitrary length-
metric space. We prove that in an Alexandrov space with curvature > k the classes

of k;-quasigeodesics and ko-quasigeodesics coincide if k2,k; < k. One can find another

natural definition in §6.

1.1. Definition. The curve ¥(t) in the -plane, (more specifically 7% (¢)) is called the
unfolding of a curve +: [a,b] — X with respect to p € X if

a) t is a natural parameter for 7(t)

b) there exists p € Sy such that [¥(¢)p] = |v(¢)p| for every ¢

c) the direction from p to (t) turns monotonically with increasing .

This definition was used by Alexandrov in [A3] for the case of curvature bounded above.



1.2. Lemma. Let ~:[a,b] — X be a 1-Lipschitz curve in X, satisfying |py(t)| < w(k)
for every ¢. Then +(t) has a unique (up to isometry) unfolding 75(2).
Conversely, if v has an unfolding with respect to every point p € X then it is a

1-Lipschitz curve.

Proof. Indeed, z(t) = |py(t)| is a 1-Lipschitz function by the triangle inequality.

Therefore we can represent x in the form

¢
z(t) = z(to) +/ o(t)dt where |p| < 1,9 € Ly toc-
to

Let
Zrsin(zvk) k>0

ox(z) = Z gintl = T ifk=0.
o (2n+ 1)' Az sinh(zv/=F) k<0

It is easy to see that

(#) ok (z)" + ko (z) =

Let us consider 7,’,‘ (¢) in polar coordinates with the center p,

To(t) = (=(t), a(t)).
Then the formula di? = 02(z)do? + dz? gives a unique (up to isometry) representation of
7

%0 =0, [ Lo,

(The inequality [py(t)| < 7(k) implies that o (z(t)) # 0.)
Now Let us prove that « is a 1—Lipschitz curve.
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Let |py(t1)] < €. Then

(t2)v(t)] <€ +|py(ta)l = + |FY(t)l < €+ |FF(t1)] + [F(E2)F(81)] < 26 + [t2 — ta].

Since ¢ is arbitrary, < is 1-Lipschitz &.

1.3. Definition. The curve ¥ in Sk is (locally) convez at the point F(¢) with respect
to p € S if there exists € > 0 such that the following “triangle” is convex. The sides of

this “triangle” are the curve ¥(t)[{}¢ and the two shortest paths F(t — £)p and F(¢ + €)p.

1.4. Definition. A curve v in X is called k-convez if for all p € X the curve "7:,‘ exists

and is a locally convex curve with respect to p at all 5(t) such that [p(¢)| < = (k).

Remark.

From Lemma 1.2 we immediately obtain that any convex curve is 1—Lipschitz.
1.5. Definition. A k—convex natural curve «: [a,b] — X is called a k — quasigeodesic.

This definition was proved by A.D.Milka [M2] for 2-dimensional case as a properety of

quasigeodesic in the classical Alexandrov’s definition.

,,,- ®©  1yn-1 1(1—cos(zvk)) ifk>0
) E | orly)dy = R on z2/2 ifk=0.
P /o Ky =2, (2n)! (1 - cosh(zv/=F)) ifk <0

=



Note that pi is an increasing function on [0, w(k)] . Direct calculation shows that if (t) is

a geodesic in the k—plane, then for any point p

(##) pe(IpY()” + kpr(lpy()]) = 1.

1.7. Theorem. For ~:[a,b] — X, the following are equivalent.
A) v is a k—convex curve.

B) For any point p

pre(lY®)pl)" < 1~ kpe(v(2)pl).

B') For any p € X and t, € [a,b] the angle Zpy(to)(t) is nonincreasing in ¢, t > g

(compare with [BGP 2.5 (A)]).

The proof of Theorem 1.7 will use the following technical results.

1.8. Lemma. Suppose f”(t)+kf(t) <0, f(a) >0, f(b) >0 and |[a—b| < w(k). Then

f(z) >0 for z € [a,b)].

Proof. Direct calculations.

1.9. Corollary. Let f be a continuous function such that one of the following is true:

A) The inequality f”(¢) + kf(t) < 1 is true for almost all ¢ and everywhere we have

f'(t) + kf(t) < oo,



B) f"(t) + kf(t) < 1 everywhere but ¢ = ¢y and at ty the function f is convex in the

first order, i.e. for upper one-sided derivatives
i+ <o.

C) For any f satisfying f" @ +k f(t) = 1 and for |a — b] < w(k), the inequalities
f(a) > f(a) , £(b) 2 £(b) imply

f(2) > f(z) for any z € [a,b].

Then we have the inequality f”(t)+kf(t) < 1 everywhere and moreover for any £ there

is a function f such that

")+ kf(8) =1, f(to) = f(to) and f(£) > f(2) for |t — to| < m(k).

Proof. Let f be defined on (a,b) and

fe=ge*fv

where

€
gc €C*, g. =0 for |t| > € and gedt = 1.

—£

Then it is easy to see that
f=lmf., f. € C*

and everywhere in (a + €, b — £) we have

Y+ kf(t)<1

9



if f satisfies any one of A, B or C. Therefore we only need to prove the second part of the
Corollary for the smooth case and we will obtain the general case as a limit.

Let f(t) + kf-(t) =1 and fe(to £ €) = f(to £ €). Then from the Lemma we obtain
f() < F(t) for jt—to]<e
(we need only apply the Lemma to the function f(t) — f.(t)). Moreover,
fe(t) > f(t) for e < |t —to] < w(k) +e.

Indeed, suppose the last statement is wrong. Then there is b such that f(b) — f: (b) > 0.
Assume tgp +€ < b < tgp + € + w(k). Then applying the Lemma for interval [a,b] where
la — b < m(k) and a < ty + ¢, to the function f(t) — f.(t) + eox(t — a), we obtain
f(to+¢€)— fs(to +¢€) + eok(to+€—a) > 0. But f(to+¢) — f;(to +¢) =0 and thisis a
contradiction.

Therefore for f = lim,_,oo fe, the conclusion of the Lemma follows &.

1.10. Proof of Theorem 1.7. (A — B) and (B — A) This is easy to prove if
z(t) = |y(t)p| is a C?-function. Direct calculations show that if we have representation
¥(t) = (x(t), a(t)) in polar coordinates, then the curvature of ¥ is

_ pr(z)"” + kpr(z) — 1
= e @VI-@P

Therefore 7 is locally convex if and only if k(¢) < 0 for all £, or equivalently

pr(@)" + kpe(2) < 1.

The general case can be obtained from the fact that any solution of the differential
inequality is a limit of smooth solutions, and any locally convex curve is a limit of smooth
locally convex curves .

10



(B — B') and (B’ — B). The implication (B — B’) is exactly Lemma 1.8 for the
function px(|py(t)]) — pk(Z:,,1,(t)) where Z, 1,(¢) is the distance function between p and
a point on the opposite side of a model triangle (we need only to remember (##)). Con-
versely, let some curve v(t) satisfy B’. Then for any ?;,t2 the function pr(|py(t)]) satisfies

the condition C of Corollary 1.9 &.

1.11. Theorem. Let v be a natural curve in Alexandrov space M with curvature > k.
Then the following are equivalent:
A) v is a k-quasigeodesic.

B) For any t we have

0 (2225)" < 1.+ oo

1.12. Remark. Let vy be a geodesic (local shortest path) in the Alexandrov space
M with a natural parameter. Then from Theorem 1.11 it is easy to see that v is a k-
quasigeodesic. Indeed, let us verify this for k = 0. For any point v(tg) we can find
£ > 0 such that y(£)|i0*S is a shortest path. Let @ = Zy(to + &)v(to)p. Then 7 — o >
Z~(to — €)v(to)p. Using the triangle comparison theorem and the law of cosines we obtain

for |t —to|l <€

pv®)P _ lev(io)l?

(t — t0)2
2 = 2 )

2

— cos alpy(to)|(t — to) +

This implies

11



pe(v(to)pl)” < 1 - kpi(jy(to)pl)

for k =0.

Therefore the definition of quasigeodesic is natural.

1.13. Lemma. Let v:[a,b] » X be a natural curve. Then for almost all ¢y € [a, b]

i GO _
tto [tg — |

and

(|"/(t)‘;(to)|2)"

to
Proof. Immediately from [Bus 5.14].
1.14. Lemma. Let ABC and ABD be triangles in Sy with a common side AB,

/BAC + £BAD < 7 and let a,b,c,d,e be the lengths of sides as illustrated (i.e. a =

|AC|, b= |AD|, ¢=|AB|, d =|BC|, e =|BD|.) Then

e’ < 9:—bc2 - %dz + b(a +b).

12



Remark. We formulate this Lemma only for Sy because we prove only case k = 0. For
general k the formula will be

ox(a) + o (b)

pe(e) < r(6) + () + 20X (04 (a) — pe(d) ~ kpele) pi(8) + 252 (o).
ox(a) (@ 7:(a)

Proof. As a corollary of ZBAC + ZBAD < m we have the inequality
cos ZBAC + cos ZBAD > 0.

By the law of cosines for both triangles:

2 -
2cos LBAC = L=
ca
and
2 2
2cos Z/BAD = b_+_cc:_§_.

After summing
24 .2_ g2 p2 _ 2
a’+c d_'_b+c2 <50,
ca cb

which is the desired formula rewritten &.

1.15. Proof of Theorem 1.11.

(B — A) To simplify the formulas we will only prove case k = 0. But the general case
can be obtained in the same way.

Let p, be a point on the shortest path between p and «(Zy). Now let us consider the
quadruple (pl; p,7(t),7(to)). From the definition of Alexandrov space (see [BGP, 2.3])
we obtain

Zppry(t) + Zy(to)pr(t) < .

13



Using Lemma 1.14 for the model triangles App;7(t), Av(to)p17(t) we obtain

Y@ _ Ipv(to)l ley@1® el y(@)v(to)?
2 7 py(t)l 2 lpy(to)l 2

+ |p1pl - lpy(20)],

where equality holds for ¢ = to. Therefore taking the second derivative of this inequality

at tp we obtain

(Imgt)P)"

Now using (*), we obtain

< Im(to)] (Ipl'y(t)|2>"

= Ipy(o)l 2

lpp1] ( [y()v(to) I ) !

~ lpr(to)] 2

t=to t=to t=tp

<

< Im(to)] lpesl Oyt "
< i1 (e )|(1+o(|’7(t)P 1)) - Iy (to)] ( 2 ) vty <o

for all to. (Indeed [Y(t)Y(to)? 2 0 and [y(ta)v(to)l? = 0, s0 (17(H)7(ta)?)" > 0).

From Lemma 1.13 (|'y(t)'y(to)|2/2)" |t=to = 1 for almost all ¢;. Therefore

(etry]

Therefore, if p; — p we obtain

< (%) _lpp| o([v(t)p1)
< o) & ORI - oG <M e

(e

and Corollary 1.9 completes our proof &.

t=

<1,

t=tg

(A — B) We need only to rewrite inequality

pe(lY®)pl)” < 1= kpe(l7(t)pl)

using the series representation of pg, to obtain

something positive + (1 + O(}y(t)p|?)) (_Ij_(t_z)l_’_lz) <1+ 0(h(t)pl?).

14



Therefore we obtain an even stronger inequality:

(I:r(tzﬂ) <1+ 0(1(t)pl) &.

1.16. Corollary. (invariance) If ky,k; < k then in an Alexandrov space M with

curvature > k the classes of k;-quasigeodesics and ke-quasigeodesics coincide.

Proof. Using the equivalence A < B of Theorem 1.11 we obtain an invariant definition

of quasigeodesic &.

Remark. From now on we can talk about “quasigeodesics” instead of “k-quasigeodesics”

in an Alexandrov space.
1.17. Quasigeodesics give a new and very useful definition of Alexandrov space:

Theorem. A length-metric space X is an Alezandrov space with curvature > k if

between any pair of points there is a shortest path in X which is a k-quasigeodesic.

Proof. By (B'), this is only a small generalization of a standard definition [BGP
2.5(A)]. The proof is a repetition of the proof in [BGP 2.7-8]. But we have to say “the
shortest path which is a k-quasigeodesic” instead of “geodesic”’. The only point needing
attention is [BGP 2.8.1.] where we have to prove that the limit of “the shortest paths
which are k-quasigeodesics” is a “shortest path which is a k-quasigeodesic”. Indeed the
natural parameter of the limit curve is the limit of natural parameters because they are

15



shortest paths. And the limit of unfoldings will be the unfolding of the limit curve because

of local convexity #.
§2 REGULARITY and PASSAGE to LIMIT

2.0. Here we prove that a limit of quasigeodesics is also a quasigeodesic and as a

corollary we obtain some regularity properties of quasigeodesics.
2.1. Collapse and the Gromov-Hausdorff metric were considered in [GPL].

Definition. The Gromov-Hausdorff metric (on the set of all compact metric spaces) is

the metric

dGH(X, Y) = (2 )%?);HZ}{dH(X’ Y)},

where dy is the standard Hausdorff distance between sets in the metric space Z, and —

denotes a global isometric embedding.

2.2. The Gromov-Hausdorff limit can be defined as a limit in this metric. We will use

another definition (it is simple to check equivalence).

Definition. (for compact spaces) A sequence of metric spaces (Xy, pn) tends to a com-

00

pact metric space (X, p) (X, B x ), if there exists a metric d on | |,_,

X, such that

d|x, = pn and for every € > 0 there is a number N, such that for n > N

Xn C B:(X) and X C B.(Xp)

16



where B is an e-neighborhood in the d-metric.

Definition. (for finitely compact spaces)
A sequence of metric spaces (Xn,pn,pn) With base points tends to a complete metric
space (X,p,p) with base point (X, SH x ) if there exists a metric d on | ;. X, such

that for every R > 0 the balls Br(pa) LA Bpr(p) in the sense of the preceding definition.

2.3. It is easy to see that if {M,} is a sequence of Alexandrov spaces with curvature
> k and M, 5 M, then dim(M,) > dim(M) for sufficiently big n.
Definition. A sequence {M,} collapses to M if in addition to satisfying one of the

definitions in 2.2,

dim(M,) > dim(M).

2.4. Theorem.(passage to limit)
Assume M,, €58 M without collapse (i.e. dim(M,) = dim(M)) and v, € M, is a
sequence of quasigeodesics which in the d-metric converges pointwise to 4. Then v is a

quasigeodesic.

(Compare with the 2-dimensional case [A3’ Th.7] and [AB Th.7].)

Theorem 2.4 will be proved in paragraph 2.16.

2.5. Definition. The cutlocus of M with respect to p is the subset of M given by

Cutloc(M,p) = {q € M; there is no q; € M such that |pg| + {gq:1| = Ipg1| and ¢ # ¢}.

17



Lemma. For any point p € M, the cutlocus of M has vanishing Hausdorff n-measure:

hyCutloc(M,p) = 0.

Proof. Let us consider B = Im(log, ), which is a star-shaped body in C;, with center o.

Let
3B = {z € B; there is no z; € B such that z lies in the relative interior of oz }.
It is easy to see that log(Cutloc(M, p) C 8B. But
ha0B < lim hy(1+€)B\(1 ~€)B = 0.
Therefore since log, is noncontracting,

hnCutloc(M, p) < hy log,(Cutloc(M, p)) < k8B =0 #.

Corollary. For a given point p, the vectors log,(g) and log,(p) are uniquely defined for

almost all q.

Proof. Suppose log,(g) or log,(p) is not uniquely defined. Then g € Cutloc(M, p).

Thus we need only apply the preceding Lemma.

2.6. Lemma. Let C be a cone with curvature > 0, a,b € C, dimC = n and suppose

there is a subset K C C such that for any z € K

(a,z) = (b, z).

18



Then a = b or hnclos(K) = 0.

Proof. Suppose a # b. By continuity, for any z € clos(K) we have

{a,2) = (b, ).

Let us start with the case C = R". The function f(z) = (a,z) —~ (b,z) is linear and
therefore the set of zeros is a hyperplane and has zero measure.
Now turn to the general case. Using the preceding Corollary we obtain that log, a and

log,, b are uniquely defined for almost all z. Direct calculation shows that in this case

d: f(y) = (log, a,y) — (log,, b, Y),

for f defined as above. Since log, is a noncontracting map, log, a # log, b if a # b. From
above the density function o(z) of clos(K) is zero at almost all smooth points (points

where C; = R"). Thus from [F 2.9.11, 2.9.12]
hnpclos(K) = / o(z)dV =0
c

because as a corollary of [BGP 10.6], almost all points of an Alexandrov space are smooth

L )

2.7. Definition. Two vectors a and b in C are antipodal (we write a +b = 0) if for any

vector z € C,

(a,z) + (b,z) = 0.
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2.8. Lemma. The following properties of two vectors a,b in a cone C with curvature
> 0 are equivalent.

1. C can be represented in the form C = R x C’ such that ¢ = (z,0) and b = (-z,0)
forsome z ora=b=o0

2. {a,z) + (b,z) = 0 for any vector = of some everywhere dense subset.

2'. a and b are antipodal (a + b= 0).

3. |ab] = 2|a| = 2|}

Proof. The implications (1 — 2 — 2) are trivial.

(2’ — 3). Using 2’ for £ = a and z = b we obtain

(a,a) + (b,a) = 0 and (a, b) + (b,b) = 0.

After summing,

—2(b,a) = |af? + [b]?

By the definition of scalar product (see above)

|ab|? = 2|a|? + 2|b|?

and as corollary we obtain 3.

(3 — 1). By 3 the union of the two rays in directions a and b is an infinite shortest path
if |a] = |4 # 0. From Toponogov’s splitting Theorem (see [BGP 7.15]) we obtain that
C =R x C’ where R X o corresponds to the union of the two rays. The equation |a| = |b|

completes our proof é.
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2.9. Definition. An element y*(~) € Cp, p = 7(¢) is called the right (left) derivative

of the curve v:[a,b] — M if there is a sequence t; — ¢, t; >t (t; <t) such that

_ . log, y(t:)
+(-) (#) — —=r

Remark. If M is a Riemannian manifold then this definition gives the right derivative

in the usual sense but the left derivative has a different sign.

2.10. Definition. A curve v:[a,b] — M is differentiable at ¢ if the left and right

derivatives (y*(t), ¥~ (t)) are unique and antipodal.
2.11. Definition. Two vectors a and b of C are called polar if for any z € C

(a,z) + (b,z) > 0.

2.12. Lemma.
A. Any Lipschitz curve +: [a,b] — M is differentiable almost everywhere.

B. Any k—convex curve 7: [a,b] — M has unique one side derivatives, which are polar.

Proof.

A. Let us consider a countable everywhere dense subset Q@ = {r;} C M. From the
the triangle inequality we obtain that functions f;(t) &f |ri¥(t)| are Lipschitz and so
differentiable almost everywhere. The set () is countable and therefore all functions f; are
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differentiable almost everywhere simultaneously. Now let all f; be differentiable for ¢ = t¢

and 7 and 77 be two right derivatives of v at ¢. Let

K= U Alog. (1) (Q)-

A>0
Then using the first variation formula we obtain that for any element x of K C C(,,) we

have
(7:-72") = |.’B|f:(t0) = (7;:“7)‘

K is easily a dense subset of C. (), therefore using Lemma 2.6 we obtain uniqueness of
the right (left) tangent vector.

From the same idea we obtain that if £ € K then

(rH3) + (7,2 =0

and using Lemma 2.8 we obtain v+ ++9~ = 0.

B. By Theorem 1.7(B) and series representation of py, (see 1.6) the definition of k-convex

curve may be rewritten in the following form:
(73" < o(f?)
where « is a C*®function and f = dist, 0. This implies that the function

t
720) + j (z — t)a(X(z))dz

is concave and therefore has unique one-sided derivatives. Now ftto (z — t)o(f?(zx))dz is
easily a C2%-function. Hence f2(t) has one-sided derivatives everywhere, and from the
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same idea as in A we obtain uniqueness of one-sided derivatives. Now (f2)_ + (f2)!, < 0.

Using first variation formula we obtain that for any z € K (see A)
{@,77) +{z,7") 20.

After passing to limit we obtain that v~ and y* are polar .

2.13. Corollary. Let v:[a,b] — M be a Lipschitz curve and s be a natural parameter

of v. Then

s(t) = s(a) + / I (2) d.

Proof. Let v, = yos~! be a natural curve, v,: [s(a), s(b)] = M. By the definition 7, is
also a Lipschitz curve. Using 1.13 and the definition of one-sided derivative we obtain that
almost everywhere |y£| = 1. On the other hand, s(t) is easily a nondecreasing Lipschitz

function. Therefore

s(t) = s(a) +/ s'(z)

a

where s’ € L* and 0 < s’ < L, letting L be the Lipschitz constant of curve 4. Immediately
from the definition of derivative we obtain that if s’ is defined for ¢ then |[y*| = s'|yE|.

Therefore almost everywhere |[y*| = s’ and

s(t) = s(a) + / b (2)\dz. &

2.14. Key Lemma. Assume M, <5 M without collapse (i.e. dim(My) = dim(M)).
Let vn:[a,b] — M, be a sequence of k—convex curves which in the d-metric converges
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pointwise to y. Then v is a k—convex curve. Moreover if v is differentiable at ¢ then

(@) = lim |75 (@)l.

Proof. We consider the case k = 0. Let us fix ¢ such that v is differentiable at t. Let
p=7(t) and p, = 7n(t). If the Lemma is wrong then we can pass to a subsequence {vy,}
such that |[y£(t)] — lvf (8)l|> € > 0. Using Gromov’s Compactness Theorem (see [BGP

8.5]) we can pass to a subsequence {,} such that
Cpn & €, 4E(t) — v,
for v£(t) € Cp,,, w* € C. Let us consider maps
log, : M, — Cp,..

Take in M a countable everywhere dense subset Q) C M and for any ¢ € @ find a sequence
gn € My, such that ¢, — ¢g. Now pass to a subsequence {M,} such that for any ¢ € Q

there is a limit
lg) = lim log,,(gn)-

Therefore we have constructed a mapping

:Q—-C.
Note that
i{g)} = lixa |log,, (¢n)] = Lim |pnga| = pgl-
Therefore
() li(a)l = lpql-
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Now
+ N +
(@, U@) = lim (77, log,,(2.))
And using property of k-convex curves (see Theorem 1.7 B and Corollary 1.9) it is easy to

obtain that

e anl” & lontnl” 2 (12, g, (gu))(r — 1) + (=112

Taking the limit as n — oo,

(#) l'Y((;))QIz < |7((t2))q|2 F (w:h’ l(q))('r _ t) + (T _ t)2.

Therefore - is a convex curve. We can easily assume that for any g € @ there is a unique
shortest path between p and q. From the first variation formula and differentiability of -y

at t we obtain that 11“12»3]3 has a derivative at ¢ we obtain
+ _ _h(@)gl?
<w 7l(Q)) - :F( 2 ) °
In particular

(Ww*,U(q)) + (w™,Ug)) =0

In addition let us note that [ is a noncontracting map since it is a limit of noncontracting
maps (because we consider the case of curvature > 0).
Take for any x € M\Q a sequence of points ¢; € Qs such that ¢; — = and there is a

limit of the sequence {I(g;)}. Now extend ! to I : M — C, such that
i(e) = Jim I(gy).

It is easy to see that [ is noncontracting as well as [ and () also hold for .
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Now let us consider the map [0 : [a, 5] — C. From (%) we obtain [[o(7)] = |y(£)7(7)|.

Since [ is a noncontracting map we obtain for any 7 and ¢

Iy(r)al < [To¥() i(g)l.

Therefore using first variation formula and linearity of scalar product (i.e. A{a,b) = (Aa,b))

we obtain that if

I/d: = lim ‘[O’Y(tifg)
e —0+ €

then
W, 1(a) = Jim, =(Tor(t2e), L) <

v ((®))gl*

< tim Z(Tor(t £ )P+ P - It e)P)/2 =7 (L) = ¥, 1),

But it is easy that

lv*v~| = lim Loyt +e)lort—ea)l o . [(t+e)v(t—e)l .y

€;—0, € ~ ¢—0, €

kA

and

.ml

Ilo'y(t‘:l: e,')l _ eh 0
i—U,

’ 1

1t + &)
——|=]*|.

|v%] = lim
€;—0 i

Hence [vtv~| = 2v®| = 2ly*| = |yty~|. From Lemma 2.8, for any z € C

(vt ,z)+ (v, z) =0.
Therefore
0= (w* g+ (W™, Ug)) = (vF, Ug)) + (v, Ug)) =0.

Hence

(wi’l(Q)) = (”i':l(q))'
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And using Lemma. 2.6 we obtain

because [ is a noncontracting map and hyclos({(@)) > hoM > 0. In particular
£ 1 E ] = lE ] = B +
V| = =] = |w¥| = lim |z,

a contradiction &.

2.15. Corollary. For any convex curve « the functions |y*| are one-sided continuous,

i.e.
+ —_ 1 +
@)l =, lim, |y=(ta)l
and

)= lim_b ()l

In particular, if v is a quasigeodesic then [y*(t)| = 1.

(Compare with [Pog2 Th 5).)

Proof. Let t, — t*. Let us consider the limit (M/(t, —t),p) o Cp, where p = y(t).
Recall that 4y ¢, —s): M — M/(t, —t) is the canonical map. Let v,(7) = 41/¢t,—1) 0 ¥(t +
(tn — t)7) and Yoo (7) = limp—soo Yn (7).

Using existence of one-sided derivatives we obtain that

_{lrt for >0,
Yoo T) = [I'rl'y‘ for < 0.

Using the Key Lemma (2.14) for 7 = 1 we obtain

27



(o)l = e (D)l = lim 47(1) = lm 75 (tn)) &

2.16. Proof of Theorem 2.4 We can assume that all {7, (t)} are defined on a segment
[a,b]. The curve « is the pointwise limit of {,}, and as a limit it is a Lipschitz map. Using
Lemma 2.12(A) we obtain that almost all points of y are smooth. Therefore using Lemma

2.14 we obtain
+ —_ 1 +
=@l = lim bz @)l
for almost all . Using Corollary 2.13
¢ t
() =5(@) + [ h*@lde = s() + lim [ ¥ (@)lda.

a a

Since ¢ is a natural parameter of v, then [yZ(¢)] = 1 almost everywhere by 1.13 and

i
() = s(a) + Jim [ E(e)lds = {a(e) ~a} +

Therefore ¢ is a natural parameter of +.

Now v is a convex natural curve and by definition it is a quasigeodesic #.

2.17. Theorem. (regularity) For any point of a quasigeodesic there are uniquely

defined right and left derivatives which are polar and have absolute value equal to 1.
(Compare with 2-dimensional case [Pog2 Th.5])

Proof. See Corollary 2.15 and Lemma 2.12(B) &.
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2.18. Theorem. (gluing) Suppose vi: [a,b] — M and ~,: [bc] = M be convex curves

such that v;(b) = 72(b) and 77 (b) is polar to v (b). Then

11(t) fort<b

7:[ac] = M, () = Yo(t) fort>b

is a convex curve.

Proof. Using Theorem 1.7 we need only check the inequality

pe(lv®)pl)” < 1 - kpe(lv(t)p))

for any point p and t = b. This follows from Corollary 1.9(B) &.

§3 GRADIENT CURVES.

3.0. Here we start preparation for construction of quasigeodesics in any direction.
Namely we define gradient curves for a general semiconvex function in an Alexandrov
space. This construction works as well in any metric space with first variation formula
and complete tangent cone at any point. As was shown by Perelman, this construction
can be generalized to Alexandrov space with infinite Hausdorff dimension, and it also com-
pletes Plaut’s argument that Alexandrov space with finite topological dimension has finite
Hausdorff dimension. Our construction is very similar to the construction of Sharafutdinov
retraction ([Sh Th.3]). In the next paragraph, by applying this theory to distance functions

we will obtain a very useful class of proper curves.
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3.1. Definition.(for a space without boundary) Let M be an Alexandrov space without
boundary. A function f:U C M — R is A—concave if for any shortest path v C U with a

natural parameter,
for(t) = A#/2)

is concave.

From [P2 5.2] we obtain that if M is an Alexandrov space with boundary, then its
double M is also an Alexandrov space. Let p : M — M be the canonical map. Then for

any subset U C M we set U= p~Y(U). If f is a function on U, then we set f=fop.

Definition. (for a space with boundary) Let M be an Alexandrov space with boundary.
A function f:U C M — R is A—concave if for any shortest path vy C U € M with a natural

parameter, the function
for(t) - A(#*/2)

is concave.

Remark A. Note that the restriction of a linear function on R™ to a convex subset

need not be 0-concave in this sense.

Definition. A function f:U C M — R is semiconcave if for any point p € U there is a

neighborhood Up 3 p such that the function f|y, is A—concave for some .
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Remark B. It is easy to see that the differential d,f is defined everywhere for semi-

concave functions and is a O-concave function on the tangent cone at p.

3.2. Definition. A vector field g is called a gradient of the concave function f:U C

M — R (or g = gradf) if for any pe U

dpf(z) < (g,z) and dpf(g) = (9, 9)-

3.3. Definition. A curve 7: [a,b] — U is called an integral curve for a vector field v on

U C M if for any ¢

v (#) = v(¥(t)).

3.4. Definition. A curve v:[a,b] — U is called a gradient curve for the semiconcave

function f: U € M — R if it is an integral curve for a gradient vector field of f.

We claim that semiconcave functions have uniquely defined gradient curves (see below
Theorem 3.8). A similar construction was given by V.A.Sharafutdinov for convex functions
in a smooth space with nonnegative curvature ([Sh Th.3]) and by Perelman for convex

functions in an Alexandrov space with curvature > 0 [P2 6.3].

We begin by developing the basic properties of gradient fields.

3.5. Lemma. Let f:U C M — R be a semiconcave function.
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A. Then f has a uniquely defined gradient vector field.

B. If d, f < 0 then grad f(p) = o; otherwise,

gradf(p) = dp f(£)€

where £ is the (necessarily unique) maximum unit vector for the function d, f.

C. If F is an extremal subset of C,, then gradf(p) € F.

Proof.
A & B. If d,f < 0 we easily obtain gradf(p) = o.
Now assume that dpf(y) > 0 for some y € Cp. Direct calculation shows that dpf =

dp f|x, is spherically concave, i.e. if ¥(t) is a shortest path with a natural parameter in X,

then
(dpf 07)"(t) + dpf 0 ¥(t) < 0.

Therefore for any (,£ € X,,

dpf(C) < (dedp £)(CE) sin(|€C]) + dp £ (£) cos(lC]),

(where by (¢ we understand a tangent vector to X,).

Let £ be a maximum unit vector for d,f. Since ngp f <0, for any { we obtain

dpf(C) < dpf(£) cos(£¢])-

or for any € Cp, £ = A{, A € Ry such that |u|=1

dpf(u) < dpf(E)(u,£)-
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Since dp f(y) > 0 for some y, we obtain dpf(§) > dpf(y/ly]) > 0 and therefore C,

contains the vector d,f(§)§. Hence for any z € C,

dpf () < (dpf (), )

and
dpf(dpf(f)g) = (dpf(f))z = (dpf(f)ﬁ, dpf(ﬁ)&)-

Therefore d, f(£)¢ is a gradient of f at p.

Now assume g; and g are two gradient vectors at the point p. Then

(91,91) = dpf(g1) < {g2,01) > dpf(g2) = {g2,92)

and from the definition of scalar product |g1g2)2 < 0 and therefore g; = g.

C. Now assume that F is an extremal subset of C. It is easy to see that F' has the same
cone structure as Cy, i.e., if z € F then Az € F for any A > 0 and in particular o € F.

The proof is by induction on the dimension of F.

Assume dim F' = 0. Then it is easy to see that F' = o0 and from the definition of extremal
subset diam¥, < w/2. Now let { be a minimum unit vector for d,f on £, and £ be the

unit vector, given above. From above

dp f(C) < dp f(£) cos(|&C1),

and so & = ¢ only if ¥ = {£¢}. In this case gradf(p) = o from Definition 3.1(for a space

with boundary).

Now assume & # ¢. From the same idea as above we obtain:

dpf(€) < dpf(C) cos(|C]).-
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Therefore

dp f(€) < dpf(£) cos®(J&C])-

Therefore d, f(€) < 0 and hence d,f < 0 and gradf(p) = o € F.

Now suppose the claim is true if dim F' < n and let dim F' = n.

Let F' = F(Zp, # 0. In order to prove that gradf € F we need to prove that £ € F.
Let £° € F' be the closest point of F’ to £ (in length metric of X,). From [PP1 1.4] F'is
an extremal subset and from the definition of extremal subset (see [PP 1.1]) |¢£°] < =/2.

Now

dpf(€) < dgodp f(£go) sin(J€€°1) + dp f(€°) cos(|€°]) =
= dgody f(&¢o) sin(J6€°]) + dp f(£°) cos(|€€°]) <
< ((graddp fls,)(€°), &0} sin(|€€°]) + dp £ (£°) cos([€€°1)

(where by £z. we understand a tangent vector to ¥,). Thus d,f|s, is a semiconcave
function. Using the induction assumption we obtain gradd,f|s,(¢°) € Ceo(F'). Since

|€€°] realizes the distance between £ and F’ we obtain that

((gradd, fls, )(€°), o) < 0.

Hence

dp f(£) < dpf(€°) cos(|€£°)).

We know that dpf(£) > 0 and |€£°] < 7/2. Therefore if £ # £° then

dpf(€) < dpf(£°),

a contradiction &.
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3.6. It is easy to see that for a cone with curvature > 0 the function —(a, *) is concave

for any a € C. Set a* = grad(—(a, *))(0) for any a € C,.

Corollary. a and a* are polar vectors and |a*| < |a].

3.7. Lemma. If f is a semiconcave function, then the function |gradf|:U — R is

semicontinuous, i.e.

liminf |gradf (p:)| 2 |gradf (p)]-

Proof. If |gradf(p)| = 0 then it is easy. Otherwise for any ¢ > 0 we can find a point

Pe such that f(p:) — f(p) > (lgradf(p)| — ¢)|pep| and |p:p| < €. On the other hand, using

A-concavity we have

F(pe) < f(i) + dy, f(logy, pe) + Alpipe|?/2.
Therefore
Jim, |lgradf (p;)| > S dp, f (logy, Pe)/lpipe| =
> plj_ryp(f (pe) = F(0:))/|pipel — Alpipel/2 > |grad f(p)| — (1 + A/2)e.

When ¢ — 0 we obtain the conclusion of the Lemma .

3.8. Theorem. For any semiconcave function f: M — R and point p there is a unique
gradient curve v: [0,00) — M such that y(0) = p. Moreover if F is an extremal subset of
M, and v(tp) € F for some tg, then for any ¢ > ¢y we have y(t) € F.
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3.9. Proof. Let us construct an integral curve for the field

_ [ 0 if |gradf| = 0,
— Leradf/lgradf] if [gradf] # 0.

If u(p) = o then it is the trivial curve y(t) = p. Otherwise we can find a ball neighborhood
Bc(p) such that in this neighborhood, the function f is A-concave for some A. Using
Lemma 3.7 we can also assume that |gradf| > 6 > 0 everywhere in B.(p). Now using

Lemma 3.5(B) we obtain that the curve 4:[0,e] — B¢(p) is an integral curve for u if and

only if for any ¢
(f o ¥(®))s = lgrad f(v(t))]-

For any § > 0 and point p we can easily find a point g, such that |pg| < 6 and f(q) —
f(p) > (lgradf| — 8)|pg|- Using the standard open-closed arguments, for any § > 0 we
can construct a curve v; : {0,€) — Be(p), 75(0) = p, which can be divided into half open
geodesics [p;, ;) with the same property as above. Note that if p; lies on some extremal
subset F, then using Lemma 3.5 C we can find ¢; on F. Now let v = lims_, 5. From the

semicontinuity of |grad f| we obtain

(f o ¥(1) = lgrad f(v(t))I-

The reverse inequality is obvious because the limit of natural curves is 1-Lipschitz. There-
fore v is an integral curve for «.

Let dr = |grad f(y(t))|dt and v be an integral curve for field u. Then yo 77! is easily a
gradient curve for f.

Now let a = a(t) and b = b(t) be two gradient curves from [0, €] into B,(p) and a(0) =

36



b(0). From the first variation formula and the definition of gradient

& labl = —(gradf(a), (b)) — (gradf(8), (a)g) < ~daf(5,) ~ s (a})

By the definition of A—concave function we obtain that for any shortest path y between

points a and b the function
For(t) — At?/2
is concave. Therefore

do (L) + dbf(ab) + Alab| > 0.

and therefore

d|ab| < M|ab|dt.

Therefore we may obtain the uniqueness of gradient curves by the standard method of

differential equations .
§4 PROPERTIES of GRADIENT CURVES

4.0. Here we apply results of the previous paragraph to the case of distance functions
and construct for such a gradient curve a “proper” parameterization. These “proper gra-
dient curves” yield in particular a nonexpanding exponential map for Alexandrov spaces.
They also make it possible to prove the Lieberman Lemma using Lieberman’s original con-
struction (see [L] and below II 1.1) for the case of Alexandrov spaces. In the next section
we use proper curves in order to construct convex curves and pre-quasigeodesics which in

turn leads to the construction of quasigeodesics.
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4.1. Definition. Let v:(0,00) — M\p be a gradient curve for the function dist,(z),
with v(0) = p (where dist,(z) o |pz]). Let

o g (D)
m(0)=0,d (ak(lma)n) dt.

7 will be called a proper parameterization of a k-gradient curve and o = yo 71 will be

called a k-proper gradient curve.

Remark A. Note that the notion of k-proper gradient curve for the function dist,(z)

coincides with that of geodesic natural parameterization from p everywhere outside of

Cutloc(M, p).

Remark B. From Theorem 3.8 we can find the unique gradient curve which starts at
any point ¢ # p. We can extend this curve to p using any shortest path between p and
g. Therefore we obtain a gradient curve «4: (0,00) — M for dist, such that v,(0) = p,
Y4(Ipg|) = q. Set a,'; =7, 07! as above. Therefore we have that for any point g there is

2 proper curve of such that of(0) = p and of(lpgl) = ¢.

4.2. Definition. A curve +:[a,b] — M is called k—monotonic if |y*| < 1 for all ¢ and

for any point ¢ € M the comparison angle quy(a)‘"y(t) in Sj is nonincreasing.

Remark. From Theorem 1.7 it is easy to see that the curve 4:[a,b] — M is convex if

and only if for any a’ € [a, ] the curve 7|,/ 4 is monotonic.
(a’,b]
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4.3. Assume

ko=[0 if k>0,

k ifk<0.

Theorem. Let M be an Alexandrov space with curvature > k. Then any k.-proper

gradient curve for dist, is ko-monotonic.

Remark. The main reason for using k. instead of & is: n(k,)/2 = oo and therefore
7(ko)/2 > diam(M). Furthemore, even if we consider a neighborhood of p with diameter
< w(k)/2, for positive k we will have different parameterizations with the needed properties
(see this Theorem and Theorem 4.4), while for nonpositive bound we have one proper

parameterization which meets all our needs.

Proof. As usual we prove only for ko = 0. It is enough to prove that cos Zqa(0Jo(t) is

a nondecreasing function. From the law of cosines

- t2 + |pg|? ~ |ga(t)?
cos Zga(0)e(t) = |g(ltlznqll) =

Now by differenting this formula we have
(cos Zga(0)a(t))' > 0

is equivalent to

lga()|? + % — |pg|?

lga()l' < cos Za(0)a(t)q = 2tlqad)]

Now using the first variation formula and the definition of gradient for f = distp,

|pe(t)]
i

lpa(?)]
t

lge (@) = (e (8), ghoge)) = — (gradf, ¢u(s) < — (dayf)d) =
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_ lpa ()I

t ~
=05 L(@h)s Prgry) < lpe t( N cos £ga(t)p =

_ lpo(t)] {Izwt(t)l2 + lgo(®)|? ~ Ipqlz} _
t 2lpe(t)llga(t)|

- {Iqa(t)P +1° lpq|2} _ 82— |pe(t)?
2tlga(t)| 2t]ga(t)|

< cos Za(0)a(t)q &

4.4. Theorem. Let a,, and a4, be two k.-proper curves for dist,, passing through ¢,
and g9, respectively, and containing the shortest paths pg; (see Remark 4.1 B). Suppose
t; > |pgl, and let 5§'g%* be the triangle in Sk, such that 5§ = ¢;, $§* = t; and
281935 = Zg1pgs- Then

|aq1 (tl)aqz () < Iﬂl‘jtzl

Proof. Again we prove this only for k, = 0. In an algebraic form it means that

B+ log (on )

cos £q1pg 5%t

Assume ¢; ¢ Cutloc(p) (see 2.5). Then there is a point ¢§ € Cutloc(p) such that ¢; € pgs.
Now if ¢; < |pgj| then Theorem follows from Theorem 4.3. Assume t; > |pgf|. It is
easy that oy, = age and Aqlpqg > Zq‘l‘pqg. Therefore assume that ¢, := ¢} € Cutloc(p).
Analogously g2 € Cutloc(p). Now let §;(t) = t2 — |pag,(¢)|?. The function §; is easily

positive increasing on (|pg;|, 00). Now direct calculation shows that

(712 + 73 — log, (Tl)aqz(T2)|2) >0
217y - -

if

2

2 2
Ty + |a¢h (Tl)atn(T?) ) )
0, (T1)ag, (T <
a(m)an(rln < (S50t T )
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but

|a¢I1 (Tl)a<12 (T2)|1'1 =

PO T .
-t grai ity ), gl ) =

from the same idea as above

- (Aol o) 805 (1 Heam)en (o)l )

21| ag, (11)ag, (T2)] ~ 271lag, (M)ag, (m2)] = 271 |rgy (T1) g, (72)]
if 51(T1) > 62(7'2).

Analogously

(4= oalnoa(a) g
2117 2 -

if 61(7'1) S 62(7‘2).

Let us consider two functions 7;(z) such that
6,' (Ti ((D)) = min{a:, 6,' (ti)}.

Using previous calculations we obtain that

_ (@) + 13(2) — |ag, (11 (z)) g, (r2(=)) 12
f(z) = 71(z)T2(2)

is a nondecreasing function because

01(11(z)) = b2(ma(z)) if T{(z) > 0 and 73(z) > 0,
61(11(z)) < b2(m2(z)) if 7{(z) > 0,
&1 (7‘1 (.’1:)) > 52(1‘2(2:)) if 'ré(:v) > 0.

But it is easy that
£(0) = cos Zqipge

and

83 4+ 15 — log, (t1) g, (t2)|
f(o0) = %1ty 4
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4.5. Lemma. For any direction £ € X, there is unique k,-proper gradient curve

ag: [0,00) — M for dist, such that a'g' 0)=¢.

Proof. Let {g;} is a sequence such that ¢} — £. Consider curves {ag} (see Remark 4.1

B). We can pass to a subsequence {g;} such that for any ¢ the following limit exists

ac(t) = Jim aq, (1)

ag(t) is easily a proper curve. Uniqueness is an immediate corollary of Theorem 4.4 &.

4.6. Assume wf : C¥ — M is the map defined by

@h (M) = af ().

Theorem. For an Alexandrov space with curvature > k the map wl’,f° is a nonexpanding

map and is a left inverse for log’;°, i.e.
wke ologke =id
P P :

Moreover if p lies in an extremal subset F' then w*(C,(F)) C F.

Proof. Immediately from 3.8, 4.4,4.5 &.

§5 PRE-QUASIGEODESICS
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5.0. In this paragraph we use proper curves in order to construct convex curves and
pre-quasigeodesics which in turn lead to the construction of quasigeodesics. The first
proof of the following theorem as well as the definition of pre-quasigeodesics was given by
G.Perelman. Perelman’s proof uses some topological arguments. Here we give another

proof which is simpler and uses only geometric ideas.

5.1 Definition. A convex curve v[a,b] — M is called a pre-quasigeodesic if for any

s € [a, b] such that |y*(s)| > 0, the curve 4° such that

() =" (s + ﬁsﬁ)

is convex for ¢ > 0 and if |y*(s)] = 0 then v* () = 4% (s) for any ¢t > s.

5.2. Theorem. For any vector v € C, such that |v| < 1 there is a pre-quasigeodesic

~4:[0,00) — M such that 4(0) = p and v+ (0) = v.
We begin by developing the basic properties of convexity and monotonicity.

5.3. Lemma. Let v:[0,00) = M be ko-monotonic. Then for any A < 1 the curve

v'(t) = 7(A~1t) is ko-monotonic.

Proof. We need only to prove that for any ¢ function

(A™18)% + |pgl? — lgy(A—1¢)|?
t|pg|

cos Zq (O (£) = A
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is a nondecreasing function. Indeed

~14)2 2 _ —~14y|2 2 2 _ ~14\|2
/\(/\ t)? + |pql® — |lgy(A'¢)| @ + |pg|* = |gy(A~'8)| + (1= A
tipq| t|pq|

The first term is nondecreasing by the definition of monotonic curve. Therefore, as a sum

of two nondecreasing functions, it is a nondecreasing function &.

5.4. Corollary. Let 4:[0,00) — M be ko-convex. Then for any A < 1 the curve

7' (t) = y(A~1¢t) is ko-convex.

Proof. See Remark 4.2.

5.5. Lemma. Let v;:[0,00) — M and +,:[0,00) = M be two monotonic curves such

that v1(a) = 72(0) and 4} (a) = 75 (0). Then the curve

4:[0,00] = M, (t) [ n(t) for0<t<a

Yo(t—a) fort>a

is monotonic.

Proof. We need only to prove that for any ¢ the function

Zgy(O)(2)

is nonincreasing. As above we obtain that this is equivalent to

leY@)' < cos Zy(0)(t)g-
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We know this for the interval [0,a]; therefore we need to prove it only for (a,c0). From

the monotonicity of /2 we obtain that
g (®)I’ < cos Zy(afr(t)a-
Therefore we need only prove that
Zy(ayr(t)g = Z1(0)x(t)e-
Using Lemma ([BGP 2.5]) we obtain that this is equivalent to
Zq 1(a)r(t) +Z1(Or(a)g < 7.

The last inequality follows immediately from condition +; (a) = 75 (0) and monotonicity.

5.6. Lemma. Let ;:[0,00) — M be a sequence of monotonic curves such such that

7:(0) = p, 7 (0) = £, and v = lim;_,0 ;- Then 7 is also monotonic and v+(0) = £.

Proof. Assume §(t) = Z((71(t))p,€). Then we have B(t)t = o(t). From the definition
of monotonic curve we have |v;(t)v1(t)] < B(t)t, hence |y(t)11(t)] < B(t)t = o(t). This

means that v and +; go in the same direction £ .

5.7. Lemma. For any direction § € X, there is a convex curve 7:[0,00) —» M such

that 4(0) = p, and 4(0) = ¢&.

Proof. Take some € > 0. From Lemmas 4.3, 4.5, 5.3 we can construct a monotonic
map a{0) = p and a*(0) = v such that |v| < 1. Now assume o is a gradient curve with

45



proper parametrization such that ag(0) = p and of (0) = £. Consider gradient curves
o, with proper parametrization such that a,(0) = an_i(€) and a;t (0) = a_;(¢). Let

4¢:[0,00) — M be defined by
7€ = ap(t — ne) for t € [ne, (n+ 1)e].

From Lemma 5.4 for any n € N the curve 4°[ne,00) — M is monotonic. We can find a

sequence {e,} such that the following limit exists

v = lim ~®"

en—0

and it is easy to see that « is a convex curve (see Remark 4.2). Lemma 5.6 completes the

proof. &.

5.8. Proof of Theorem 5.2. First of all let us construct a convex curve y: [0, 00) — M
such that there is a representation of [0, cc) as a disjoint union of half-open intervals [a;, @;),

such that for any a;,
7 (@) = 72 () 2 (1 - )7 (ai)

for t € [a;,d;) and |@; — a;| < €. Moreover the curve

72t = ( * #ﬂ)

will be convex too.

Let us denote by v a convex curve [0,00) — M such that 'yg' (0) =&, v¢(0) = p where
€ € Xp. The curve 9; is not uniquely defined but for the rest of the proof we fix one for
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every p and £ € ¥,. From Corollary 5.3 we have that for any A < 1, %(¢) = e (A1)
is also convex. Therefore, in this way we can construct a convex curve for all initial data
z € Cp such that |z|] < 1. The resulting curves we will denote by v, = 7¢(At) where
z = A{. It is easy that for any € > 0 we can find € > §¢ > 0 such that |'yg'(t)| >1—c¢for

t € [0,68]. Assume 7, is defined on [0,a). Then set

Ye(a) = lim 7e(2)

Assume v = 4 (a). Assume that for ¢t > a

Ye(t) = Yoe (t — a) for ¢ € [a;, a; + 6¢/|v*]),

(v* is defined in 3.6).
Using the standard open-closed argument we obtain desired curve ~,: [0,00) — M.

Now we can find a sequence €, — 0 such that the following limit exists for all £ > 0:

7(8) = lim 7, (t).

From Lemma 2.14 and Corollary 2.15 v is a convex curve and

() =7 (a+ H—;ﬁ)

for any a > 0 is also convex. Lemma 5.6 completes the proof .
§6 GENERAL REMARKS and an OPEN QUESTION

6.1 One can consider the following definition of quasigeodesics:
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Definition. A natural curve < in an Alexandrov space is called a quasigeodesic if for

any A-concave function f (see 3.1) the function
foy—At?/2

is concave.

This definition can be generalized on any metric space. It would be intreresting to
develop quasigeodesics for spaces which have “a lot” of concave functions (these would be
a multidimensional analog of the spaces considered in [AB]). Here we prove equivalence of

this and the previous definition.

6.1 Theorem. The Definition 6.1 is equivalent to 1.5, or:

Let M be an Alexandrov space, 7: R — M be a quasigeodesic. Then for any A-concave

function f the function f oy : R — R is A-concave.

The Theorems 3 and 4 of [Pog2] can be understood as a very partial case of this one.

For the proof we need the following

Definition. A function f is called a strong A-concave function if for any quasigeodesic

~ the function fo+y:R — R is A-concave.

Proof. Using the last definition our Theorem can be reformulated as
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“Any A-concave function is strongly A-concave.”
It is easy to see that limit of strongly A-concave functions is strongly A-concave. There-

fore it is enough to prove that for any € > 0 the function f. defined by

fe(=) = miz f(y) +&7 |yl

is strongly A-concave.
The rest of the proof is only a repetition of Perelman’s proof [P2 6] (the distance to the

boundary of an Alexandrov space with curvature > 0 is a convex function).
5.6 Conjecture. Any quasigeodesic is a curve with bounded variation of turn.

From Lieberman’s Theorem ([L]) and Theorem 6.1 this is true for quasigeodesics in an

Alexandrov space which admits an embedding in R" as a convex surface.
APPENDIX
CONSTRUCTION of QUASIGEODESICS

A.0. Here we finish the construction of quasigeodesics in every direction. All of the
arguments of this appendix are due to G.Perelman. We include this section only for

completeness of proofs.

A.1. Theorem. (ezistence) Let M be an n-dimmensional Alexandrov space and
pEM.

49



A. For any direction £ € £, there is a quasigeodesic 7: [0, 00) — M such that y(0) =p
and y*(0) = €.

A’. Let F 5 p be an extremal subset and £ € X,(F). Then there is a quasigeodesic
4:[0,00) — F such that v(0) = p and v+(0) = ¢.

B. For any vector v € C (a cone with curvature > 0) there is a polar vector v* € C,
such that |v*| = |v].

B’. Let C D F be an extremal subset and F 3 v. Then there is a polar vector v* € F,
such that |v*| = |[v].

(Compare with 2-dimensional cases [Pog Th.11] and [AB Th.4}.)

We will prove A;—1 — B, — A, and A],_, — B}, — A

A.2. Proof of implications A,,_; — B, (A/_, — B}). B, (B}) is trivial if
dimC =1 (dim F = 1) (for B’ see [PP1 1.4, 1.1]). Now assume C = C(X) and dimC > 1
(dim F > 1). Assume v = A{ where £ € ¥ and A € R,.. Let us consider any quasigeodesic
7:[0,7] — T which starts at £ (for B’ we need to consider : [0,7] — F' = F(\Z; as was
shown in [PP1 1.4], F” is an extremal subset of X). Assume £* = (7). From Theorem 1.7

we have that for any n €

p(ly@nl)" <1 - pu(by(t)nl).

or

cos(|y(t)nl)" = cos(ly(t)nl).

Therefore for some cand all ¢, 0 <t <7

cos(|y(£)nl) > cos(|v(0)nl) cos(£) + esin(?).
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Hence

cos(|y(m)nl) 2 — cos(|v(0)nl).

Therefore for any n € £

cos |€n] 4+ cos [€*q] > 0.

Hence if v* = \¢* then for any z € C we obtain

(v*,z) + (v,z) > 0 &.

A.3. Definition. Let v : [0,00) — M be a pre-quasigeodesic. Let p defined by
#(a,b) =1n |y*(a)| ~ ln |y~ (b)|
be the entropy of 7.
Remark. It is easy to see that p is a real measure because the function |y*(t)| is mono-

tonically nonincreasing (see Definition 5.1 and Remark 1.4). From one-sided continuity

(see Corollary 2.15) we obtain that

p{a} =In|y~(a)| - In|y*(a)l.

In addition it is easy that a pre-quasigeodesic v is a quasigeodesic if and only if p is

vanishing and |y*(0)| = 1.

A.4. Lemma.(gluing)
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Let v1:[0,1] = M and 72:[l1,l2] — M be two pre-quasigeodesics and assume v, (l;) =

va(l1), ¥1 (1) is polar to v5 (1) and |v{ (11)] > |75 (1)]- Then the curve

_ ’)’1(t) for ¢ S ll
() = ['72(t) fort> 1

is a pre-quasigeodesic. Moreover if y;, g2 and p are corresponding entropies for -y;, v, and

v, then
p(A\IL) = p (AN (0,4)) + p2(A N (U1, 12))

and

p(h) = n(lyg (0)]) = Il ()

Proof. From Lemma 2.18 and definition of pre-quasigeodesic (see 5.1) we obtain the
first conclusion. The equations for measures we obtain immediately from the definition of

entropy (see A.3).

A.5. Lemma. (passage to limit) Let {y,} be a sequence of pre-quasigeodesics [a,b] —
M and p, be the sequence of corresponding entropies on [a,b]. Let vy be the limit curve
for this sequence and p be the weak limit of measures {,}. Then v is a pre-quasigeodesic

and p is the entropy of 4.
Proof. Immediately from 2.15, 2.14 and definition of entropy (see A.3) #.
A.6. Lemma. Let v:[0,]] — M be a pre-quasigeodesic, p = v(a). Let n € £, denote

the direction from p to some point ¢ and £ € £, denote the direction of exit of v at p.
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Then

= (a+ s )| 2 @t - 246

If Z(¢,m) <1/2 then

g 2
/‘(a’a + W) S 44(61 7’) .

Proof. We can assume that @ = 0 and |y(0)] = 1. In other case we only need to
consider a curve 4° instead of « (see the definition of pre-quasigeodesic 5.1).

Now we need to prove that

Iy~ (lpal/2)] > (1 - 2£(&,)%).

Indeed from the law of cosines

Fr(pal/2)al < Bt + 2(2(6m))").

On the other hand,

Ipal = 1)l < r(lpal/Dal + 21y~ (lpal/2)1.

Therefore
Iy~ (Ipal/2)] > (1 — 2(£(&,m))?).

The inequality for entropy is a trivial corollary of the last one &.

A.7. Proposition. Let the functions h,g : Ry — Ry be such that for sufficiently

small s,
h(s/3) < Cg?(s), s < g(s) and }i_rgg(s) =0.
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Then for any € > 0 there is s > 0 such that

h(s) < 10Cg*(s) and g(s) <.

Proof. We can easily find some sufficiently small s, > 0 such that for any s < s,

g(s) < e. Assume for any n € N

10Cg%(s0/3") < h(s0/3").

Then
10g%(5,/3") < g%(s0/3™"1)
and so
1012g(s5,/3") < g(s0/3"71).
Hence

€ > g(s0) 2 10™2g(s,/3") > (10/9)™?s,.

The right side goes to infinity when n — oo, a contradiction &.

A.8. Lemma. Let v:[0,I] - M be a pre-quasigeodesic and a € [0,1]. Then for any
€ > 0 there is @ such that if p = y(a),q = 7(@),n € X, denotes the direction of pg and
€ € ¥, denotes the direction of exit of v at p, then there is some C (C = 40 will do) such

that

Il(a» a’) <C (4(7”5) +a- a)2 and 4(71,5) +a-a<e
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Proof. We can apply Proposition A.7 to functions h(a — a) = u(a, @) and g(@—a) =
£(n,€)+ @~ a. Indeed it is easy that @ — a < g(@ — @) and we only need to prove that for

sufficiently small @ — a,

h((@ - a)/3) < 4¢*(a - a).

Using Lemma A.6 we obtain that h(ﬂ%‘?gﬂ) < 4¢?*(@—a), h is a nondecreasing function and
for sufficiently small @—a we have (G—a)/3 < gﬁl%‘l(]m Therefore h((@2—a)/3) < 4¢%(@—a)

h.
A.9. Proof of implications B, — A, and B}, — A].

Definition. Let U C M be an open subset. A pre-quasigeodesic v is called a U-

quasigeodesic if u(y~(U)) = 0.

Let V be an open subset of M. For 0 < A <1 we denote by V4 the set of points p € V

such that Vol (£,) > AVol (S®~!). This set is open for any A (see [BGP 7.14]). Assume
Ap= 1 inf VolX;/Vol S™
0= 2 zeVv =/ VO )
Then it is easy to see that V4, = V and if V is bounded then Ag > 0. Let
Va(8) = {z € M : Vol Bs(z) > A6™ Vol B*, Bs(z) C V}.

Clearly V4(6) is an open subset of V4 and V4 = lims_o V4(6).

We are going to prove that for any 0 < A <1 and £ there exists an M 4-quasigeodesic
4:[0,00) — M with any initial date v(0) = p, v*(0) = £&. We proceed “by induction”,
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namely, we prove that if this assertion is true for A(1+¢€) then it is true for A, where € > 0
is a fixed small number determined in A.11. Since our assertion is trivial for A =1 (since
Ma, = M and a U-quasigeodesic which is contained in U is a quasigeodesic (see A.3)) this
inductive argument proves the existence theorem.

Now in order to prove existence of M 4-quasigeodesics we need construct them only

locally, i.e statements A and A’ can be reduced to the local statements:

Ayoc. For any p € M and A > 0 there is some ! > 0 such that for any direction § € 3,
there is an M4-quasigeodesic :[0,1] — M such that y(0) = p and v*(0) = ¢&.
loc- 10 addition to Ajec, let F' S p be an extremal subset and § € Xp(F). Then there

is an M4-quasigeodesic v: [0,!] — F such that y(0) = p and v*(0) = £.

Indeed let I;,q0 be the maximum value such that there is an M4-quasigeodesic

7:10, ljnez] = M (F)

with initial date p,£. Then using B (B') we can find a polar vector v (lnaz) t0 v~ (Imaz)
with the same absolute value and using Ay (Aj,,) we can find an Mj4-quasigeodesic
Y1: [lmazs lmaz + 1] = M (F) with initial data 7(Imaez), ¥ (lmaz)- Using the gluing Lemma
(A.4) we can glue this M 4-quasigeodesic and obtain an M 4-quasigeodesic ¥: [0, lmez +1] —

M (F). Therefore lp,,; is not a maximal value, a contradiction.

A.10. Now we start to prove Ay, and Aj,, with assumption that for any initial dates

there is a complete M 4(;4¢)-quasigeodesic. Using Lemma A.6 we can find for any p some
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¢ > 0 and ! > 0 such that for any pre-quasigeodesic v:[0,!] — M such that y(0) = p and

|[y*(0)] =1 we have |y~ (1)| > c.

For the rest we fix p and assume V = By(p). It is easy that any V4-quasigeodesic

7:[0,1] — M such that v(0) = p is an M4-quasigeodesic (see Remark 1.4).

We will construct this V4-quasigeodesic as a limit of V4(6)-quasigeodesics for § — 0
and each Vj4(6)-quasigeodesic as a limit of M4(;1¢)-quasigeodesics v;:[0,{] — M, with
the same initial data, such that p;(v; 1(V4(6))) — 0 when j — co. From the convexity
property and Lemma about passage to limit (A.5) it is easy to see that the limit of such

a sequence is a V4-quasigeodesic with required initial data.

Thus, the only remaining problem is to construct a sequence of M4(,.¢)-quasigeodesic
7;:[0,{] = M with given initial data p, £ such that p;(v; 1(Va(6))) — 0 for given & > 0.

Let Ha(8) = Va(5)\M g(14¢)

Take some sequence €; — 0.

We will look for the M4(;.4¢)-quasigeodesic v;: [0,] — M such that there is a represen-
tation of [0, !] as a disjoint union of half-open intervals {a;, @;) and {l} such that p;{a;} =0,
and any arc 7j|s;,a;) is one of the following kinds:

1. i € I, V4(6)-quasigeodesic ¥j|(q,,a,)-

2. i € J, Mjq4ey-quasigeodesic vjlja,,a,), Pi = 7vi(ai), @ = vj(@i), 7 € Iy, is the

direction of §;q; and &; € I, is the direction of exit of ;. Such that

pi(ai, @) < C(L(mi, &) + |a; — ail)?,
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Pi € Ha(5), & € Xp,(Ha) and £(n;,&) + |a; — ai] < &

We start with @ = 0. Take any M4(;4¢)-quasigeodesic v: [0,]] — M with initial data
p,§. Assume there is some subarc 7|jg,5) Which is a V4 (§)-quasigeodesic. Then set v;|(0,5) =
Ylj0,5)- If there is no such arc then it is easy to see that p € H4(6) and £ € £,(H,4) and
therefore using Lemma A.8 we obtain existence of a subarc y|(g ) of the second kind and
assume that v;|jp,a) = 7ljo,a)-

Similarly assume we already have constructed v; on [0, @). Assume v;(a) = lim;_,, 7;(2).
Using B (or B') we can find a vector polar to 7; (a) and having the same absolute
value. Denote this vector by '7;' (a). Using the assumption we can construct an M4(j¢)-
quasigeodesic 7: [a, ] — M with this initial dat;a.. As before assume there is some subarc
Ylfa,a) Which is a V4(8)-quasigeodesic. Then set ;|(4,3) = Vl[a,a)- If there is no such arc
then it is easy to see that p = y(a) € Ha(6) and y*(a) € Cp(Ha(6)) and therefore using
Lemma A.6 we obtain existence of a subarc |(, ) of the second kind and assume that
Yilla,3) = Vl[a,a)- After gluing we obtain a suitable M 4(;.4)-quasigeodesic 7; : [0,a) — M.

Now using open-closed argument we obtain needed M 4(14.¢)-quasigeodesic -y; : [0,{] — M.

By the definition of the first kind of arcs, it has zero measure on V4(6), therefore we

need just to estimate entropy on the second class.

pi(1; (Va(6)) =

=i ({a:} N7 (Va(8)) + D 1 ((a:,:) N 75 (Va(8))) +

ug I
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+ 1 (@i, @) Ny (Va(8))) <
J
<SO0+0+CY (£0m, &)+ a: — as])® <
J
< Ce; Y (Llmir& + |3 — ail) < Clej + Ce; Y L(mi, &)
J J

Therefore in order to prove that p;(v; 1(V4(6))) — 0 we need only to prove

Key Lemma.

There is a constant K which does not depend on ¢;, (K = K(c, §,¢,1,n)) such that

Y Z(m &) < K.
7

In order to prove this we need the following Lemmas.

Set f, =dist2 /2.

A.11. Lemma. There exists ¢ > 0 (depending on n and Ag) such that if p € H4(6), € €
,(Ha(6)), then for any n € Be(r/4) C L, there is a subset v(1,£) C Bs(p) such that:

Volu(n,£) > €6™ Vol B®

and for any z € v(n,§)

dfz(§) — e64(€,m) 2 dfz(n) 2 0.

Proof. Let us construct a noncontracting map Bs(p) — Bs(0) C C(S(Ze(Zp)))
The map log, acting from Bj;(p) to Bs(o) C C, is a noncontracting map.
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Now the map loge : £, — S(Z¢) is noncontracting. Let us define map h : Bs(o) C

Cp — Bs(0) C C(5(Z¢(Zp))) by
h(A0) = Alog,(8).

It is a noncontracting map too. Therefore map h o log,, is a noncontracting map Bs(p) —
Bs(o0) C C(S(Z¢(%p)))-

Let € be a pole of S(Z¢(Zp)) and § = log, (7). Assume
Un,€) = {z € Bs(0) C C(S(Z¢(%y)));
z=M, 6/2< A< 6 L0y <w/4 and 3n/4 < O€ < 4 /5}.
Then it is easy that there is some ¢ > 0 such that

Vol U(n,£) > ¢ Vol (Bs(0) C C(S(Ee(E,)))),

and for any = € Bs(p) such that ko log,(z) € U(n,£)

dfz(E) - 054(5,7)) > dfz(n) >0.

Assume u(n, £) is the inverse image of U(n, £) and Volu(n,£) < €6™Vol B™. Then using

monotonicity of h we obtain
Vol Bs(p) < Volu(n, &) + Vol (Bs(o)\U(n,£€) C C(S(Xe(Zp))) <

< 6™Vl B™ + (1 — ¢)Vol (B5(0) C C(S(Ze(Z)))-

From § € X,(H4(6)) it is easy to see that

Vol (Bs(0) C C(S(Ze(,))) < A(1 + €)6™ Vol B”
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and from the definition of H4(6) we obtain that
Vol Bs(p) > Aé™ Vol B™.

Therefore

A6™ Vol B™ < (+ (1 — ¢)A(1 + €))6™Vol B®

and this is impossible for sufficiently small € &.

A.12. Lemma. Let v be a pre-quasigeodesic, p = v(a),q = (@), € L, denote the
. . —_ . . . ~yt(a . .2
direction of g, £ € I, denote the direction of exit of y at p (£ = W;{E}') and f, = distZ/2.

Assume that
0 < dfz(n) < dfz(£).

Then

dfz(€) — dfz(n) < I+ (@)™ (df=(v" (a)) + dfx(y™ (@) + 3~ a) .

Proof. Clearly from Theorem 1.7
f(q) = fz(p) < dfa(n)lpal + |pgl*/2,

f2(p) = f2(a) < dfa(v™ (@)@ — 0) + (@ — a)?/2.

After summing
0 < dfz(n)lpgl + dfz(v~ (@)@ — a) + |pg|*/2+ (@ - @)?/2 <

< (dfz(mv*(a)| + dfz(v7(@)))(@ — @) + (2 — a)® <
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< (df=(l* (a)] + dfz(v™ (@) = (dfz(€) — dfz(m)Iv* (a)| + (@~ a)) @—a) =
= ({df(v"(a)) + df=(r~ (@)} — {df(v*(a))/ V" (a)] - dfz(M}Iv " ()] + {@ - a})) (@~a).

which is the desired formula rewritten é.

A.13. Proof of Key Lemma (A.10). Let f; = dist2/2. From definition of pre-

quasigeodesic for any z € M function f, o y(t) — t2/2 is concave and therefore

(df (v (a)) + df (v~ (a)) + @~ a) 2 0.

Assume f = mean valuezey f;. Using Lemma A.11 and Lemma A.12 we obtain

1
Z(ni,v (a:)) < SVolo(n.8) v(ﬂ’f)(dfx(E) — dfz(n))dhy, <

1 e -
< gy ., )+l @) +a—a) dho <

< 625"“\6,(3:1/11(1;, &) (df(v* (@) +df(v~ (@) +a~a) <

< g (@0 (@) + dflr @) +3-a) .

And therefore
" - -
2 L0 < sz 2 (dF (7 (@) +df (v~ @) +a~a) <
J J

l‘n

< 252ntig @dFf(yr @) +df(v- ) +1) <
5l"+1
< Gganiig = K(eb61,n)

and we obtain needed estimate dé.

62



2.

II. APPLICATIONS of QUASIGEODESICS and GRADIENT CURVES

Here we have gathered together some applications of quasigeodesic and gradient curves.
The first section considers extremal subsets; in the second section we prove the Gluing
Theorem for multidimensional Alexandrov spaces; in the third we give another proof of

the Radius Sphere Theorem of Grove and Petersen.

e Let H be a subset of M and p,q € H. By |pg|g we will denote the distance between
p and q in the intrinsic metric of H.

e Let X be a metric space with metric p. By X/c we will denote the space X with
metric p/c. Where no confusion will arise, we may use the same notation for points in X

and their images in X/c.

§1 INTRINSIC METRIC of EXTREMAL SUBSETS

Hamawe
1.0. The notion of extremal subset was introduced in [PP1 1.1] and has turned out to
be very important for the geometry of Alexandrov spaces. It gives a natural stratification
of Alexandrov space into open topological manifolds. Also, as is shown in recent results of
G.Perelman, extremal subsets in some sense account for the singular behavior of collapse.
Therefore the intrinsic metric of such subsets turns out to be important. Moreover, there

is hope that extremal subsets with intrinsic metric will give a way to approach the idea of
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multidimensional generalized spaces with bounded integral curvature.

In this section we give a new proof of the generalized Lieberman lemma, prove a kind
of “stability” property for extremal subsets and prove the First Variation formula for the
intrinsic metric of extremal subsets. The Lieberman lemma can be understood as a totally
quasigeodesic property of extremal subsets and therefore offers some hope that extremal
subsets with the intrinsic metric might be Alexandrov spaces with the same curvature
bound; at the end of this section we give a counterexample to this conjecture for extremal
subsets with codimension > 3. Therefore this question is still open for codimension one

(i.e for a boundary) and for codimension two.

1.1. Theorem. (generalized Lieberman lemma) Any shortest path in the intricsic

metric of an extremal subset F C M is a quasigeodesic in M.

The first proof of this Theorem was given in [PP1 5.3]

Proof. Assume v is a shortest path in the length metric of some extremal subset F'
Suppose 7 is not a quasigeodesic. Then there is a point p such that the development 7(2)
from p is not convex in every neighborhood of some t;. Now for every € > 0 it is easy to
find a “rounded” curve 8(t) such that (t) = F(t) if |t — to| > €, length(8) < length(7) =
length(v) and for every ¢ the points 5, 5(t), 8(£) are collinear in the same order. Now let

us consider the curve in M given by

8(2) = ey (159 (2))),

where a. ;) : [0,00) = M is the dist,-gradient curve which goes through +(t) such that
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ay(0)l[0,lpv(t))) 18 2 shortest path, and reparameterized as in [I 4.1].
By Theorem [I 3.8](which states that if such a gradient curve starts at a point of an
extremal subset F then it is contained in F') we obtain that § C F. From [I 4.4](expansion

along gradient curves is not more than in the model space)
length(6) < length(8) < length(3) = length(y).

Therefore < is not a shortest path in F' &.

1.2 Theorem. Let M, G M without collapse (i.e. dimM, = dimM) and F,, C M,
be extremal subsets. Assume F,, — F C M as subsets. Then F, ¢ g as length metric

spaces with intrinsic metrics induced from M,, and M.

Proof. Let = and y lie in an extremal subset G. By the equivalence of the intrinsic
metric of an extremal subset and the metric of the ambient space [PP1 3.2(2)], we have
for every open subset U in M an € = €(Vol,(U), Diam(U)) > 0 such that |zy|g < e !|zy|
if z,y € U. (The dependence on Vol,(U) and Diam(U) can be easily obtained from the
proof).

Consider p,q € F and pn,qn € F, such that p, — p and ¢, — ¢. It is easy to
see that |pglr < liminf, o |Pngn|F,. Therefore we need to show only that |pglr >
limsup,, o [PngrlF.- Set |pgl = limsup,_, |Prdn|F,; it is easily a metric. From the
previous paragraph [pg| does not depend on the choice of sequences {p,}, {g.} and we
have |pg] < €1|pg|, because from above € can be found uniformly for all M, in the absence
of collapse.

65


file:///pq/p
file:///pq/F

Let +:[a,b] — F be a shortest path in F between p and g parameterized by arclength.
Assume |pglr < |pgl- Then from [Bus, 5.14] for some ty € [a,b] and € > 0 there is a

sequence t; — tox such that

Iv(to)y(2:)l = (1 +€)it: — tol.
Setting r = (o) and s = y(¢;), take sequences r,, s, € Fy, such that r, — r and s, — s.
Let v; in F be the limit curve to the shortest paths between r,, and s, in F,,. By {I2.4] and
the generalized Lieberman Lemma, ; is a quasigeodesic between ~(tp) and v(t;). From
above length(vy;) > (1+¢€)|t; —to|- Now let us consider the limit (M/|tg —ti|,7) — (Cr,0).

Consider the curve in C, given by

(t)—hm(lt tl)(t lto — t:l) € M/|to - til,

1—00
where (7vi/|to — t;|) denotes the image of y; in M/|to — ti|- Then 7. is a quasigeodesic
between o and the tangent vector 4% (¢y) which has length not less then 1+ ¢. This is a

contradiction since |y (tp)] = 1 by [I 2.15].
Remark. The author does not know a counterexample for the following conjecture:

Let M, CH pm , dimM,, < N and F,, C M, be extremal subsets. Assume F,, - F C M

as subsets and F, X F. Then there is a discrete group of isometries G on F such that

F=F/G.

As an example, consider a collapse of spaces with boundary M; GH M such that
dimM =dimM; — 1. Then 8M; — M as subsets and dM; CH M where M is the double of
M.
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1.3.

e Let M be an Alexandrov space and F C M be an extremal subset. From the gener-
alized Lieberman Lemma every shortest path in the length metric of F is a quasigeodesic
as a curve in M and every quasigeodesic at every point has directions of exit and entrance
(see [I 2.12 and 2.15]). Thus if p and g lie in F we can define ¢°(= g;) as the set of all
directions of entrance in X,(F') of shortest paths between p and g in the length metric of

F'. 1t is easy to see that ¢° is compact.

Theorem. (The first variation formula) Let F be an extremal subset of the Alexandrov
space M. Let p,q € F and £(t) be a curve in F starting from p in direction &, € E,(F).

Assume |p£(t)] =t + o(t). Then

[€(t) 9lF = |pglF — cos|€,0°|x,(r) - t + o(t).

Proof. To prove this we have to prove two inequalities:

(l) |§(t)q|F < |pglF — cos |§£q°|zp(p) -t+o(t)
(ii) [£(t)alF > |pglr — cos |§,’,q°|zp(p) -t+o(t)

and we will prove them separately.

1.4. Proof of (i). Take some R >> 1. Set a = |£,¢°|z,(r) and |pg|r = I. Take 5 € ¢°
such that a = |£,¢°|s,(r) = |€,n] and let :[0,l] — F be a shortest path between p and ¢
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in F such that v(0) = p and v*(0) = 7. Then by the triangle inequality

€(t) alr <1 — Rt +[£(t) v(Rt)|F.

The cosine rule gives us that

& Ryle,r) = VR2+1—2Rcosa.

Now using Theorem 1.2 for limit (M/t,p) — C,, we obtain

lim [£(¢)y(Re)|r/t = &, Rale,(#)-

Therefore

[€@)qlr <1— Rt +tv/R2+1—2Rcosa + o(t) <

t

<l- .
<l-cosa t+R_1

+ o(t).

When R — oo we obtain

l£(t)alF < palr — cos|€q° |5, () - t + o(t) B

1.5. To prove (ii), we shall use the following

Lemma. Let C = C(X) be a cone with curvature > 0 (so curvature of ¥ > 1). Let
v be a quasigeodesic in C not passing through the vertex o. Then the projection of v on
¥ parameterized by the arclength is a quasigeodesic in ¥ and the development of « in the

plane with respect to the vertex of C is a straight line.
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Proof. To prove the second part of this lemma we have to prove that

(h@)?)" =2
In order to prove
(h@)?)" <2

it is enough to consider the development of  with respect to the vertex o of the cone.

Let us prove that
(@) > 2.

Consider the Buseman function for § € ¥,
fo= lim (dist)‘.o - z\).
A—o00

The condition of convexity of the development with respect to A - @ gives concavity of the
function fp 0 y(t) for every quasigeodesic v in C. Using this for § = ]%%}[ gives the needed
inequality.

Therefore if v* is the projection of v on ¥, then we can choose a unique arclength

parameter z on 4* such that the following will be true:

pr(y(ctanz + d)) = 7*(z)
for some constants ¢ > 0 and d; without loss of generality we can set d = (.
Now we have to prove that the development of v* in a standard sphere with respect to

every 0 € ¥ is convex, i.e. cos(|0v*(z)|)"” + cos(|8y*(z)]) > 0. By [I 1.11] it is enough to
Ty ) Y Y Yy g
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prove only for |#y*(z)| < 7/2. It is easy to see that

cos(|0y*(z)]) = —fo(v(ctanz))/|v(ctanz)|.

Then direct calculation gives what we need, because fp o «y is convex and

ly(ctanz)| = ¢/ cosz @

1.6. Proof of (ii). Assume that (ii) is false. Then one can find a sequence {¢;}

(t; — 0%) such that

1€(t:)alF < IpglF — cos|é,a®|s,(r) - ti—€ - i

for some fixed € > 0.

Assume |pglr = [ and [£(¢;)q|lF = ;. Let 4;:[0,1;] — F be the shortest paths between
£(t;) and g in F such that v(0) = £(:). We can pass to a subsequence of {7;} such that the
shortest paths <; approach some shortest path 4:[0,{] — F between ¢q and p. Let € ¢°
be the direction of this shortest path . By Theorem 1.1 7; and - are quasigeodesics.

Now let us consider the Gromov-Hausdorff limit
(M/ti,p) ¥ €,
and pass to a subsequence again so that there exists 4 : [0,00) — C,, satisfying
2(8) = lim (XMt .
#(0) = Jim ()€ M1,

where (7:/t;) denotes the image of ; in M/t;.
By [I 2.4] 4 is a quasigeodesic in Cp and it is easy to see that (0) € £, C C.
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1.7. Continuing, we define the direction at infinity of the curve 4 in C, by

50
e A

By Lemma 1.5 this is well defined for quasigeodesics.
We claim that the direction at infinity of 4 is 7. Indeed let @ be the direction of 4 at
infinity.

By the cosine rule for R >> 1 we obtain
[(R)? = lim (lp7(2Rt:)|/5)? <

< iliI&(IP'Yi(Rti)P + (R4;)? - 2Rt|pvi(Rt:)| cos L(v (RE:), Pl ey)) /8 =

= |4(R)|? + R? — 2R|5¥(R)| .1_{.[{.10 cos A('yf(Rt,-),pfﬁ(Rt‘,)).

Y.(Rt)  v¥(2Rt:)

%(0)

Now by Lemma 1.5, for some 8

Jim 205 (RE), By ) 2 svccos(Y(R)F + B ~ HR)P)2RIA(R)) =

({R?*+1—2RcosfB} + R? - {4R?+1—4RcosB}) | _
2R\/R2+1—-2Rcosf3

= arccos
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/R2—2Rcosﬁ+cos2ﬂ / 1 |
= - > 1= 2>
arccos [ R?—2Rcosf+ 1 > arccos [ 1 R-1Z| =

> arccos [-1+1/(R—-1)?] > (1 - 1/R).

Taking rx — p, such that (r¢), — 0,
Jim Zpyi(Re)rie 2 @ = Z((R), (ri)y) > 7 — /R = £(6, (re)}y).

The latter inequality is a corollary of Lemma 1.5 (sin Z(§(R),8) < 1/R). Therefore, since

the perimeter of every triangle in the space of directions is at most 2,
: +
'ljfgo Z(v; (Rt;), (Tk)f,‘(m‘)) <

<2r- 111’1& Zpi(Rt;)rx — ilir&é ('yi‘L(Rt,-),pfn(Rt‘)) < m/R+ £(0,(rr),) + 7/R.

Using [I 1.7 B'] for ; with respect to the points 74 and starting at ;(R¢;), we obtain the

estimates

Irey(lpre))| = ilil{.lohk % (Rt; + |yi(Rta)rel)| <
< lim |yi(Rt:)rg| - lim £( (R:), (h)omesy) < lpral - (2m/ R+ £(6, (7e)p))-

This means that 5 is 27/ R-close to 6. Sending R to infinity we obtain 6 = 1.

1.8. Now let us fix R >> 1 and divide +; into two pieces using a parameter value
z; € [0,1;) such that |pyi(z;)] = Rt;. We estimate the length of each part separately.
By Theorem 1.2 the length of the first part |¢v;(z;)|r is possible to estimate from the

triangle inequality:

lgvi(z:)lF > IpalF — |pvi(z:)|F = lpalF — Rt: + o(t:)
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The length of the second part is estimated using the fact that the limit of lengths of

quasigeodesics is the length of the limit quasigeodesic ([I 2.4]). Therefore

[§(t:)vi(z:)|r /t: — length(¥ 0 Br(o) C Cy).

By Lemma 1.5 the last expression can be estimated from below as

R—cos/(¢°,£))— C/R.

This estimate is easily deduced from the following diagram in the plane of the development

(77’) of 4 from o. Here a is the angle at 0 subtended by (?)T) Clearly a is not less than

£(g°,&)-

By these two estimates we obtain

[€(t:)alr 2> |pglr — cos|€,6°|x,(F) - ti — C/R - i + o(t;),

a contradiction with the assumption 1.6 for C/R < €. This completes the proof of the first

variation formula &.
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1.9. Counterexample. In [PP1 6.1] we formulated a conjecture that the intrinsic
metric of a primitive extremal subset has curvature bounded from below. Here we show
a counterexample to this conjecture for codimF > 3. Therefore this question is still open
for codimF = 1 (i.e for a boundary) and codimF = 2. Sergey Buyalo [Buy] has settled
the first of these questions affirmatively for “smooth” Alexandrov space, i.e. for a convex

subset in a Riemanian manifold with curvature bounded from below.

Let us consider a right simplex conv{ajasazasas} in a standard S* such that |a;a;| =
w/2 for i # j. Assume as = ag, take some € > 0 and consider the closed broken geodesic
F = afayafe;afazata;afa;al where af is the point on the geodesic a;a;+; such
that |a,-a;‘-t| = e. Let ¥ = conv{F}. Then direct calculation shows that F is a primitive
extremal subset of ¥ and for ¢ sufficiently small, length(F) > 2. In particular C(F) is

an extremal subset of C(X) which has a singular point of negative curvature.

§2 GLUING THEOREM

Moeis méue

2.0. The Gluing Theorem is due to A.D.Alexandrov for the two dimensional case
(see for example [Pog §11). Later Perelman [P2 5.2] proved the Doubling Theorem for
multidimensional Alexandrov spaces; this is a special case of the theorem formulated below.
The original Alexandrov’s Theorem had a lot of applications for bending of convex surfaces
with boundary, which are currently impossible to generalize to the multidimensional case,
because they are supported by the Theorem about convex embeddings [Pog §6-7]. Formally

74



the following theorem gives some new examples of Alexandrov spaces, but unfortunately

we have not too many examples of Alexandrov spaces with isometric boundaries.

2.1. Theorem. Let M; and M, be Alexandrov spaces with nonempty boundary and

curvature > k. Let there be an isometry

is:OM, — OM,

(here &M, and OM; are considered as length-metric spaces with induced metric from M,
and M2)

Then the glued space X = M, Uis(z)=z M, is an Alexandrov space with curvature > k.

2.2. Lemma. Let p € OM and n € 30%,. Then there exists a shortest path in oM

which starts at p in a direction arbitrarily close to 7.

Proof. Let N = M. The boundary is an extremal subset and therefore we can
use notation ¢°(= g,) for the set of all directions of entrance in X,(N) of shortest paths
between p and ¢ in the length metric of N.

Let us choose a sequence of point g, € N such that ¢, — p and Z(q,,n7) — 0 (where
gn = (¢n)y is the set directions at p of the shortest paths between p and g). Assume that
for all n, Z(nqd) > e. Let us pass to a subsequence such that lim, . Z(f¢p) — 0 for
some direction 6.

Find a point r € M such that Z(r/,0) < £/6. Let {r,} be points on the shortest path
pr such that |prn| = |pgn|. Since the shortest path from p to g, in N is a quasigeodesic

(6



(see 1.1) we obtain by [I 1.7(B’)] that for n sufficiently large |rng.| < €/5 - |pga|, hence for
e<w/4

: ! !
Jlim Z(qy,7') <¢/3.

Therefore

. '
Jim Z(q,,0) <e/2.

We obtain a contradiction because

. '
nl_l_.ngoq,, =nand £(n,0)>c .

2.3. Preparation for Proof of 2.1. The proof is by induction on dimension.
Let N=M,NM;,=0M; C X.

Definitions. The m-predistance |pg|,, between points p and ¢ in X is the minimal
length of broken geodesics with vertices p = pg, p1, ..., Pk+1 = ¢ Where k < m, pipi+1 is a
shortest path which lies completely in one of M; for every l € {1,2,...,k} and p; lies in N.

A broken geodesic which realizes this minimum is called an m-shortest path.

It is easy to see that

*) Pglm 2 |Pglm+1 2 |pgl
limm—c0 [Pglm = [Pyl

(x%) Pglm + larls 2 [prlmy  if g€ X\N
lpglm + larli > [primti+1  fgeEN
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For every interior vertex p = pi, | € {1,2,...,k}, of an m-shortest path we can define
directions of exit and entrance &; as directions in X,(M;) of shortest paths in M;.
By Theorem 1.2 the isometry is: 90M; — @M = N gives an isometry is;,: 0%, (M) —

9, (Ma) = ,(N) and is,: 0Cp(My) — 8C,(Mz) = Cp(N). Set
T#(X) 5 (M) Uit (z)=z Zp(M2)

and

C#(X) = C(E¥ (X)) = Cp(My) Uss, (z)=z Cp(My).

From the induction hypothesis, Z# (X) will be an Alexandrov space with curvature > 1

and therefore C#(X) will be a cone with curvature > 0.

Notation. If K; and K, are two compact metric spaces, we say that K; < K if there
is a noncontracting map m : Ky — K. If (L;,p1) and (L2, p2) are two locally compact
metric spaces with base points, we say that (Ly,p1) < (Le,p2) if for every R > 0 there is
a noncontracting map m : Br(p1) — Br(p2)-

We will write limsup;_, ., K; < K if for every Hausdorff subsequence Kj;, CH K' we have
K' < K. Similarly one can write liminf; o K; > K. We write limsup;_, . (Li, p;) < (L,p)

if for every R > 0 we have limsup,_,, Br(p:) < Br(p) (compare with [BGP 7.13]).

2.4. Proof of the Theorem 2.1. The rest of §2 will be devoted to this proof.
As a base we can take the classical Gluing Theorem of A.D. Alexandrov (dim = 2) (see

[Pog §11]). Assume we have already proved Theorem 2.1 for dim < n.
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Claim.

A. For every point pe N

lim sup(X/6,p) < (C# (X)), 0)-

B. The directions of exit and entrance (£;) of every m-shortest path at every interior
vertex p = pi, 1 € {1,2, ..., k(< m)} (see 2.3), are opposite in CF(X)) (ie. |b1&2] = 2/61| =

2|¢,| see [I 2.7,2.8]).

Remark. It is easy to see that as a corollary of the Theorem we will have equality in

(A) instead of the inequality.

" Proof of A. Consider the gradient-exponential maps: @w; : Cp(M)) — M; and w; :
Cp(M3) — My (see [I 4.6]). By [I 4.6], @;(Cp(N)) C N. Let us construct an exponential
map exp : C#(X)) — X by

exp(v) = [wl(”) for ve Cy(M) C CH(X))
wa(v) for v @ Cp(My) .

Define exp; : C#(X)) — X/6 by exps(v) = is o expo(v6), where is : X — X/ is the
canonical mapping.

Let & = &9, T1, .. Tk, Tk+1 = y be vertices of an m-shortest path in C¥(X)). Then it is
easy to see that |2i1z141] > |expy(z1) expg(zit+1)|+ 0(6)/6. Therefore for the m-predistance
in C#(X)) we have |zylm > |exps(z) exps(y)| + 0(6)/6. Now |zy| = limm—.co |zy|m for

every z,y € C’# (X)). Hence

lim | exp; (z) exps(y)] < lim_|zy|m = |zy-
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Now in order to complete the proof we need to verify that for every R > 0
lim exp; ' (Br(p) C X/3) C Br(o) C CF(X)).
Equivalently, for every = € C# (X))

lim [pexpy(z)]| > |z

Assume otherwise. Therefore we can find z € C# (X)) and a sequence 6, — 0 such that

for some € > 0 we have
Ipexps, (z)| < (1 - €)la.

Let us consider shortest paths pexp;_(z) C X/6, for all n. No subsequence lies com-
pletely in M;/6, for fixed 7. Let y, € N/6, C X/6, be the closest point of N/é, to
exps, (x) on pexps, (z). Pass to a subsequence of {6,} such that expg"1 (yn) — z*. By
[P2 4.7] =* € C(Z,(N)) = C(0M;) and lims, o | exps, (z) exps, (z*)| = |zz*| (because a
shortest path exps (z)yn completely lies in one of the M; and |y, exp;,_ (z*)| = 0(6)/6r)-

Therefore for n sufficiently large

|pexps, (=)} < (1 - ¢€)l=*|.

By Lemma 1.5 a limit of shortest paths in N/, between p and exp;, (z*) (which is a
quasigeodesic by Lieberman Lemma 1.1) is a shortest path oz* in Cp(M;). By the fact

that limits preserve lengths of quasigeodesics ([I 2.4}),
. * ¥
lim_|pexps, (°)|v/s = |-
Hence for n sufficiently large

Ipexps, (=*)| < (1 —é€)lpexps, (z°)|nys-
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Therefore we can find a segment s,7,, on a shortest path pexps_(z*) which completely lies

in one of the M;/6,, such that s,,r, € N/§, and

(#) |snTnlm; < (1 —€)(lpraln — [Psaln)

(here we employ our convention of using the same notation for points in N and N/§).

We can easily pass to a subsequence such that for some 0 < ¢ <1,

lim lpsaly =c.
n—oo |pro|n

Now let us consider two cases, ¢ # 1 and ¢ = 1.
1) Suppose ¢ # 1. Let us consider limit (M;/|pra|n,D) gL Cp(M;). Pass to a subse-
quence such that s, — s and 7, — r. The boundary N is an extremal subset; therefore

by Theorem 1.2, (N/|pra|n,p) ol Cp(N) as length-metric spaces. Hence

lim ——— = |sr| > |r| — 8| = |r —|s =1~ lim ,
A Torln s} = Ir| = |s| = Irlcvy — Islov) A ol

a contradiction to (#).

2) Suppose ¢ = 1. Pass to a subsequence such that there exists a limit
GH
(Mi/lsﬂrn|Mn 3n) - (Msy 3)-

We remark that M; need not be the tangent cone. Set N, = M,. By Theorem 1.2 we

have

(N/\snTnlpir 32) S (N, 9).

Let fn : N/|snTn|pm, — R be functions defined by

fa(z) = IpxlN/IsurnIM,- - |P3n|N/|snrn|M,~'
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Pass to a subsequence such that there exists a limit f : Ny — R, f = limy,_.o0 fn-

It is easy to see that M, can be represented as a product Rx M such that f(z) < prg(z)
where prg is the projection M; — R. Indeed a sequence of quasigeodesics which prolong
shortest paths ps, in N easily goes to a straight line in Mj, so by the Toponogov splitting
theorem we have such a representation. Therefore Nj is split as well, N, = R x N_.

Let 0, be a shortest path in N between p and s, parameterized by distance from s,
and o be a limit of {0, /|rnsalm,}. By the triangle inequality, for every T > 0 we have
|zpln — |snp| < |zon(|SnTn|T)| — |8a7x|T. As a limit we obtain that f(z) < |zo(T)| - T.
For T — oo the right side goes to the Buseman function of ¢ which coincides with prg.

Pass to a subsequence such that there is a limit as r, — . We obtain that

1=|rs| 2 pra(r) 2 f(r) = lim (|praln — |P8nln)/Irn3al M,
n—o0

a contradiction to (#).

Proof of B. Let & € £,(M;) be directions of exit/entrance of the m-shortest path at

the interior vertex p (see 2.3). Let us first prove that for every v € T,(N) C S#(X)

|61vfo + l€2vlo = 7.

Here the left side is the sum of two O-distances in the glued space £¥(X), each of which
by the definition 2.3 is measured in one of the X,(M;). Assume we have proved Claim B
for dim< n and let dimE# (X) = n. From the first variation formula we obtain for every

v € Zp(N)

F(v) Eleawlo + lvéalo > .
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Assume 7 is the minimum point in X,(NV) of the last function. Thus, £, D€ is a 1-shortest
path. Let v be a shortest path in X,(/N) such that (0) = 7 with arbitrary initial data
4*(0) = n. Assume f(#) > w. By the induction assumption |(£&1)59]o + |7(€2)5]0 = .
By the generalized Lieberman Lemma (see 1.1) +y is a quasigeodesic as a curve in X,(M)
and I,(Mz). By [I 1.7(B')] from f(#) > m we obtain (f o y)(z) < (f 0 ¥)(0) = f(v) for
sufficiently small z. This contradicts the assumption that f has a minimum at .
Therefore f(7) = w. Take every shortest path v in Xp(N) such that 4(0) = #. Then

is a quasigeodesic for £,(M;) and X,(M>). Set
def
g(v) = cos|&v|o + cos|véalo

for v € Tp(N). From above g(#) = goy(0) =0, (go)'(0) =0 and goy < 0. By [I 17(B)]
(gov)" 4+ go~vy > 0. Therefore (go~)” > 0 and so go v = 0; in particular for every v,
g(v) = 0. Therefore f =, i.e. |£1v]o + |€2v]o = 7 as claimed.

In order to prove that §; are opposite it is enough to show that 2|&;| = 2|¢;| = |€1&2]
holds in C’#(X ) or equivalently, |£,£2| = 7 holds in E# (X). If this is false, then there is m
such that |£1€2|m < 7 in E# (X). Let 0 be the closest vertex to £; of the m-shortest path
&1&2. From above there is a 1-shortest path through 8 of length w. Therefore we have two
distinct directions at 6 which are opposite to (£;)j, a contradiction to the fact that T¥ is

an Alexandrov space. &.
2.5. Corollary. Let §; € ¥,(M) be directions of exit/entrance of an m-shortest path
at an interior vertex. For every 7 € X,(M;) there is a unique 7* € X,(IN) such that

|€1lo + |mm™|o + |7*&alo =
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or

16170 + |7 nlo + |né2lo = 7.

Proof. Suppose 7 € £,(M;). Consider the 1-shortest path 7¢2. From the preceding
claim applied to Z#(X ) the directions at the vertex are opposite and therefore this 1-

shortest path is a part of a 1-shortest path &£, é.

2.6. Claim. Let 4: [a,b] — X be a quasigeodesic in one of the intM; or a shortest path

in the length metric of N. Then

Pe(IpY(8)lm)” + Epr(lpy()lm) < 1

for every p € X (see [I 1.6,1.7(B)]).

Proof. We consider the case k = 0; we must show (|py(t)|2,)” < 2.

It is true for m = 0 because

|pg| M, if p € M;,q € intM; or q € M;,p € intM;

|pglo = | min; |pg|nm; if pge N
00 in the other cases

(Recall that a shortest path in N is a quasigeodesic in both M; by the generalized Lieber-
man Lemma (1.1)).
Let it be true for all I < m and false for m. Then the standard idea shows that in this

case there exists ¢y € (a,b) and £ > 0 such that for [t —tp| <€

lpY()I2, > Ipy(to)f2, — At — to) + (¢ — to)? + &t — to)?,

for some constant A.
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Let us assume that ¢y = 0. Set ¢ = v(0) and let p = pop;...pxPk+1 = ¢ be an m-shortest
path. Take a sequence t; — 0 such that the sequence ((v(¢;),,)* (as in Corollary 2.5) goes
to some direction ¥ € X,,(N). Using Lemma 2.2 we can find a shortest path v in N
which goes from p; in a direction arbitrarily close to v.

In the following proof one might get lost in calculations and lose the main idea. If we
assume that all ((y(¢;),,)* coincide with v and there is a shortest path (in the intrinsic

metric of N) which goes in this direction then one can ignore the residue terms below.

Assume
a = £((pk)q, 77 (0))
B = L(gp,, 77 (0))
Bi = (v (0) (v(t3))p,)
0; = Z((v(t3))p, %)
6= A('y;:', v)
ZPSNL') ot)/t, Zpkq\l )
n ¢) L
7,
% +
v?® 140) !

It is easy to see that

6, > tjsina
|peglo

+ O(tj).
We can assume that g, ¢ Xy, (N), otherwise our m-shortest path lies completely in .
By the cosine rule applied to the triangle Agy, ('y(tj));k'y,': 0)

B—B; > (1+0(6) + olts) /t)8; > tj(%“q% +0(6)) + ofts).
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Hence
2.: 2

tssin” a
cos(fB— B;) <1— L —— + o(6)2 + o(t?).
(B=B) 1=+ o(6)8 + ()

From the induction assumption and Claim 2.4(B) we have
1k (r) 71 < P PEI7—s + 271D Pkl 1 cOS B+ 72,
Because vy is a quasigeodesic for both of the M;,
(&)1 (T)I§ < Iv(ts) pel§ — 2 cos B; - Tl (t;) prlo + 72,

(where these distances are measured in a fixed M;).

Therefore using (**) (see 2.3) and the previous two inequalities
P ()l < min(lp e (Tlm—1 + by(ts)1(7)l0)? <
< min(|AB(7)| +B(r)C|)* = |AC|* =

= |pprl2_1 + 17(t5) Prl3 + 20 Pr|m—117(¢;) Prlo cos(B — B;).

Here A, B() and C are as shown in the following diagram in the plane

h(t) %,

pR@®l_,

PP s D

Because v is either a quasigeodesic in one of the M;, or a shortest path in N and

therefore a quasigeodesic in both of the M; (see the generalized Lieberman Lemma, 1.1)

Ik ¥(£5)13 < Iprall +t3 — 2¢;|prglo cosa
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and so

tf- sin? o

2|px4lo

Pk ¥(ti)lo < |prglo — tj cosc + +o(t2).

Hence

lpY(t5)2, < IPPrlae—1 + lapeld + 2 — 2t;]q pelo cos o+
t2 02 R

jsin” a 5 tjsm a 2 2
+0o(t3))(1 = =——= + t50(6) + o(t3)) <
2|prglo (E 2peql (6) + olt5))

< (Ipplm—-1 + [Pkdlo)® — 2t;(|pPelm-1 + [Prglo) cos @ + t? + t?o(&) + o(t?) =

+2|ppr|m—-1(lprglo — tjcosa +

= |pql2, — 2¢;|pg|m cos a + 2+ t?o(a) +o(t2)

This inequality for two sequences £; — 0% and t; — 0~ contradicts our assumption for

sufficiently small § é.

2.7 Now let us prove that every m-shortest path is a k-quasigeodesic. Indeed using

(I 1.7(B)] we only need to verify that px(Jy(¢)p|)” < 1 — kpk(J¥(t)p]). Now |v(t)p| =

lim,, oo |7(t)p|» and using Claim 2.6 we obtain the needed inequality for all ¢ # ¢; (where

V(b)) = pr).
Let o be a shortest path between an arbitrary point z and +(t;), parameterized by

distance from 7(¢;). By Claim 2.4 we obtain that for fixed ¢
lo(T)y(t + Te)| + lo(T)y(t - Te)| < 2T + CTe? + o(T).
Therefore
dist; o y(t; + T€) + dist o y(t; — Te) < 2dist, o v(t;) + CTe? + o(T).

Therefore for T — 0
(distz 0y)* () < (dist, 0 v)~(t;) + Ce.
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Hence for € — 0 we obtain
(dist, o ¥)* () < (distz 0 7)™ (&r)-

Therefore by [I 1.9(B)] we obtain the needed inequality for every ¢.

Let v,, be an m-shortest path between p,q € X. Then v = lim,, .o ¥m is a shortest
path between p and ¢. It is easy to see that v is convex (as a limit of convex curves)
and parameterized by the arclength (because length(yn) — length(y)); hence v is a
quasigeodesic. Therefore by [I 1.17] we obtain that X is an Alexandrov space of curvature

> k. This completes the proof of the Gluing Theorem é.

§3 RADIUS SPHERE THEOREM

Fanodumy

The following Theorem was proved by Karsten Grove and Peter Petersen [GP]. An-
other proof follows immediately from [PP1 1.2, 1.4.1]. The following proof is only a good

demonstration of how beautiful quasigeodesics are.

Proposition. Let ¥ be an Alexandrov space of curvature > 1, with radius > n/2.

Then for every p € X the space of directions X, has a radius > 7/2.

Proof. Assume that ¥, has radius < 7/2, and let £ € X, be a direction such that
closBe(7/2) = X,. Take a quasigeodesic of length 7/2 starting at p in the direction £.
Then the other endpoint ¢ of this quasigeodesic satisfies closBy(w/2) = X. (Indeed, for
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any point 7 € ¥ we have Zrpg < /2, therefore |rq| < 7/2 by the comparison inequality;

see [I 1.7(B’)]). This contradicts our assumption that ¥ has radius > 7/2 &.

Theorem. Let ¥ be an Alexandrov space of curvature > 1, with radius > 7/2. Then

¥ is homeomorphic to the sphere S™.

Proof. Assume we have proved the Theorem for dim¥ < n. Let us prove it for
dim¥ = n.

Let zy be a diameter of X. Let z be a critical point of dist,. Then we have
Zz2y < Lzzy < /2.

By assumption |zz|, |2y|, 7/2 < |zy|. Therefore the last inequality car hold only for z = y.
Therefore dist, has no critical points but  and y. By [P1] ¥ is homeomorphic to S(X;).
By the Proposition we have Rad(X;) > n/2. Hence by the induction assumption I is

homeomorphic to S®~1. Therefore & is homeomorphic to S™ &.
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