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Abstract
Let M be a closed simply connected manifold and 0 < δ ≤ 1. Klin-
genberg and Sakai conjectured that there exists a constant i0 =
i0(M, δ) > 0 such that the injectivity radius of any Riemannian met-
ric g on M with δ ≤ Kg ≤ 1 can be estimated from below by i0. We
study this question by collapsing and Alexandrov space techniques.
In particular we establish a bounded version of the Klingenberg-
Sakai conjecture: Given any metric d0 on M , there exists a con-
stant i0 = i0(M,d0, δ) > 0, such that the injectivity radius of any
δ-pinched d0-bounded Riemannian metric g on M (i.e., distg ≤ d0
and δ ≤ Kg ≤ 1) can be estimated from below by i0. We also estab-
lish a continuous version of the Klingenberg-Sakai conjecture, saying
that a continuous family of metrics on M with positively uniformly
pinched curvature cannot converge to a metric space of strictly lower
dimension.

0 Introduction

The motivation for this work is a conjecture of Klingenberg and Sakai in
positive curvature, concerning the existence of lower uniform bounds for
the injectivity radius of δ-pinched manifolds in terms of the manifold and
the pinching constant.

Conjecture 0.1 ([KS2]). Let M be a closed simply connected manifold
of dimension m and 0 < δ ≤ 1. Then there exists i0 = i0(M, δ) > 0 such
that the injectivity radius ig of any δ-pinched metric g on M , i.e., any
Riemannian metric with sectional curvature δ ≤ Kg ≤ 1, is bounded from
below by ig ≥ i0.

During the preparation of this paper, the first and the third author enjoyed the
hospitality of the following institutions: The Max-Planck Institutes for Mathematics at
Bonn and Leipzig, the Institute of Mathematical Sciences at Stony Brook, the Euler
Mathematical Institute at St. Petersburg. Thanks to all of them!
The second author is supported partially by NSF Grant DMS 9626252 and Alfred P.
Sloan Research Fellowship.
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This conjecture is known to be true in the following cases:

• The dimension m is even and δ > 0 arbitrary ([Kl1]).
(The case dim M = 2 was solved by Pogorelov ([Po]) in 1946).
• The dimension m is odd and δ ≥ 1/4− ε, ε ≈ 10−6 ([AM]).

(For odd dimensions m, the case δ > 1/4 was solved by Klingenberg
([Kl2]) in 1961, and the case δ ≥ 1/4 was solved independently by
Cheeger-Gromoll ([CG]) and Klingenberg-Sakai ([KS1]) in 1980).
• M is three-dimensional and δ > 0 arbitrary ([BT]) (see also [S]).

(Here the conjecture is even true for Ricci pinching conditions, i.e.,
for any metric g on M3 with Kg ≤ 1 and Ricg ≥ δ > 0).

Except the Burago-Toponogov theorem, in all of the above results i0
can in fact be chosen to be independent of the manifold M and the precise
value of δ, namely, i0 = π. However, the example of the Berger spheres
(cf. [AM]) already shows that in general i0 will depend on δ. Moreover, uni-
formly pinched collapsing sequences among the Aloff-Wallach, Eschenburg
or Bazaikin spaces (see [AlW], [E], [B]) show that for small positive δ (in
fact δ < 1/37 will work, see [Pü]) there is, if one does not fix the topology
of M , no chance for the conjecture to hold at all.

For odd m > 3 and δ > 0 arbitrary the Klingenberg-Sakai conjecture is
completely open. To describe our results on it, note first that in terms of
Hausdorff convergence one can reformulate the Klingenberg-Sakai conjec-
ture as follows:

Conjecture 0.1
′. Suppose that a compact simply connected manifold M

admits a sequence of metrics (gn)n∈N with sectional curvature λ ≤ Kgn ≤ Λ,
such that, as n → ∞, the sequence of metric spaces (M,gn) Hausdorff
converges to a compact metric space X of lower dimension (i.e., dimX <
dimM). Then λ ≤ 0 (i.e., these metrics cannot be uniformly positively
pinched).

Definition 0.2. A sequence of metric spaces Mi is called stable if there is
a topological space M and a sequence of metrics di on M such that (M,di)
is isometric to Mi and such that the metrics di converge as functions on
M ×M to a continuous pseudometric.

Theorem 0.3 (Stable Collapse). Suppose that a compact (topological)
manifold M admits a stable sequence of Riemannian metrics (gn)n∈N with
sectional curvatures λ ≤ Kgn ≤ Λ, such that, as n → ∞, the metric
spaces (M,gn) Hausdorff converge to a compact metric space X of lower
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dimension. Then λ ≤ 0 (i.e., these metrics cannot be uniformly positively
pinched).

Here is an equivalent, but “convergence-free”, version of this result:

Theorem 0.3′ (Bounded version of the Klingenberg-Sakai conjecture). Let
M be a closed (topological) manifold and d0 be a metric on M and 0 < δ ≤
1. Then there exists i0 = i0(M,d0, δ) > 0 such that the injectivity radius ig
of any δ-pinched d0-bounded metric g on M , i.e., any Riemannian metric
with sectional curvature δ ≤ Kg ≤ 1 and distg(x, y) ≤ d0(x, y), is bounded
from below by ig ≥ i0.

Recall that the Berger spheres constitute an example of a collapse of
S2m+1 to CPm by a continuous one parameter family of Riemannian metrics
with positive curvature 0 < K ≤ 1. Our next result shows in particular
that under the assumption of positive pinching 0 < δ ≤ Kg ≤ 1, such
phenomena cannot occur, i.e., we have the following continuous version of
the Klingenberg-Sakai conjecture:

Theorem 0.4 (Continuous Collapse). Suppose that a compact manifold M
admits a continuous one parameter family (gt)0<t≤1 of Riemannian metrics
with sectional curvature λ ≤ Kgt ≤ Λ, such that, as t → 0, the family
of metric spaces (M,gt) Hausdorff converges to a compact metric space X
of lower dimension. Then λ ≤ 0 (i.e., these metrics cannot be uniformly
positively pinched).

Remark 0.5. Theorem 0.4 implies in particular the following: Sup-
pose that the Klingenberg-Sakai conjecture is false, so that there exists
a manifold M which, for some δ > 0, admits a collapsing sequence {gn}
of δ-pinched metrics. We may thus assume that the sequence of metric
spaces (M,gn) Hausdorff converges to a compact metric space X of lower
dimension.

Then there exists an ε = ε(M, δ,X) > 0, such that the intersection of
the space of all δ-pinched metrics g on M with the Gromov-Hausdorff ε-
neighborhood of X has an infinite number of connected components. More-
over, for each of these components its infimum distance to X is positive (see
also the picture below).

Outline of the proofs. First note that since a compact positively curved
manifold has finite fundamental group, it is enough to prove the Continuous
Collapse theorem (as well as the Stable Collapse theorem) only in the simply
connected case.
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X

δ -pinched metrics

         on M.

A. To prove the Stable Collapse theorem, we first establish

Theorem 0.6 (Gluing theorem). Let Mn be a stable sequence of simply
connected Riemannian manifolds with uniformly bounded sectional curva-
tures λ ≤ K(Mn) ≤ Λ such that the sequence of metric spaces Mn Haus-
dorff converges to a compact metric space X of lower dimension. Then
there exists a noncompact complete Alexandrov space Y = Y (X, {Mn})
with the same lower curvature bound λ.

The Stable Collapse theorem then follows from the extension of Myers’
theorem to Alexandrov spaces (see [BuGrPe] or [Pl]) which states that a
complete Alexandrov space with lower positive curvature bound has finite
diameter and hence is compact.

A′. In fact, the space Y which is constructed in the proof of the Gluing
theorem will admit a free isometric action of Rk′ , k′ ≥ 1, such that X =
Y/Rk′ . Note that for λ ≤ 0 this construction does not yield much, since in
this case R×X always has curvature ≥ λ.

The reader might also be interested in what this theorem gives us in the
case of almost nonnegative pinching. The following result can be considered
as a slight generalization of the Stable Collapse theorem, and follows from
the proof of the Gluing theorem, see section 4.

Theorem 0.6a (Limit of Covering Geometry theorem). Let Mn be a sta-
ble sequence of compact Riemannian m-manifolds with curvature bounds
−ε2n ≤ K(Mn) ≤ 1 such that εn → 0 for n → ∞ and such that the se-
quence of metric spaces Mn Hausdorff converges to a compact metric space
X of lower dimension. Consider a sequence of points pn ∈ Mn and balls
Bn = Bπ/2 ∈ Tpn which are equipped with the pullback metric under the
exponential map exppn : Tpn → Mn. Then there is a converging subse-
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quence Bn → B, where B has the same dimension as the manifolds Mn

(= m), and the following holds:
In a neighborhood of its center, the metric on B coincides with that of

a metric product R × N , where N is a manifold with two-sided bounded
curvature 0 ≤ K(N) ≤ 1 in the sense of Alexandrov.

B. The Continuous Collapse theorem follows from the Stable Collapse
theorem and the following result:

Proposition 0.7. Suppose that a simply connected manifold M admits
a continuous one-parameter family of metrics (gt)0<t≤1 with λ ≤ Kgt ≤ Λ
such that, as t → 0, the family of metric spaces Mt = (M,gt) Hausdorff
converges to a compact metric space X of lower dimension. Then the family
Mt contains a stable subsequence.

C. The proof of the Gluing theorem is divided into two parts.
Recall that a metric g with bounded sectional curvature whose injectiv-

ity radii are small everywhere gives rise to a certain topological structure
on M , a so-called N -structure of positive rank (cf. [CFGr] and section 1).
In the case where M is simply connected and of bounded diameter, such a
structure is actually given by an almost isometric smooth effective global
torus action on M with empty fixed-point set, whose orbits, roughly speak-
ing, contain the directions in which the injectivity radii of g are small.

The first part of the proof of the Gluing theorem consists of showing that
if one applies to the metrics of a stable collapsing sequence the smoothing-
averaging construction of Theorem 1.3 (see below), then the “collapsing”
torus actions will be related in the following way:

Proposition 0.8. Let {Mn, gn} be a stable sequence of compact sim-
ply connected m-dimensional Riemannian manifolds with curvature λ ≤
K(Mn) ≤ Λ. Assume that, as n → ∞, the sequence of metric spaces Mn

Hausdorff converges to a compact metric space X of lower dimension.
Then the sequence (Mn, g

ε
n), constructed in Theorem 1.3. has a subse-

quence (which we also denote by (Mn, g
ε
n)) which Hausdorff converges to a

compact metric space X ′, and the Lipschitz distance between X and X ′ is
dL(X,X ′) ≤ ε.

Moreover there is a manifold M with an effective T k action, a homeo-
morphism h : M/T k → X ′, and homeomorphisms hn : Mn → M so that
the following holds: The mapping hn conjugates the T k action on M and
the gεn-isometric (collapsing) torus action on Mn, and the induced mappings
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h ◦ πTk ◦ hn : (Mn, g
ε
n) → X ′ (where πTk : M → M/T k is the orbit space

projection) are εn-almost isometries, where εn → 0 as n→∞.

Roughly speaking, Proposition 0.8 says that for a stable sequence, after
a suitable reparameterization one can assume that collapsing happens by
shrinking invariant metrics along the orbits of a fixed T k action on a fixed
manifold M , whereas in directions not contained in these orbits the metrics
only change very slightly. This kind of stability w.r.t. to the T k action will
be crucial for the construction of the Gluing theorem to work (see §2.8).

Note that the Riemannian metrics gεn have almost the same pinching as
gn (see Theorem 1.3 below, or [R1]). Therefore by exchanging gn with gεn
one does not lose much.

Also note that since hn is in general not necessarily a diffeomorphism,
the induced pullback metric is not necessarily Riemannian in the standard
sense, i.e., it could happen that the pullback metrics are not compatible
with the smooth structure on M . This will not pose problems, but we point
out that by a different approach one could also obtain that hn is smooth.

In Definition 0.2 one can actually use M with the metric dn(x, y) =
distgn(h−1

n (x), h−1
n (y)), so that the conclusion of Proposition 0.8 can be

considered as a stronger version of Definition 0.2 for the case of bounded
curvature. Using this definition and frame bundles one could also sim-
plify the proof of the Stable Collapse theorem, but the general definition
is needed for our proof of Proposition 0.7 and the Continuous Collapse
theorem, see section 3.

C′. The second and most important part of the proof of the Gluing
theorem is to construct the noncompact Alexandrov space Y , by using a
special collapsing sequence as in Proposition 0.8.

The original idea of the second part of the proof the Gluing theorem is
in fact very simple. Let us describe it here for the simplest example, a
sequence of Berger spheres (S3, gn) collapsing to S2:

For the Berger spheres, collapsing occurs along the S1 orbits of the Hopf
fibration S3 → S2 = S3/S1.

Let us represent S2 as two disks, D1 and D2, which are glued together
along their boundaries. This corresponds to representing S3 as the result
of gluing together two solid tori, C1 and C2.

Consider their universal Riemannian coverings (C̃1, gn) and (C̃2, gn).
We cannot lift the gluing to glue (C̃1, gn) and (C̃2, gn) together, since

the Euler class of the S1 bundle S3 → S2 is not zero. Here the Euler class
can be geometrically interpreted as a mapping from H2(S2) to the deck
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transformation group of C̃i.
Now consider the limits of the “tubes” (C̃1, gn) and (C̃2, gn) as n→∞.

The marvelous fact is that the limit spaces can be glued isometrically to-
gether to obtain a noncompact space homeomorphic to R× S2.

Here is the reason for this: Since the Euler class of this S1 bundle is
topologically fixed, and since the diameter of the S1 orbits converge to zero,
the geometric interpretation of the Euler class as an isometry of (C̃i, gn)
will converge to the identity, and therefore the obstruction to gluing will in
the limit disappear.

The remaining parts of the paper are organized as follows: In section 1,
the relevant preliminaries are presented. Section 2 is concerned with the
proof of the Gluing theorem modulo Proposition 0.8. In section 3, we prove
Propositions 0.7. and 0.8. The proofs of the Stable Collapse theorem, the
Continuous Collapse theorem and the Limit of Covering Geometry theorem
are given in section 4.

We would like to thank Slava Matveyev for help with section 3.

1 Preliminaries

We gather here several notions and results about collapsed manifolds and
Alexandrov spaces. As general references we mention [BuGrPe], [CFGr],
[F], [GrLP], [R1] and [R2].

A Collapsed manifolds and N-structures. Let M = (Mm, g) be a
Riemannian manifold of dimension m and let FM = F (Mm) denote its
bundle of orthonormal frames. When fixing a bi-invariant metric on O(m),
the Levi-Civita connection of g gives rise to a canonical metric on FM ,
so that the projection FM → M becomes a Riemannian submersion and
so that O(m) acts on FM by isometries. Another fibration structure on
FM is called O(m) invariant, if the O(m) action on FM preserves both
its fibers and its structure group.

A pure N-structure on Mm is defined by an O(m) invariant fibration,
η̃ : FM → B, with fiber a nilmanifold isomorphic to (N/Γ,∇can) and
structural group contained in the group of affine automorphisms of the
fiber, where N is a simply connected nilpotent group and∇can the canonical
connection on N for which all left invariant vector fields are parallel. A
pure N -structure on M induces, by O(m)-invariance, a partition of M into
“orbits” of this structure (cf. [CFGr]), and is then said to have positive rank
if all these orbits have positive dimension.
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A pure N-structure η̃ : FM → B over a Riemannian manifold (M,g)
gives rise to a sheaf on FM whose local sections restrict to local right
invariant vector fields on the fibers of η̃; see [CFGr]. If the local sections
of this sheaf are local Killing fields for the metric g, then g is said to be
invariant for the N-structure (and η̃ is then also sometimes referred to as
pure nilpotent Killing structure for g).

In particular, if g is invariant for theN -structure, then a normal covering
Ṽ of a tubular neighborhood V of each orbit admits an isometric N -action.

Let Λ be the structural group of the covering π : Ṽ → V . Then the
action of Λ and N on Ṽ generate an isometric action of some bigger Lie
group H on Ṽ .

A manifold M with an N -structure and an invariant Riemannian metric
g is called (ρ, k)-round (cf. [CFGr]), if for any point p ∈ M there exist
V ⊃ Bρ(p), π : Ṽ → V and a Lie group H as above (so that the identity
component of H is our nilpotent group N), but which now also satisfy the
following additional properties:

(i) the injectivity radius at π−1(p) of Ṽ is > ρ;
(ii) #(H/N) = #(Λ/Λ ∩N) ≤ k.

Theorem 1.1 ([CFGr]). Let, for m ≥ 2 and D > 0, M(m,D) denote the
class of all m-dimensional compact connected Riemannian manifolds (M,g)
with sectional curvature |Kg| ≤ 1 and diameter diam(g) ≤ D.

Then, given any ε > 0, there exists a positive number v = v(m,D, ε) > 0
such that if (M,g) ∈M(m,D) satisfies vol(g) < v, then Mm admits a pure
N-structure η̃ : FM → B of positive rank so that

(a) There is a smooth metric gε on M which is invariant for the N-
structure η̃ and for which all fibers of η̃ have diameter less than ε,
satisfying

e−εg < gε < eεg , |∇g −∇gε | < ε , |∇lgεRgε | < C(m, l, ε) ,

where C(m, 0, ε) = 1 ;
(b) There exist constants ρ = ρ(m, ε) > 0 and k = k(m, ε) ⊂ N such that

(M,gε) is (ρ, k)-round.
Parts (a) and (c) of Theorem 1.1 follow from [CFGr, Theorems 1.3 and

1.7]. The fact that the N-structure η̃ in Theorem 1.1 is indeed a pure
structure follows from the presence of a diameter bound (compare [F]).

Theorem 1.2 ([R1]). Let the assumptions be as in Theorem 1.1. Then
the nearby metric gε can in addition be chosen to satisfy

minKg − ε ≤ Kgε ≤ maxKg + ε .
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TheO(m) invariance of a pure N-structure η̃ : FM → B implies that the
O(m) action on FM descends to anO(m) action onB and that the fibration
on FM descends to a possibly singular fibration on M , η : Mm → B/O(m),
such that the following diagram commutes.

F (Mm)
η̃−−−→ ByπO(m)

yπ̃O(m)

Mm η−−−→ B/O(m)

If π1(Mm) is finite, then the homotopy exact sequence shows that the
fiber of a pure N-structure on M is a torus (see [R1]). If, in particular, Mm

is simply connected, then since in this case the structure group of the torus
fibration is trivial, a pure N-structure on a simply connected M is defined,
up to an automorphism of a torus, by a global torus action.

Theorems 1.1, 1.2 and the above remark imply the following result,
which we are going to use throughout this paper. (The first part of Theorem
1.3(c) below is a consequence of Perelman’s Stability theorem (see [Pe1]).

Theorem 1.3. Assume that (Mn, gn) is a sequence of simply connected
compact Riemannian m-manifolds with sectional curvature bounds λ ≤
K(gn) ≤ Λ and diameters diam(Mn) ≤ D which collapses to an Alexandrov
space X of dimension m−k. Then, given any ε > 0, for n sufficiently large
(n ≥ n(ε)) the following holds:

(a) There exists on the frame bundle FMn of Mn an O(m) invariant T k

fibration structure T k → FMn → Bn for which the induced fibration
on Mn is given by a smooth global effective T k action with empty
fixed-point set all of whose orbits have diameter less than ε;

(b) There exists on Mn a T k invariant metric gεn which satisfies

e−εgn < gεn < eεgn , λ− ε ≤ K(gεn) ≤ Λ + ε ;

(c) The orbit space Mn/T
k is homeomorphic to X and, when equipped

with the metric induced by gεn, the Gromov-Hausdorff distance be-
tween X and Mn/T

k is less than ε;
(d) There exist constants ρ = ρ(m, ε) > 0 and k = k(m, ε) ⊂ N such that

all (M,gεn) are (ρ, k)-round, and the Lie group N in the definition of
(ρ, k)-roundness (see above) is simply Rk = T̃ k.

Remark 1.4. In fact, from [CFGr, §5] one can derive that k and ρ depend
only on Vol(X) and Diam(X). This observation could even simplify our
proofs, but we are not going to use it.



708 A. PETRUNIN, X. RONG AND W. TUSCHMANN GAFA

We will refer to the torus actions arising from Theorem 1.3(a) as the
collapsing torus actions associated to the (sufficiently collapsed) metrics gn.

B Hausdorff convergence and Alexandrov spaces. We will use
the following definition of pointed Hausdorff convergence.

Definition 1.5. Let Zn and Z be locally compact complete metric spaces
with marked points (say, pn ∈ Zn and p ∈ Z). We say that Zn converges
to Z in the Gromov-Hausdorff sense, if there is a metric d on the disjoint
union of {Zn} and Z such that:

(a) Each (Zn, d|Zn) is isometric to Zn, and (Z, d|Z) is isometric to Z;
(b) For any R > 0, the balls Bn = B(pn, R) ⊂ Zn converge to B =

B(p,R) ⊂ Z in the standard Hausdorff sense, i.e., for any ε > 0
we have (with respect to the d-metric) that B ⊂ Bε(Bn) and Bn ⊂
Bε(B), when n is sufficiently large.

Note that this definition can be easily adapted to the case where Zn
and Z are disjoint unions of a finite number of pointed metric spaces.

Recall that a length space is a metric space X where the distance be-
tween any two points is given by the infimum of the lengths of (continuous)
curves that connect these points. A minimal geodesic xy between two
points x, y ∈ X is a constant speed curve from x to y whose length equals
the distance |xy| of these points. A triangle xyz in a length space X is
given by three points x, y, z ∈ X and three minimal geodesics xy, xz, yz.
If, for a real number κ, Sκ denotes the surface of constant curvature κ,
a model triangle for a triangle xyz in X is a triangle x̃ỹz̃ in Sκ with the
same side lengths. Comparison triangles exist and are unique if κ ≤ 0 or
|xy|+ |xz|+ |yz| < 2π/

√
κ.

A length space X is called an Alexandrov space with curvature ≥ κ
if each point x ∈ X has a neighborhood Ux, such that for any points
a, b, c, d ∈ Ux, the angles of the corresponding comparison triangles in Sκ
satisfy the inequality ∠̃bac+ ∠̃cad+ ∠̃dab ≤ 2π.

Theorem 1.6 ([BuGrPe],[Pl]). Let X be a complete Alexandrov space
with curvature ≥ κ > 0. Then X is compact with diameter ≤ π/√κ.

To close this section, let us mention that all Alexandrov spaces that ap-
pear in this paper will be assumed to be locally compact, finite dimensional
and complete.
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2 Curvature Preserving Gluing and Stable Collapsing

In this section, we will prove the following result modulo Proposition 0.8.

Theorem 2.0 (Gluing theorem). Let Mn be a stable sequence of simply
connected Riemannian manifolds with uniformly bounded sectional curva-
tures λ ≤ Kgn ≤ Λ such that the sequence of metric spaces Mn Hausdorff
converges to a compact metric space X of lower dimension. Then there
exists a noncompact complete Alexandrov space Y = Y (X, (gn)) with the
same lower curvature bound λ.

Since the proof of the Gluing theorem is rather long and technical, for
convenience of the reader we break it into several steps:

After introducing some relevant terminology in (2.1), we will first give
a proof of the Gluing theorem in the simplest case, when the associated T k

action is given by a circle action. This is done in 2.2. Then, after having
explained the difficulties that arise in the case of a general T k action (see
2.3), we will proceed to the proof of the general case.

The proof of the Gluing theorem, modulo some lemmas, is contained in
sections 2.1-2.7. After an explaining remark given in section 2.8, in sections
2.9-2.12 we prove these lemmas.

2.1 Notation and conventions.

2.1.0. Let (Mn, gn) satisfy the assumptions of the Gluing theorem.
First note that it is enough to construct Y = Y (ε) only for a sequence

(Mn, g
ε
n) as in Proposition 0.8. The space needed Y can then be obtained

as a pointed Hausdorff limit of the spaces Y (ε).
Thus from now on, let gn := gεn, λ := λ− ε, Λ := Λ + ε and X := X ′.
Let us reparameterize Mn = (Mn, gn) by h−1

n : M → Mn (see Proposi-
tion 0.8). Then we can think about all mappings h◦πTk ◦hn : (Mn, gn)→ X
as one fixed mapping h ◦ πTk : (M,gn)→ X.

(Here we keep the same notation for the Riemannian metric on M and
for the pullback metric obtained from the homeomorphism hn , but note
again that the pullback metrics are not necessarily Riemannian in the stan-
dard sense.)

From now on, let πTk := h ◦ πTk .

2.1.1. One can find a finite subgroup F < T k such that all isotropy
groups of the T k := T k/F action on M̄ = M/F are connected. Let ρ :
M̄ → X be the map induced by πTk . We will use the same notation for the
metric on M and the induced metric on M̄ . One easily sees that (M̄, gn) is
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an orbifold with the same curvature bounds as (M,gn), i.e., on each orbifold
chart the pulled back metric has curvature pinched between λ and Λ. As
a factor of a space with lower curvature bound (M̄, gn) has curvature ≥ λ
in Alexandrov sense.

For a point p ∈ M̄ , let Ip < T k denote the isotropy group of the T k

action in p. Then Ip depends only on ρ(p). Therefore, for Ip, we can (and
will) also use the notation Iρ(p).

Let Rk be universal covering group of T k. Let Ĩp < Rk = T̃ k be the
connected component of the identity of the preimage of Ip < T k, and let
Ξp := Zk ∩ Ĩp = π1(Ip).

2.1.2. Choose a finite covering of X by contractible sufficiently small
(exactly how small will be made clear in 2.11.2) closed sets with marked
points (Bi, oi), i = 1, . . . ,N , such that the following conditions are satisfied:

(a) The points oi lie in interior of Bi, and on Bi, the isotropy group
Ii = Ioi is maximal.

(b) All nonempty intersections Bij := Bi ∩ Bj 6= ∅ and Bijk := Bi ∩
Bj ∩ Bk 6= ∅ are contractible, and inside each of these intersections
there also exist points oij , oijk with maximal isotropy group Iij = Ioij ,
Iijk = Ioijk .

(c) There is a set Br, r ∈ {1, . . . ,N}, which contains only regular points
(i.e., only points over which T k acts freely).

(The existence of such a covering can be derived from [Pe1] or [Pe2],
see also 2.11.2.)

For any index α = i, ij, ijk, with i, j, k = 1, . . . ,N , set Cα := ρ−1(Bα)
and let C̃α denote its universal covering space.

We now would first like to find metrics on C̃α which resemble the cov-
ering metrics induced by the metrics gn, but which have nicer properties
on the boundary. In order to do this, let us fix for each Bα an open set
B′α ⊃ Bα, so that B′α is sufficiently close to Bα, so that B′α is also con-
tractible and so that B′α also has the same maximal isotropy group Iα.

Then C̃α can be viewed as a subset of ˜ρ−1(B′α).
Now consider C̃α with the metric induced from the covering metric of

gn on ˜ρ−1(B′α). Let us call the corresponding space C̃nα .
Thus in a neighborhood of any point, the metrics of the spaces C̃nα coin-

cide with the Riemannian covering metrics induced by the metrics gn, which
makes it possible to treat them like Riemannian metrics (see section 2.9).
This construction helps to avoid possible difficulties on the boundary of C̃nα .
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2.1.3. ThenRk, the universal covering group of T k, and Zk = π1(T k) <
Rk act on each C̃α, and, for all n, by isometry on each C̃nα . Moreover, for
each α we have that C̃α/Rk = Bα (and this is exactly the reason why we
needed to factorize along the finite group F !).

If we want to emphasize that a transformation ξ ∈ Zk or Rk also defines
an isometry of C̃nα, we will use the notation ξn, Zk(n) and Rk(n).

Note that condition (b) above guarantees that for each index α, the
group π1(Cα) is isomorphic to π1(Ooα) = π1(T k)/Ξoα .

The inclusions Cij ⊂ Cj and Cijk ⊂ Cjk of metric spaces define gluing
maps

φij : Cij → Cj and φijk : Cijk → Cjk
which are local isometries for each gn.

We lift those to the universal metric coverings to obtain mappings

φ̃ij : C̃ij → C̃j and φ̃ijk : C̃ijk → C̃jk .

(Note that these liftings are of course not unique.)
These mappings are (local!) isometries for all C̃nα , and they are easily

seen to commute with the Rk action on each of the C̃nα . (Recall once more
that if we want to emphasize that φ̃α is also a local isometry of C̃nα , we will
use the notation φ̃nα.)

On C̃ijk, for a suitable element ξijk ∈ Zk ∼= π1(T k), the local isometries
φ̃ then satisfy a relation of the form

φ̃ji ◦ φ̃kji = φ̃ki ◦ φ̃jki ◦ ξijk .
For each ijk such that Ci ∩ Cj ∩ Ck 6= ∅, let us choose one such

element ξijk. We obtain a finite collection {ξijk} ⊂ Zk.
The following lemma will be proved in section 2.11.2. and 2.12.2.

Lemma 2.1.4. After passing to a subsequence if necessary, for any index α
and for any sequence of reference points pnα ∈ C̃α the sequence of pointed
metric spaces (C̃nα, pnα) converges in the pointed Hausdorff distance to a
pointed metric space (C̃∞α , p∞α ). These limit spaces do not depend on the
choice of reference points pnα ∈ C̃nα and have the same dimension as M .

If in addition one of the following conditions holds:

(i) k = 1, i.e., the T k action on M̄ is in fact a free S1 action; or
(ii) T k is generated by its isotropy subgroups on M̄ ,

then the reference points pnα can moreover be chosen in such a way that the
local isometries

φ̃nij : (C̃nij, p
n
ij)→ (C̃nj , p

n
j ) and φ̃nijk : (C̃nijk, p

n
ijk)→ (C̃njk, p

n
jk) ,
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will converge to mappings

φ̃∞ij : (C̃∞ij , p
∞
ij )→ (C̃∞j , p

∞
j ) and φ̃∞ijk : (C̃∞ijk, p

∞
ijk)→ (C̃∞jk , p

∞
jk) ;

where convergence is understood in the sense of the following definition:

Definition 2.1.5. Let (Yn, pn) and (Zn, qn) be sequences of pointed metric
spaces which for n → ∞ Hausdorff converge to the pointed spaces (Y, p)
and (Z, q), respectively. Let fn : Yn → Zn be mappings from Yn to Zn.
Then the sequence of mappings (fn)n∈N is said to converge to a limit map
f : Y → Z from Y to Z, if for any point y ∈ Y and any sequence of points
(yn) with yn ∈ Yn that converges to y, the sequence (fn(yn)) converges to
f(y) ∈ Z.

Remark. The second part of Lemma 2.1.4 in case (ii) depends on Lemma
2.6.1 below, but there is no circle in the argument since we do not use this
part of the lemma until section 2.6.

Remark. Note that when considering maps between pointed spaces we
do NOT necessarily assume that these maps will preserve the base points.

Remark for easy-readers. For a first reading of the whole proof we
suggest to make an extra assumption, namely, that there is an intrinsic
background metric d0 on M such that for all n it holds that distgn ≤ d0.
With this extra assumption the second part of the lemma follows from
Arzela-Ascoli type of arguments. In fact (under this assumption), all points
pnα can be chosen to be fixed points of C̃α.

2.2 We now first give the proof of the theorem in the simplest case,
namely, in the case where the subsequence of associated collapsible T k ac-
tions is given by a circle action, so that, in particular, X is an orbifold. As
a concrete example, the reader may think of a sequence (S3, gn) of Berger
spheres that collapses to S2. In this case, the space Y is nothing but a
metric product Y = S2 ×R (see also section C′ in the introduction).

The proof of the Gluing theorem in the case of a circle action. Consider a
compact simply connected manifold M . Let M satisfy the assumptions of
the Gluing theorem. Assume that the collapsing torus action is given by
some S1 action on M for which all metrics gn are invariant (see 2.1.0).

Choose a covering of the limit space X satisfying conditions (a), (b) and
(c) (cf. section 2.1.2 above). As finite group F < S1 we may now take the
group which is generated by all isotropy groups. Then F is finite, since the
S1 action has empty fixed-point set, see 1.3(a). Let the isometric inclusions
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φnij : Cnij → Cnj and φnijk : Cnijk → Cnjk and local isometries φ̃nij : C̃nij → C̃nj

and φ̃nijk : C̃nijk → C̃njk be defined as above.
Since the action of S1 := S1/F on M̄ = M/F is free, we may suppose

that for each i, Ci and C̃i are homeomorphic to Bi × S1 and Bi × R,
respectively.

On C̃ijk ∼= Bijk ×R, for a suitable element ξijk ∈ Z ∼= π1(S1), the local
isometries φ̃ then satisfy a relation of the form

φ̃ji ◦ φ̃kji = φ̃ki ◦ φ̃jki ◦ ξijk . (∗)
When just viewed as deck transformations of C̃ijk, the mappings ξijk of

course do not depend on n at all. However, the essential point here is that
the nontrivial elements in the finite collection {ξnijk} of isometries of C̃nijk
also constitute the obstruction to glue all C̃ni together by local isometries.
Remark 2.2.0. Obviously, in this special case the union of the ξijk
simply describes a combinatorial version of the Euler class of the circle
bundle M̄ → M̄/S1.

Thus, if all ξijk were trivial, using the local isometries φ̃ we could glue
from the tubes C̃ni ∼= Bi×R a noncompact (and, obviously, complete) space
Y which satisfied, in particular, the same lower curvature bound as gn.

For fixed n this will not be the case. However, let us now look at what
happens for n→∞, i.e., when M (together with M̄) collapses to X.

First of all, by passing to a subsequence if necessary, we see (cf. Lemma
2.1.4 above) that for each index α = i, ij, ijk, with i, j, k = 1, . . . ,N , the
spaces C̃nα converge in the (pointed) Gromov-Hausdorff topology to a limit
space C̃∞α which, in our case, is homeomorphic to Bα × R, and all local
isometries φ̃nij , φ̃

n
ijk converge to local isometries φ̃∞ij : C̃∞ij → C̃∞j and φ̃∞ijk :

C̃∞ijk → C̃∞jk .
Now consider the sequence of isometries ξnijk : C̃nijk → C̃nijk. As n→∞,

all circle orbits uniformly collapse to points. Therefore for each ξijk and any
x ∈ C̃nijk we have that the distances |xξnijk(x)|

C̃nijk
→ 0 as n→∞. Therefore

each ξijk converges to the identity mapping on C̃∞ijk. Thus on the limit
spaces C̃∞ijk, the gluing obstruction relations (∗) reduce to a compatibility
condition.

Therefore, we can use the collection of limit local isometries {φ̃∞ij },
{φ̃∞ijk} to glue from the limit tubes C̃∞i ∼= Bi×R a space Y with curvature
K ≥ λ. Since Y is obviously noncompact, Theorem 2.0.1 is thus proved for
the case of a circle action. �
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2.3 The difficulties that arise in the general situation and how
to handle them. First of all, in the general situation we cannot assume
that the given T k action on M is free, even after factorizing the action by
some finite group. As a consequence, we will have to consider additional
obstructions that prevent us from gluing the tubes C̃ni by local isometries
together (see the (S3, T 2) example below).

Secondly, as opposed to the case of a collapse by an S1 action, in the
general situation some elements ξn ∈ Zk(n) will have non-trivial limits.

To handle this problem, we will, before we glue, “mod out” the nontriv-
ial limit group A (the small limit group of Rk(n), see Definition 2.6.3.1-2).
The resulting factor spaces Yα = C̃∞α /A continue to be noncompact. Since
on the Yα gluing by local isometries is possible, we will obtain from them
the desired space Y .

2.3.1. For the considerations to follow, the reader might find it conve-
nient to have another concrete example in mind. The following (well-known
one) gives a good picture of the general situation and will be referred to as
the (S3, T 2) example:

Example. Let M = S3 = {(z1, z2) ∈ C2, |z1|2 + |z2|2 = 1}. Then
the standard T 2 action on C2 by rotations induces on M a smooth T 2

action with empty fixed-point set which leaves the canonical metric on
S3 invariant. Now shrinking this metric tangentially to the orbits of a
dense one parameter subgroup R < T 2 will produce on S3 a sequence
(gn)n∈N of T 2 invariant Riemannian metrics gn with uniformly bounded
curvatures 0 < Kgn ≤ C such that for n → ∞ the sequence of metric
spaces (M,gn) converges to the unit interval X = M/T 2 = [0, 1]. (That all
(M,gn) have indeed positive curvature follows by the O’Neill formulas for
example from the fact that each (M,gn) can be expressed as a quotient of
(R, gcan)× (S3, gcan) by an isometric R action.)

Let (B1, o1) = ([0, 2/3], 0) and (B2, o2) = ([1/3, 1], 1), so that the in-
duced covering of X satisfies conditions (a) and (b). (To formally satisfy
also condition (c), one could set (Br, or) := (B3, o3) := ([1/3, 2/3], 1/2).)
Then C1 and C2 are homeomorphic to solid tori, i.e., to a topological prod-
uct D2×S1, while C12 is homeomorphic to the product [1/3, 2/3]×T 2. In
particular, the universal covering C̃12 of C12 is not contained in either C̃1
or C̃2.

The gluing maps φ̃12 : C̃12 → C̃2 and φ̃21 : C̃12 → C̃1 will then identify in
C̃12 the orbits of two Z-subgroups of Z2 = π1(T 2), this being the difference
to the case of a free action. These subgroups then yield the new obstacle
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for gluing the tubes C̃1 and C̃2 together.

We now continue with the proof of the general case:

2.4 The construction of the obstruction set O. We will first con-
struct the general obstruction set O. It will consist of a finite number of
elements of the group Zk = π1(T k) and of a finite number of subgroups
of Zk:

Let us first fix pullback mappings φ̃ij : C̃ij → C̃j and φ̃ijk : C̃ijk → C̃jk.
Recall that Ξj := Ĩoj ∩Zk = π1(Ioj ). Thus φ̃ij(p) = φ̃ij(q) if and only if

p = γq for some γ ∈ Ξj .
The collection of all groups Ξα will represent the first part of the ob-

struction set O.
Analogously to the S1-case we can find for all i, j, k an element ξijk ∈

π1(T k) = Zk so that

φ̃ji ◦ φ̃kji = φ̃ki ◦ φ̃jki ◦ ξijk . (∗∗)
Equation (∗∗) can be viewed as a direct analogue of the obstruction re-
lations (∗) (see 2.2) that we obtained above in the case of a free circle
action.

The finite set O := {Ξα} ∪ {ξijk} ⊂ Zk, which does not depend on n,
now comprises all gluing obstructions.

Namely, note that if O contains only trivial elements, then it is possible
to glue all tubes C̃i together. In particular, in this case all mappings φ̃ij
and φ̃ijk are homeomorphisms onto their (respective) image.

Now we distinguish two cases:

2.5 Case 1. The isotropy groups of the Tk action on M̄ do
NOT generate Tk. Then there exists a k − 1-dimensional subtorus
T k−1 ⊂ T k that contains all isotropy groups. Consider the quotient space
M ′ := M̄/T k−1. The sequence of T k invariant Riemannian metrics gn on
M̄ induces on M ′ a sequence of metrics d′n that, for each n, turn M ′ into an
Alexandrov space with uniform lower curvature bound K ≥ λ. Moreover,
the sequence (M ′, d′n) then collapses by a free circle action to the Alexan-
drov space X = M/T k. One can now apply the very same reasoning as in
the proof of the Gluing theorem for circle actions to see that the limits of
the corresponding deck transformation isometries are all trivial, and that
we can glue a noncompact Alexandrov space Y with the same lower cur-
vature bound λ. Since this observation already proves the whole theorem,
our real concern is thus the next case.

(The only place which might deserve additional explanation here is the
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existence of the limit tubes C̃ ′
∞
α , since in this case (M ′, d′n) is formally just

an Alexandrov space with a free S1 action. But note that the new tubes
can be obtained as factors of the old ones along an isometric Rk−1 = T̃ k−1

action, i.e., C̃ ′
n

α = C̃nα/Rk−1. Therefore their convergence follows from
Lemma 2.1.4 just as well.)

2.6 Case 2. Tk is generated by the isotropy groups of the Tk

action on M̄ . To continue the proof of Theorem 2.0.1 in this case, let
us introduce some notation and formulate a lemma.

Let p ∈ X be a regular point, i.e., a point for which the T k action is
free on the corresponding orbit Op ⊂ M̄ . Let Õnp be the universal metric
covering of Op ⊂ M̄ with respect to the metric gn.

As Rk acts by isometries, it follows that the intrinsic metric of Õnp is
flat. Now consider the homeomorphism f : Rk → Õnp such that f(γ) = γq,
for some q ∈ Õnp . It gives us by pullback a Euclidean norm zn(p) on Rk.

Now consider the regular tube C̃nr with central orbit Õnor ⊂ C̃nr that
corresponds to (Br, or) and the orbit Oor over or (see condition (c) in 2.1),
and set zn := zn(or).

The following lemma will be proved in section 2.9.

Lemma 2.6.0. There is a constant C such that for any sufficiently large n
the following holds: For any α and any (not necessarily regular!) q ∈ C̃α
and γ ∈ Rk one has that |γq q|C̃nα ≤ C||γ||zn .

Lemma 2.6.1. Assume that T k is generated by the isotropy groups of the
T k action on M . Then, given a background norm || · || on Rk > Zk, there
is C > 0 such that for all n and any γ ∈ Rk we have that ||γ||zn ≤ C||γ||.
Moreover, if in addition γ ∈ Ĩα, we have that ||γ||zn ≥ (1/C)||γ||.

The proof of this lemma will be given in section 2.10.

2.6.2 As a direct corollary of the last lemma, we obtain that there
exists a subsequence of (gn)n∈N such that for any index α and any fixed
element γ ∈ Zk, γn ∈ Zk(n) converges to an isometry γ∞ of each C̃∞α .

This follows from the following observation: For each fixed element
γ ∈ Zk, the sequence (γn)n∈N of isometries γn : C̃nα → C̃nα is 1-Lipschitz,
thus in particular equicontinuous. From Lemmas 2.6.1 and 2.6.0 we have
|x γn(x)|Cnα ≤ C||γ||. Thus by an Arzela-Ascoli argument a subsequence of
(γn) converges to a mapping γ∞ on each C̃∞α . As a limit of isometries, γ∞

is easily seen to be an isometry, too.
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Note that from now on we may also use the second part of Lemma 2.1.4
in case (ii).

2.6.3. Now we give a definition of big (B-lim) and small (S-lim) limits
for group actions. First, if a group Γ acts on a metric space Z and γ ∈
Γ, then by γ : Z → Z we will denote the mapping z → γz. In the
following definition, convergence of mappings will be understood in the
sense of Definition 2.1.5.

Definition 2.6.3.1. Let {Zi} be a sequence of metric spaces which con-
verge in the Gromov-Hausdorff sense to a metric space Z. Assume that a
group Γi acts on Zi by isometries.

Then we say that the groups Γi weakly converge if for any converging
sequence of elements γik ∈ Γik there is a sequence γi ∈ Γi which converges
to the same isometry on Z.

In this case the group of all such limits, acting on Z, will be called the
big limit of Γi (B-lim(Γi)) of the groups Γi, i.e., B-lim(Γi) × Z → Z and
β ∈ B-lim(Γ) iff there exists a sequence γi ∈ Γi which converges to β.

Remark 2.6.3.1.1. Our definition of weak convergence might at first
sight seem a little strange, but the following example should help to avoid
confusion:

Let Zi = Z = R2 and Γi = R. Let Γi act on Zi by horizontal translations
if i is odd, and vertical translations if i is even. Then this sequence of actions
does not converge weakly.

Definition 2.6.3.2. Let {Zi} be a sequence of metric spaces which con-
verges in the Gromov-Hausdorff sense to a metric space Z. Assume that a
group Γ acts on each Zi by isometries.

We say that the group Γ strongly converges if for any fixed element
γ ∈ Γ, the sequence of mappings γ : Zi → Zi converges.

In this case the group of all such limits will be called the small limit of
Γ (S-lim(Γ)), i.e., σ ∈ S-lim Γ if there is an element γ ∈ Γ such that the
mapping σ : Y → Y is a limit of a sequence of mappings γ : Yi → Yi.

Remark 2.6.3.3. To see the difference between the big limit and the
small limit defined above consider the following example: Let Z act on R in
the standard way by translations. Define a sequence of metrics gn on R by
rescaling the canonical metric g1 on R with the factor 1/n. Then S-lim(Z)
is trivial, whereas B-lim(Z) is isomorphic to R. Also note that our notion
of big limit is related to the notion of limit group used in [FY].
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Now note that we can (by passing to a subsequence if necessary) make
the Rk(n) actions on Zn = C̃nα weakly converging for each α. Moreover,
using Lemma 2.6.1, we may assume that they are strongly converging.

Recall that we assumed in (2.1.2, condition (c)) that one of the Cα
(namely, Cr) contains only regular orbits.

Now take for Zn in the definition above Zn := C̃nr (only for one mo-
ment!). Then the big limit B-lim of the free Rk action on C̃nr is a free Rk
action on C̃∞r .

Now take as Zn the disjoint union of all C̃nα . Then the isometric effective
Rk action on Zn gives us as B-limit an isometric and effective Rk action on
the disjoint union of all C̃∞α . (Note however that Zn is not connected, so
that this action is effective does not imply that it is locally effective!)

Denote this group by Rklim.
Note that since the isometric effective Rk action on C̃nα commutes with

the locally isometric gluing maps φ̃nij, the limit action of Rklim on the disjoint
union of all C̃∞α also commutes with the limit gluing mappings φ̃∞ij .

Now consider A := S-lim(Rk). Then A is a connected subgroup of Rklim
(because it is a subspace generated by limits of a basis of Rk), and therefore
A is a linear subspace of Rklim. We have that A also acts by isometries on
the disjoint union of all C̃∞α . Moreover, since each element ξijk ⊂ O is
contained in Zk < Rk, we have that A contains all limits from (the second
part of) the gluing obstruction set {ξ∞ijk} ⊂ O∞.

The second part of Lemma 2.6.1 now guarantees that for each α the
small limit of Ĩα is nondegenerate. In particular, it holds that Ĩ∞α

def=
B-lim(Ĩα) = S-lim(Ĩα) ⊂ A. This implies that for each α we have that
Ξ∞α

def= B-lim(Ξα) = S-lim(Ξα) ⊂ Ĩ∞α ⊂ A.
Note that since S-lim(Ξα) is not degenerate, we have that φ∞α is still a

local isometry.
Therefore O∞ = {Ξ∞α }∪{ξ∞ijk} is a collection of elements and subgroups

of A.

Remark 2.6.3.4 (Example 2.3.1 continued). In the (S3, T 2) case, one
can check that the limit group A is isomorphic to R, acting by rotation on
C̃∞1 and C̃∞2 and by translation on C̃∞12 .

2.7 The end of the proof of the gluing theorem. Let us now come
to the last step in our construction, i.e., using the limit tubes C̃∞α to glue
a noncompact Alexandrov space Y . Recall that for each index α, the limit
tube C̃∞α has lower curvature bound K ≥ λ at each interior point. Since
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A acts on each of the C̃∞α by isometries, the spaces Yα := C̃∞α /A satisfy in
their interior the same lower curvature bounds (see [BuGrPe]).

Consider the collection of all C̃∞α with the limit gluing mappings φ̃∞ij , φ̃
∞
ijk.

The obstruction set for this collection is exactly O∞.
Now, since all elements and all subgroups of O∞ are contained in A, the

spaces Yi have (with respect to the gluing mappings induced by φ̃∞ij , φ̃
∞
ijk) a

trivial obstruction set. (Thus (see 2.4.) all corresponding gluing mappings
are locally isometric embeddings and for them the incompatibility condition
((∗∗) in 2.4) reduces to a compatibility relation.)

Therefore the spaces Yi can be glued together by (local) isometries,
and consequently we obtain a complete Alexandrov space Y with lower
curvature bound K ≥ λ.

To complete the proof of Theorem 2.0.1, it thus remains only to show
that the space Y is indeed always noncompact. In the case of a free action,
we have already seen that this is true, because in this situation the limit
group A is trivial.

To prove our last assertion in full generality, first recall that since we
have a collapse, as n goes to ∞, the diameter of each T k orbit on (M,gn)
uniformly converges to 0.

By Lemma 2.6.1, we have that for a subsequence of {gn}, there exists
zlim(x) = limni→∞ zni(x). This gives us a norm on Rklim.

Now let us choose a basis {ei} of Zk < Rk. Then the limits of these basis
elements, {e∞i }, will be linearly dependent in Rklim, because the determinant
of the basis {ei} in (Rk, zn) can be interpreted as the volume of the orbit
Onor (see 2.6), and the volume of orbits goes to zero when their diameter
does. Since A is the linear hull of {e∞i }, we have that A ⊂ Rklim has positive
codimension.

As we showed in 2.6.3 above, one has that Ĩ∞α ⊂ A for any α, i.e.,
all isotropy groups of the Rklim action are contained in A. Therefore the
factor group Rk′ = Rklim/A acts freely on Y . Since all orbits of this action
are closed, our glued space Y is indeed noncompact and Theorem 2.0.1 is
(modulo Proposition 0.8) proven. �

Remark 2.7.1 (Example 2.3.1 continued). In the (S3, T 2) example, the
glued space Y equals Y = R × [0, 1] equipped with the standard product
metric, and Y is glued from Y1 = R× [0, 2/3] and Y2 = R× [1/3, 1].

2.8. Let us also make some remarks on what happens if one would try to
apply the above arguments to more general cases.
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Note that for our gluing construction to work, it is essential that the
topology is fixed and that only the metrics gn are allowed to vary.

For example, let S1 → S3 → S2 be the Hopf fibration, and let Mn =
(S3/Zn), where Zn ⊂ S1, be a sequence of lens spaces collapsing to S2.
Then one still could choose a special sequence of gluing maps, such that
all ξnijk = 0 except, say, ξn123. In this case ξn123 = nsn, where sn is a
shift of C̃n123 corresponding to S1 in S1 → Mn → S2. The elements ξn123
will converge in R1

lim to some nontrivial element ξ∞123 6= 0. Therefore, to
make our gluing construction work we have to factorize each C∞α by the
subgroup Zξ∞123 < Rlim. As a result of the gluing construction one obtains
just a compact space, namely, Y = S3 = M̃n.

A little more interesting example is a sequence of simply connected
Aloff-Wallach spaces Mn := Mn,n+1, which collapses with uniform positive
pinching to SU(3)/T 2, and where the collapsible T k actions are given by
free circle actions. Then here one will find that, opposed to the case of a
fixed circle action, the limit group is nontrivial. Moreover, in this case one
could also find a special sequence of gluing maps such that all gluing maps
will converge, and again the limits of the gluing obstacles will generate
a discrete subgroup Zξ∞ < Rlim. From the gluing construction one thus
obtains just a compact space, namely, an Aloff-Wallach space, Y = M1,1.

We now start to return our debts by giving proofs for Lemmas 2.1.4,
2.6.0, and 2.6.1.

2.9 The proof of Lemma 2.6.0. Let us show that there is a constant
C such that for any sufficiently large n we have that for any α and any (not
necessarily regular!) q ∈ C̃α and γ ∈ Rk it holds that |γq q|

C̃nα
≤ C||γ||zn .

Note that the point or is a definite distance away from the singularities
in (X, dn) = (M,gn)/T k (see 2.1.2(c)).

Therefore for any point s in a closed neighborhood U of or we have
that Os has uniformly bounded second fundamental form w.r.t. each gn.
Therefore it is easy to see that for any such s, zn(s) is equivalent to zn(or).

Now connect ρ(q) and or by a minimal geodesic c in (X, dn), and con-
sider on this geodesic a point s ∈ U which is far enough from or. Take
a horizontal geodesic c∗ ∈ (M,gn) which projects to c and ends at q (by
‘horizontal’ we here understand ‘having the same length as c’). Let s∗ and
o∗r be points on c∗ which correspond to s and or.

Note that any vector field on (M,gn) which corresponds to an element
of the Lie algebra of T k is a Killing field, and any such field restricts to a
Jacobi field on c∗.
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Let v be a vector field on c∗ which corresponds to an element x ∈ Rk,
where Rk is the Lie algebra of T k. Then using curvature bounds it is easy
to show that |vq| ≤ C(|vs∗ |+ |vo∗r |) ≤ C ′|vo∗r |.

Integrating this inequality we get that |γq q|
Õnq
≤ C||γ||zn . As |γq q|

Õnq
≤

|γq q|C̃nα the above assertion follows.

2.10 The proof of Lemma 2.6.1. Choose a basis (of Rk) e1, . . . , ek ∈
Zk < Rk such that each ei is tangent to an isotropy group of the T k action.
Then we can represent γ ∈ Rk as γ = Σiaiei, where ai ∈ R, and (see §2.6)
the zn-norm of γ, ‖γ‖zn , can be estimated by ‖γ‖zn ≤ Σi|ai| · ‖ei‖zn .

Let us consider a fixed point of an isotropy group which is tangent to ei.
For the tangent space at this point, we have a linear representation of ei
in so(m). For each gn, the circle group exp(tei), t ∈ R, acts on the unit
tangent vectors at this point by isometries.

Now we have that ‖ei‖zn ≤ C(diam(gn),max |K(gn)|) · ‖ei‖Sm−1 , where
Sm−1 is the set of gn-unit tangent vectors at this fix-point and ‖ei‖Sm−1 is
the maximal norm of the corresponding vector field on Sm−1.

All we need is a uniform bound for the numbers ‖ei‖Sm−1 , which does
not depend on the metrics gn.

We can represent exp(tei) as an m × m matrix which contains on its
diagonal 1’s and rotation matrices of the following form:(

cos 2πnist sin 2πnist
− sin 2πnist cos 2πnist

)
It is easy to see that the collection of natural numbers {nis} only de-

pends on the topology of this S1-action, but NOT on the metric gn.
Therefore the same is true for the norms ci := ‖ei‖Sm−1 = 2πmaxnis.

Consequently, one has that ‖γ‖zn ≤ C(diam(gn),max |K(gn)|) · Σi|ai|ci,
which proves the first part of the lemma.

The same reasoning shows that if γ ∈ Ĩα then ||γ||zn ≥ (1/C)||γ||, which
finishes the proof. �

2.11. We continue returning debts, this time for the first part of Lemma
2.1.4. First of all however we need to prove another lemma:

Lemma 2.11.1. Let M(R,λ0, k) be a set of m-dimensional compact T k

spaces (W,T k) with boundary and an isometric T k action such that in the
interior of each W ∈ M, the sectional curvature K of W is bounded from
below by K ≥ λ0 (in Alexandrov sense), such that the diameter of each T k

orbit is ≤ R/2 and such that for each W there exists a central T k orbit
with the following property: The distance of any interior point x ∈ W to
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the central orbit is less than R, and the distance of any boundary point
x ∈ ∂W to the central T k orbit is identical to R.

Then M(R,λ0, k) is precompact in the Hausdorff distance.

Proof of Lemma 2.11.1. For simplicity, we consider only the case where
λ0 = 0.

Let ε > 0 be given, and consider a maximal collection {ai} in W ∈
M(R, 0, k) such that for all ai, dist(ai, ∂W ) ≥ ε and dist(aiaj) ≥ 2ε for
i 6= j.

Let T k ·c denote the central orbit of W , and let V0(ε) denote the volume
of a ball of radius ε centered on T k · c.

The Bishop-Gromov volume comparison theorem implies that for each
ai, the volume of an ε–ball Bε(ai) around ai then satisfies the estimate

Vol(Bε(ai)) ≥ εm

RmV0(ε) ≥ ε2m

R2m Vol(BR/2(T k · c)
≥ ε2m

2mR2m Vol(W ) .
Therefore the cardinality of any such collection {ai} in W is bounded

from above by a number which depends only on R,λ0, k. Obviously {ai} is
a 3ε-net, therefore the assertion thatM(R,λ0, k) is precompact now follows
in exactly the same way as in the proof of Gromov’s original compactness
theorem (cf. [GrLP]). �

Remark 2.11.1.1. For Lemma 2.11.1 to hold, it is only essential that for
each W ∈M there exists some kind of “center”, i.e., a subspace C ⊂W to
which all boundary points x ∈ ∂W have distance dist(x,C) = R. However,
this assumption is also a crucial one. Just think of an infinite sequence of
“hairy” manifolds with uniformly bounded diameter, so that the Gromov-
Hausdorff distance between each pair is at least 1.

2.11.2 Proof of the first part of Lemma 2.1.4. As our covering
{Bi} is sufficiently fine, we can assume that for sufficiently large n, the
points inside Cnα have distance < R = R(α) from some orbit Ox, where
x = x(α) ∈ X, and where R and x have the following properties:

(i) If Dn
α(R) = B̄(Ox, R) ⊂ (M̄, gn) is the closed R-neighborhood of Ox,

then the set of orbits in Dn
α(R) is contractible and x has maximal

isotropy group in Dn
α(R);

(ii) R ≤ ρ, where ρ is as in Theorem 1.3.
(To see this, it is enough to look at the factor space (X, dn) = (M̄, gn)/T k

and to use the fact that (X, dn) is an Alexandrov space which is sufficiently
close to (X, d∞): First construct a covering of (X, d∞) by contractible balls
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which agrees with the natural stratification, i.e., if a ball intersects a stra-
tum then its center is on the closure of this stratum. Then for sufficiently
large n we have that the corresponding covering with the same radii and
centers is also a covering of (X, dn). Therefore, if the covering {Bα} is fine
enough, we have that each Bα is contained in a ball like this, and also B′α
(from 2.1.2) can be chosen to be in such a ball. The existence of such a
covering follows from [Pe1] (and also [Pe2]).)

Now we will prove the existence of D̃∞α (R) = limn→∞ D̃n
α(R).

Since the diameter of each T k orbit goes to 0, it is easy to find a finite
covering Enα → Dn

α(R) of Dn
α(R) for which all orbits have diameter ≤ R/2,

and such that for some ε > 0 which does not depend on n, the injectivity
radius of points lying on the central orbit will be ≥ ε. (The last assertion
follows directly from Theorem 1.3(d)).

By Lemma 2.11.1, the sequence (Enα) has a limit E∞α . This compact
limit space has the same dimension as Cα, since by the uniform lower
bound for the injectivity radius for points on the central orbit and the
upper curvature bound, also the volumes of the Enα are uniformly bounded
from below (by some v = v(R, |F |, ε,Λ)).

Let Ẽ∞α and Ẽnα be the universal metric coverings of E∞α and Enα (and
Dn
α(R)), respectively.

The convergence of Enα to E∞α induces, for n sufficiently large, isomor-
phisms π1(Enα) → π1(E∞α ). Therefore we have that the universal metric
coverings Ẽnα converge in the pointed Gromov-Hausdorff topology to Ẽ∞α .
In particular, this implies that D̃∞α (R) exists and that it is isometric to Ẽ∞α .

Now, to insure the existence of C̃∞α , we use the fact that a subsequence
of the preimages Fni and Fni

′ of Bα and B′α (see 2.1.2) inside Enα will
converge to a subspaces F∞α and F∞α

′ of E∞α . By lifting, as above, the
respective Hausdorff approximations to the universal covering C̃α, we see
that a subsequence of the sequence (C̃nα) converges to a limit space F̃∞α
with the metric induced from F̃∞α

′
. That this limit is independent of the

choice of reference points and has the same dimension as C̃α then follows
from the corresponding properties of Ẽ∞α established above.

Now step-by-step passing to subsequences of {gn} will give us a subse-
quence which we will again call {gn} such that the C̃α converge for each α. �

2.12. In this section we will prove the second part of Lemma 2.1.4.
Let us first explain why in general we cannot choose fixed reference

points in C̃α, so that the second part of Lemma 2.1.4 would be true.
Example 2.12.1. We consider again the (S3, T 2)-example, but now twist
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its parameterization.
Let the standard projection be ρ : S3 → S3/T 2 = [0, 1]. Consider a

sequence of smooth functions τn : [0, 1]→ R2 = T̃ 2 (the universal covering
group of T 2) which are zero near the endpoints, but for which τn(1/2)
behaves very wildly when n→∞. Now consider the reparametrization hn :
S3 → S3 by x→ τn(ρ(x))x. These maps are diffeomorphisms because each
T 2 fiber just is mapped to itself by translation. Now the diffeomorphisms
hn could be used in Definition 0.2 just as well as the identity map.

Assume that we want to choose p1, p2 and p12 such that ρ(pi) would be
near the end points of [0, 1] and ρ(p12) = 1/2.

Looking at (C̃n1 , p1), (C̃n2 , p2) and (C̃n12, p12), we see that the function
τn could be chosen that “bad” that all |φ̃n12(p12) p2|C̃n2 → ∞ as well as

|φ̃n21(p12) p1|C̃n1 →∞ when n→∞. Therefore there is no chance to have a

limit for the gluing maps φ̃nij .
(In this case one could easily avoid these problems by choosing all pα

to have ρ(pα) = 1/2. But an analogous example, where we would cover X
without a common intersection of all tubes, would show that in general one
cannot get rid of this trouble that easy.)

Now we start to construct these reference points.

2.12.2 Proof of the second part of Lemma 2.1.4. Note that
X is simply connected (since M is, and X is homeomorphic to M/T k).
Remove from X an ε-neighborhood of its boundary (if any) and remove
all singular sets of codimension ≥ 3. This remove can be done in such a
way that the remaining part of X is still simply connected. Indeed, cutting
neighborhoods of singular sets of codimension ≥ 3 corresponds to cutting
from M a neighborhood of a collection of submanifolds of codimension ≥ 3.
Therefore the remaining part is still simply connected and its factor along
a T k action is also simply connected. Finally, removing a neighborhood of
the boundary obviously also preserves the property of being simply con-
nected. (By [PePet, 3.1(2)], this remove can be done even in such a way
that the remaining part of X will be a bi-Lipschitz manifold with bound-
ary, where under a bi-Lipschitz manifold with boundary we understand a
metric space such that each point has a neighborhood which is bi-Lipschitz
homeomorphic to an open domain of Rn+ = {x ∈ Rn;x1 ≥ 0}). Remove,
if necessary, from this part neighborhoods of some other submanifolds so
that the remaining part will have finite second homotopy group, and still
be a bi-Lipschitz manifold with boundary. (That this can be done follows
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from standard techniques in topology.) Let us denote the remaining part
of X by Xε.

Let M̄ε ⊂ M̄ be the ρ-preimage of Xε. The T k action on M̄ε is free.
(This is because the only singular sets which are left in Xε have codimension
2, and since those sets are responsible for the finite isotropy groups in M ,
it follows that all isotropy groups in M̄ = M/F are trivial, see 2.1.1).

Moreover, since π2(Xε) is finite, we have that the bundle T k → M̄ε → Xε

has zero Euler class. Therefore M̄ε is homeomorphic to T k×Xε. Now let us
construct a metric on its universal covering ˜̄Mε. To do this, we can assume
that there is a finite collection {Brk} ⊂ {Bi} such that Xε =

⋃
k Brk .

Moreover, since over Xε the T k-fibration is topologically trivial, we may
assume that all ξrirjrk = 0. Therefore we can glue all C̃nrk together. Call

this metric space ˜̄Mn
ε .

From this reasoning and the first part of Lemma 2.1.4 we thus obtain
the existence of a limit space ˜̄M∞ε = GH-lim ˜̄Mn

ε (which is isometric to a
space glued from the tubes C̃∞rk by ANY collection of gluing mappings for
which the corresponding ξrirjrk are trivial).

Let us choose a point p ∈ ˜̄Mn
ε . For some fixed R� diam(Xε), consider

the metric ball B(p,R) ⊂ ˜̄Mn
ε . Now R can be chosen that big that all

orbits in ˜̄Mn
ε will have nonempty intersection with B(p,R) (for all n).

Moreover, from the existence of ˜̄M∞ε it is easy to see that there exists
D′ >> R such that for any two points in one orbit x, y ∈ Ox ⊂ ˜̄Mn

ε we
have that |xy|Ox ≤ D′ if |xy|˜̄Mn

ε
≤ 2R (for all n). I.e., the intersection of

B(p,R) with any orbit in ˜̄Mn
ε has a uniform bound for the diameter (in the

intrinsic metric of this orbit), which does not depend on n.
Now ε can be chosen that small that each Bα will contain some xα ∈ Xε

and that moreover Bα∩Xε will be connected. For each α we fix a mapping
mα from Oxα ⊂ ˜̄Mε to the corresponding orbit O′xα ⊂ C̃α.

Take any point qnα ∈ Oxα ∩ B(p,R) ⊂ ˜̄Mn
ε and set pnα := mα(qnα) ∈ C̃α.

(The set B(p,R) ⊂ ˜̄Mn
ε depends on the metric and therefore on n, therefore

qnα must depend on n.)
Then we can find (see below) a finite collection of elements {sα} ⊂ Zk

such that |φ̃nij(pnij) sijpnj |C̃nj ≤ C and |φ̃nijk(pnijk) sijkpnjk|C̃njk ≤ C for some

fixed C > D′ and all n, i, j, k.
This collection {sα} will only depend on the choice of covering maps
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mα : Oxα → O′xα and on the gluing maps φ̃ij . Since all these mappings do
not depend on n, we have that the collection {sα} also does not depend
on n.

(Here let us explain how to find the collection of elements {sα} ⊂ Zk.
First we construct the elements sij : Without loss of generality we can
assume that there is k such that xij and xj belong to the set Brk . The
gluing map φ̃rkj : C̃rkj → C̃j induces by restriction covering maps mα :
Oxj → O′xj ⊂ C̃j and Oxij → O′′xij ⊂ C̃j for the orbits over xj as well as
the orbits over xij .

Therefore, for appropriately chosen s′ij and s′′ij in Zk we have that
s′ijφ̃rnj |Oxij = φ̃ij ◦mij and φ̃rnj |Oxj = s′′ijmj .

Then it obviously holds that |φ̃rnj(qnij) φ̃rnj(qnj )| ≤ C for some fixed C

and all n,i,j. Therefore, by taking sij = s′ijs
′′
ij we have that |φ̃nij(pnij)sijpnj |C̃nj

≤ C. In the same way one can construct sijk.)
Now in the case of a circle action (case (i)) we have that since the

diameters of the orbits uniformly converge to zero, for any fixed element
s ⊂ Zk we have that sp converges to p for any p in any C̃nα . In case (ii), by
Lemma 2.6.1 we have that |p sp| is uniformly bounded. Therefore in both
cases it holds that |φ̃nij(pnij) pnj |C̃nj ≤ C

′ and |φ̃nijk(pnijk) pnjk|C̃njk ≤ C
′ for some

C ′ <∞ and all n, i, j, k.
The mappings φ̃nij , φ̃

n
ijk are local isometries, in particular they are 1-

Lipschitz. Thus by an Arzela-Ascoli argument we obtain the second part
of Lemma 2.1.4. �

3 The Propositions on Continuous Collapse and Stability

In this section we prove the following claims:

Proposition 3.1.A (Proposition 0.7 in the Introduction). Suppose that
a simply connected manifold M admits a continuous one-parameter family
of metrics (gt)0<t≤1 with λ ≤ Kgt ≤ Λ such that, as t → 0, the family of
metric spaces Mt = (M,gt) Hausdorff converges to a compact metric space
X of lower dimension. Then the family Mt contains a stable subsequence
which converges to the same space X.

Proposition 3.1.B (Proposition 0.8 in the Introduction). Let {Mn, gn} be
a stable sequence of compact simply connected m-dimensional Riemannian
manifolds with curvature λ ≤ K(Mn) ≤ Λ. Assume that, as n → ∞, the
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sequence of metric spaces Mn Hausdorff converges to a compact metric
space X of lower dimension.

Then the sequence (Mn, g
ε
n), constructed in Theorem 1.3. has a subse-

quence (which we also denote by (Mn, g
ε
n)) which Hausdorff converges to a

compact metric space X ′, and the Lipschitz distance between X and X ′ is
dL(X,X ′) ≤ ε.

Moreover there is a manifold M with an effective T k action, a homeo-
morphism h : M/T k → X ′, and homeomorphisms hn : Mn → M so that
the following holds: The mapping hn conjugates the T k action on M and
the gεn-isometric (collapsing) torus action on Mn, and the induced mappings
h ◦ πTk ◦ hn : (Mn, g

ε
n) → X ′ (where πTk : M → M/T k is the orbit space

projection) are εn-almost isometries, where εn → 0 as n→∞.
Let us first gather some properties from Theorem 1.3 into the following

definition:

Definition 3.2. Let M be a compact simply connected manifold. Suppose
that M admits a global smooth effective T k-action without fixed points and
a Riemannian metric g with |K(g)| ≤ 1 and diam(g) ≤ D such that

(a) the metric g is T k-invariant;
(b) all T k-orbits have diameter ≤ ε;
(c) the volume of the factor space M/T k is vol(M/T k) ≥ V .

Then the T k action will be called (ε,D, V )-collapse related to (M,g).
Now let M be as in the definition. Then X = M/T k is an Alexandrov

space with curvature ≥ −1 (see section 1). X has a natural stratification,
where each stratum is a connected component of subsets of X which have
the same isotropy group A ⊂ T k.

In all what follows, the notion of ε-almost isometry or ε-isometry will
always be understood in the Gromov-Hausdorff sense. The proof of the
next lemma uses a center of mass technique and may be compared with
[CFGr, Thm 2.6].

Lemma 3.3. There exists c = c(V,D,m) and ε = ε(V,D,m) << c with
the following property: Let (Mi, T

k), i ∈ {1, 2} be two simply connected
Riemannian m-manifolds with torus actions which are (ε,D, V )-collapse
related, and assume that there is a homeomorphism I : M1 →M2 which is
an ε-isometry. Then

(a) there is an automorphism A : T k → T k and a conjugation mapping
h : (M1, T

k)→ (M2, A(T k)) such that h is homotopy equivalent and
3ε-close to I.
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(b) Let Xi = Mi/T
k. Since the map h (from (a)) is a conjugation map-

ping, one has an induced mapping h′ : X1 → X2.

Then any homeomorphism m0 : X1 → X2 which preserves the natu-
ral stratifications of X1,X2 and which is c-close to h′, can be lifted to a
homeomorphism m : M1 →M2, such that the following diagram commutes:

M1
m−−−→ M2yπ1

yπ2

X1
m0−−−→ X2

Proof of part (a). We will obtain the mapping h by deforming the given
homeomorphism I : M1 →M2.

Let us first construct an automorphism A : T k1 → T k2 .
Note that dGH(M1,M2) ≤ ε, and that dGH(Mi,Xi) ≤ ε, i = 1, 2. Thus

dGH(X1,X2) ≤ 3ε. We will use a metric on disjoint union ofX1,X2,M1,M2
such that d(x, I(x)) = d(x, π1(x)) = d(I(x), π2(I(x)) = ε for any x ∈M1.

Therefore we can choose ε so small that there is a regular point in x ∈M
such that the 100ε-neighborhood of Ox contains only regular orbits and for
any r ≤ 100ε the r-neighborhood of π1(x) in X1 is homeomorphic to a
standard ball. (This follows for instance from the existence of a regular
point in an Alexandrov space and from the regularity of its small spherical
neighborhood, see [Pe1] or [Pe2]).

Consider now the homeomorphisms

B96ε(T k1 x) I−→ B98ε(T k2 I(x)) I−1
−→ B100ε(T k1 x) .

Since Br(T k1 x) is a T k-bundle over the ball Br(π1(x)), it is homeomor-
phic to T k × Br(π1(x)). Therefore the homeomorphisms above induce an
isomorphism A : π1(T k1 ) → π1(T k2 ). The isomorphism A is uniquely ex-
tendible to an isomorphism A : T k1 → T k2 , and this isomorphism does not
depend on the choice of point.

Thus from now on we can think that the same torus T k is acting on
both manifolds M1 and M2. Now we modify a little the center of mass
technique from [GroK]. Let (M,g) be a Riemannian manifold.

Definition 3.4. (i) Let (G,µ) be a connected space with probability
measure and η : G → (M,g) be a continuous mapping. Let p ∈ M . Then
a continuous mapping Np : G→ Tp(M) for which η = expp ◦Np is called a
lifting of η at p.

(ii) Assume that for any x ∈ G there is a lifting N◦η(x) such that
N◦η(x)(x) = 0 ∈ Tη(x)(M). Then the lifted diameter of the mapping η
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(or l diam(η)) is defined as the minimum of all numbers d, such that
|N◦η(x)(y)| ≤ d for any x, y ∈ G.

(iii) A point p is called center of mass of the mapping η : G → (M,g)
(p = CG(η)), if there is a lifting Np which minimizes the integral∫
G |Np(x)|2dµ(x) on the set of all liftings of η at all points in M where

liftings are defined.

Lemma 3.5. Let M be a manifold with |K(M)| ≤ 1, let G be a connected
space and let η : G → M be a mapping with l diam(η) < π/4. Then the
center of mass for this mapping is well defined.

Proof. Consider the open manifold (B, g), where B = Bπ(0) ⊂ Tη(x)(M)
and g is the pullback metric by the exponential mapping expη(x). Then
B has curvature |Kg| ≤ 1, Bπ/2(0) is a convex subset of (B, g), and the
injectivity radius of any point in Bπ/2(0) is at least π/2.

On (B, g) the exponential map expη(x) : B → M is a local isometry.
For p∗ ∈ B let ip∗ : Tp∗(B) → Texpη(x)(p∗)(M) be the induced isometry of
the tangent spaces.

Let p be a center of mass of the mapping η : G → (M,g), and let
(as in 3.4) Np be the corresponding (minimizing) lifting. We have that
|Np(x)| < π/2, because otherwise∫

G
|Np(x)|2dµ(x) ≥

∫
G

(π/4)2dµ(x) >
∫
G
|N◦η(x)(x)|2dµ(x) .

Therefore one can lift p to a point p∗ ∈ Bπ/2(0) ⊂ (B, g) (i.e., expη(x)(p∗) =
p) in such a way that N◦η(x) = expp∗ ◦i−1

p∗ ◦Np.
From here we have that p∗ is the standard ([GroK]-) center of mass of

the mapping N◦η(x) : G→ (B, g). Since p∗ is well defined (see [GroK]), the
same is true for OUR center of mass. �

We now give an outline of arguments from [GroK] how to construct a
conjugation map between two given T k-actions, which is homotopic and
3ε-close to the mapping I:

First let us consider the mapping η : M1 × T k →M2, ηx(t) = t−1I(tx).
From the construction of the isomorphism T k1 → T k2 one sees that

l diam(ηx(T k)) ≤ 3ε. Now consider the conjugation map h : M1 → M2,
h(x) = CTk(ηx(t)), where C is the center of mass.

Part (a) of Lemma 3.3 is proved. �

Note that the isomorphism T k1 → T k2 we constructed above is the only
one which makes the lifted diameter l diam(ηx(T k)) small.
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Also note that if we assume dGH(M1,M2) < δ(M1), one could improve
the above result to obtain a conjugation diffeomorphism. To do this, it
is necessary to construct a mapping I which would make the T k-actions
C1-close. This is possible by applying harmonic charts and the above ar-
guments plus [GroK].

Proof of part (b). Note that if we assume that the action is free, then
in order to obtain (b) it is enough to show that two bundles π2 and
m0 ◦ π1 have the same generalized Euler class. (I.e., since Xi is simply
connected, this is just the mapping from the exact homotopy sequence
π2(Xi)

e→ Zk = π1(T k)). But the Euler class is a homotopy invari-
ant, therefore the constructed homotopy conjugation shows that the Euler
classes are the same.

Now let us come back to the general case. First note that for the
conjugation map h constructed in part (a) one has that the isotropy group
of the image (h(x) ∈M2) is bigger than the isotropy group of the preimage
(x ∈ M1). Therefore we have the same collection of isotropy groups in
M1 and M2, because one can repeat the same construction to obtain a
conjugation map M2 → M1. Hence we can find a finite subgroup F < T k

such that the T k := T k/F action on M̄i = Mi/F has only connected
isotropy groups.

Note also that the conjugation map h : M1 → M2 induces a mapping
h′ : X1 → X2 which is an almost isometry and homotopy equivalence, and
from the above we have that a stratum Str1 ⊂ X1 corresponds to a stratum
Str2 ⊂ X2 if

closure(Str2) = h′(closure(Str1)) .
Now let us choose a representation T k = S1

1 × S1
2 × . . .× S1

k . Consider
then the sequence of factors M̄i = M̄i,k, M̄i,k−1, . . . , M̄i,0 = Xi, such that
M̄i,l−1 = M̄i,l/S

1
l .

Now assume that we already have a homeomorphism ml−1 : M̄1,l−1 →
M̄2,l−1 which commutes with πi and m0. Let us construct ml : M̄1,l → M̄2,l.

Take the subset of M̄∗i,l where the S1
l -action is free, and let M̄◦i,l−1 be

the projection of this subset to M̄i,l−1.
Now a free S1 action with quotient space M◦i,l−1 is completely deter-

mined by its Euler class.
From the existence of a homotopy conjugation almost isometry it is easy

to see (see also Remark 3.6 below) that the Euler class is the same for each
pair M̄∗1,l → M̄◦1,l−1 and M̄∗2,l → M̄◦2,l−1.

Since on the remaining part M̄i,l\M̄∗i,l our S1
l -action is trivial, any
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homeomorphism ml : M̄∗1,l → M̄∗2,l can be extended (uniquely) to a homeo-
morphism ml : M̄1,l → M̄2,l (which commutes with ml−1).

Therefore, given a homeomorphism m0 : X1 → X2, we can construct
step by step a sequence of homeomorphisms ml : M̄1,l → M̄2,l which will
commute with each other. In particular, we have a homeomorphism mk :
M̄1 → M̄2.

We only have to prove that we can lift mk to a homeomorphism m :
M1 → M2. Now Mi → M̄i is a branched covering of M̄i with structural
group F . Therefore we only have to check that both of these mappings
give the same mapping π1(M̄#

i ) → F , where M̄#
i is the image of the set

of all regular points M#
i ⊂ Mi, i.e., M#

i is the set of all points where
the T k-action is free. But this is again true because of the existence of a
close homotopy equivalence conjugation (see Remark 3.6 below), so that
the lemma is proved. �

Remark 3.6. Formally the image of an element of the homotopy class of
M̄∗1,l or M#

1 could have points which are not contained in M̄∗2,l or M#
2 , re-

spectively. However, as follows from [PePet, 3.1(2)], in any homotopy class
we always can find an element which is sufficiently far from the correspond-
ing singularities, and therefore its image will belong to the corresponding
space.

Proof of Propositions 3.1.A and B. A. Let us choose a subsequence (M,gn)
of (M,gt) such that ||xy|gn − |xy|gn+1 | < ε/2, i.e., the identity map on
M gives an ε/2-Hausdorff approximation for (M,gn) and (M,gn+1). By
applying the smoothing-averaging procedure for an appropriately chosen
sequence εn → 0 (see Theorem 1.3), we obtain a sequence of metrics {gεnn }
with collapse related invariant T kactions on M which collapses to the same
space X, and which satisfies that ||xy|gεnn − |xy|gεn+1

n+1
| < ε.

Set Mn = (M,gεnn ), and, to continue the proof of Proposition 3.1.A,
skip to A & B below.

B. From the definition of stable collapse we have that there is a sequence
of metrics dn on M such that Mn = (M,gn) is isometric to (M,dn) and
such that dn converge as functions on M × M to a continuous pseudo-
metric d∞ on M . By applying the smoothing-averaging procedure (see
Theorem 1.3) for small and fixed ε, passing to a subsequence if necessary,
we obtain a sequence of metrics {dεn} on M with collapse related invariant
T kactions on M so that {dεn} will converge to a pseudometric which is
e±ε-bi-Lipschitz equivalent to {d∞}. (In particular, the spaces (M,dεn) will
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Gromov-Hausdorff converge to a space X ′ such that dL(X,X ′) ≤ ε.)
Set Mn := (M,dεn) and X := X ′.
A & B. For each n now fix a homeomorphism χn : Xn = Mn/T

k → X
which is an εn-isometry, where εn → 0 as n → ∞ and which preserves
the natural stratification. Such a homeomorphism exists from Perelman’s
stability theorem [Pe1]. From the fact that the closure of each stratum is
an extremal subset (see [PePet]) it is easy to see that the homeomorphism
constructed in [Pe1] preserves the stratification.

Now from part (b) of Lemma 3.3, we know that there is a conjugation
homeomorphism Mn+1 → Mn which commutes with m0 = χ−1

n+1 ◦ χn. By
composition, we thus also have conjugation homeomorphisms homn+i,n :
Mn+i → Mn = M for some fixed n and all i ∈ N, and these are the
homeomorphisms needed in Proposition 3.1.B. It remains to finish the proof
of Proposition 3.1.A:

A. As has already been mentioned above, the conclusion of Proposition
3.1.B is stronger than the definition of stable collapse, i.e., the metrics
dn(x, y) = distgn(h−1

n (x), h−1
n (y)) can be used in Definition 0.2. Therefore

the sequence (M,gεnn ) is stable, and since e−εngn < gεnn < eεngn, we have
also proved Proposition 3.1.A. �

4 The Proofs of the Main Results

Theorem (Stable Collapse). Suppose that a compact (topological) man-
ifold M admits a stable sequence of Riemannian metrics (gn)n∈N with
sectional curvatures λ ≤ Kgn ≤ Λ, such that, as n → ∞, the metric
spaces (M,gn) Hausdorff converge to a compact metric space X of lower
dimension. Then λ ≤ 0 (i.e., these metrics cannot be uniformly positively
pinched).

Proof. We argue by contradiction. Since a compact manifold with positive
sectional curvature has finite fundamental group, by passing to its universal
covering we may assume that M is simply connected. The Gluing Theorem
2.0 implies that in the case where the metrics in our theorem were uniformly
positively pinched, there would exist a complete noncompact Alexandrov
space with lower positive curvature bound. However, by Theorem 1.6 a
complete Alexandrov space with strictly positive curvature has finite diam-
eter and is compact. Thus the assumption of the existence of a sequence of
uniformly positively pinched metrics leads to a contradiction. �
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Theorem 0.6a (Limit of Covering Geometry theorem). Let Mn be a sta-
ble sequence of compact Riemannian m-manifolds with curvature bounds
−ε2n ≤ K(Mn) ≤ 1 such that εn → 0 for n → ∞ and such that the se-
quence of metric spaces Mn Hausdorff converges to a compact metric space
X of lower dimension. Consider a sequence of points pn ∈ Mn and balls
Bn = Bπ/2 ∈ Tpn which are equipped with the pullback metric under the
exponential map exppn : Tpn → Mn. Then there is a converging subse-
quence Bn → B, where B has the same dimension as the manifolds Mn

(= m), and the following holds:
In a neighborhood of its center, the metric on B coincides with that of

a metric product R × N , where N is a manifold with two-sided bounded
curvature 0 ≤ K(N) ≤ 1 in the sense of Alexandrov.

Proof. Note that Theorem 0.6a is trivial if |π1(M)| =∞, since in this case
M̃ will converge to a noncompact nonnegatively curved Alexandrov space
Y with group action Γ (the big limit of π1(M)) such that Y/Γ is compact.
Therefore there is a line in Y , so by Toponogov’s splitting theorem for
Alexandrov spaces (compare [BuGrPe]) Y splits and from this it follows
that the same is true for the limit of covering geometry. (Note that we did
not even use stability so far!)

If the fundamental group of M is finite, we can pass to its universal cov-
ering, where then we will also have a stable collapsing sequence. Therefore
we can apply the above arguments to obtain the space Y .

Therefore, under the assumptions of Theorem 0.6a, we have (again by
the splitting theorem for Alexandrov spaces) that Y splits isometrically as
Rk′ ×X. Since A acts isometrically on C̃∞α , this implies that all C̃∞α split
isometrically, and therefore Theorem 0.6a follows. �

Theorem (Continuous Collapse). Suppose that a compact manifold M
admits a continuous one parameter family (gt)0<t≤1 of Riemannian metrics
with sectional curvature λ ≤ Kgt ≤ Λ, such that, as t → 0, the family
of metric spaces (M,gt) Hausdorff converges to a compact metric space X
of lower dimension. Then λ ≤ 0 (i.e., these metrics cannot be uniformly
positively pinched).

Proof. As M has positive curvature, M has finite fundamental group.
Therefore, if M admits a continuous collapse, then its universal covering
M̃ also admits a continuous collapse. Applying Proposition 3.1.A and after
that the stable collapse theorem we obtain the continuous collapse theo-
rem. �
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