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Abstract. We investigate asymptotically flat manifolds with cone structure at infinity. We show
that any such manifoldM has a finite number of ends, and we classify (except for the case dim
M = 4, where it remains open if one of the theoretically possible cones can actually arise) for
simply connected ends all possible cones at infinity. This result yields in particular a complete
classification of asymptotically flat manifolds with nonnegative curvature: The universal covering
of an asymptotically flatm-manifold with nonnegative sectional curvature is isometric toR

m−2×
S, whereS is an asymptotically flat surface.

0. Introduction

Let (M, g) be a complete noncompact Riemannian manifold. Choose a point
p ∈ M and set

A(M) = lim sup
|px|→∞

{|Kx | · |px|2},

where|Kx | denotes the maximal absolute value of the sectional curvatures at the
pointx ∈ M.

One easily checks thatA(M) does not depend on the choice of the reference
pointp, so that the quantityA(M) yields a nice geometric invariant ofM which
is, in particular, invariant under rescalings of the metric.

Definition. A noncompact complete Riemannian manifold(M, g) is called
asymptotically flatif A(M) = 0.

Note that the mere condition of being asymptotically flat places in general
no restrictions whatsoever on the topology of a manifold. For instance, by a
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result of Abresch (see [Ab])any noncompact surface carries a complete and
asymptotically flat Riemannian metric.

Definition. Anoncompact complete Riemannianmanifold(M, g) is said to have
cone structure at infinityif there is a metric coneC with vertexo such that the
pointedGromov-Hausdorff limit of(M, εg, p)exists foranysequenceofnumbers
ε > 0 converging to zero and such that this limit is isometric to(C, o).

As a Gromov-Hausdorff limit of proper metric spaces, i.e., metric spaces such
that any closed ball of finite radius is compact, the coneC which arises in the
above definition is in particular proper and locally compact.

Note that large classes of Riemannian manifolds have cone structure at in-
finity. In fact, Kasue (see [K1]) showed that under certain lower curvature lim-
itations (e.g., if for someC < ∞ andδ > 0 it holds thatKx ≥ −C/|px|2+δ) a
noncompact (complete) Riemannian manifold always has this property. Thus in
particular any noncompact Riemannian manifold with faster-than-quadratic cur-
vature decay (i.e., any noncompact Riemannian manifold for which there exists
someC andδ > 0 such that|Kx | ≤ C/|px|2+δ), and, especially, any noncompact
Riemannian manifold with nonnegative curvature has cone structure at infinity.

Note also that on the other hand by Abresch’s result one can easily con-
struct asymptotically flat surfaces(S, g) such that the Gromov-Hausdorff limit
of (S, εng, p) indeed depends on the choice of the sequenceεn → 0 and such
that for some sequences this limit is not even a metric cone. In particular, by con-
sidering productsT m−2×(S, g) one thus obtains examples of asymptotically flat
manifolds without cone structure at infinity in any dimensionm ≥ 2. (Actually
any such example we know of looks on a big scale always two-dimensional; for
more on this see Sect.3).

Theorem A. LetM be an asymptotically flatm-manifold. Assume thatM has
cone structure at infinity. Then

(i) There exists an open ballBR(p) ⊂ M such thatM \ BR(p) is a disjoint
union

⋃
i Ni of a finite number of ends, i.e.,Ni is a connected topological

manifoldwith closedboundary∂Ni which is homeomorphic to∂Ni×[0,∞).
For eachNi the limitCi = GH-limε→0 εNi exists.

(ii) If the endNi is simply connected, thenNi is homeomorphic toSm−1×[0,∞).
In this case moreover the following holds:
(a) if m �= 4, thenCi is isometric toRm;
(b) ifm = 4, thenCi is isometric to one of the following spaces:R4,R3, or

R × [0,∞).

A finiteness of ends statement as in part (i) of TheoremA was proved by
Abresch (see [Ab]) in a related setting.
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Part (ii)(a) of TheoremA is new even in the special case of faster-than-
quadratic curvature decay (recall that, as noted above, faster-than-quadratic cur-
vature decay implies cone structure at infinity).

TheoremA generalizes here work of Greene, Petersen, and Zhu (see Theorem
1 in [GPZ], where the same conclusion as in (ii)(a) was proved under the addi-
tional assumptions of faster-than-quadratic curvature decay and nontriviality of
the tangent bundle of∂Ni .

When combined with the fact that volume growth of exactly Euclidean order
implies flatness, TheoremA also yields the following result, which general-
izes for manifolds of dimensionm �= 4 Theorem 2 in [GPZ] from faster-than-
quadratic curvature decay to asymptotical flatness with cone structure at infinity:

Corollary. LetM be an asymptotically flatm-manifold of dimensionm �= 4
which has cone structure at infinity. IfM has nonnegative Ricci curvature and
one simply connected end, thenM is isometric toRm.

Part (ii)(b) of TheoremA shows that four-dimensional manifolds play in
TheoremA a peculiar role and indicates that in this dimension special phenom-
ena can arise. Indeed, Unnebrink (see [U]) showed that there are examples of
asymptotically flat 4-manifolds which have (cone structure at infinity and) a sim-
ply connected endN1 such that, in the notation of TheoremA, C1 = R3. It is
not clear if there exists an asymptotically flat 4-manifold with cone structure at
infinity with a simply connected endN1 so thatC1 = R × [0,∞). (We actually
conjecture that there is no such example; see also Sect.3.)

Note also that in dimension 2 all ends are homeomorphic toS1 × [0,∞), so
that the ends of an asymptotically flat surface are never simply connected.

Combining TheoremA and a result from [GP] we obtain proofs of statements
of Gromov (see [BGS], p.59) which till now have been treated in the literature
(compare [D] and the references therein) as conjectures, and which completely
classify the asymptotically flat manifolds with nonnegative sectional curvature:

Theorem B. LetM be an asymptotically flatm-manifold with nonnegative sec-
tional curvature. Then the universal covering ofM is isometric toRm−2 × S,
whereS is an asymptotically flat surface. If, in particular,M is simply connected
andm ≥ 3, thenM is isometric toRm.

Assuming faster-than-quadratic curvature decay and assuming that the unit
normal bundle of the soul ofM has nontrivial tangent bundle, the second part of
TheoremB was proved by Drees ([D]).

As a direct consequence of TheoremB one also obtains an affirmative answer
to a question of Hamilton (see [H]§19; this paper also contains some nice rela-
tions between asymptotical curvatures and the Ricci flow), which is equivalent
to the following one:

LetM be a complete noncompact Riemannian manifold of dimensionm ≥ 3
with positive sectional curvature. Is it true thatA(M) > 0 ?
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That in odd dimensions the answer to this question is “yes” was already
known and proved by Eschenburg, Schr¨oder, and Strake ([ESS]).

Our results obviously also have a relation to the positive mass conjecture; in
[GPZ] the reader will find explained the precise connections.

The main idea of the proof of TheoremA can be described as follows:
Inside an endNi of an asymptotically flat manifold with cone structure at

infinity we construct a continuous family of “spheres”, which after rescaling
have uniform curvature bounds and which Gromov-Hausdorff converge to the
“unit sphere” in the coneCi .

To this continuous family of spheres we now apply two results from [PRT]:
The first says that any continuously collapsing family with bounded curvature
contains an infinite “stable” subsequence. To this sequence then a corollary of
the Limit of Covering Geometry Theorem from [PRT] applies. (This corollary
actually also holds without using a stability assumption, and the proof ofTheorem
A can be given without relying on [PRT], but instead on results from [PT], see
Sect.1).

This in turn enables us to prove some inequalities for the ranks of certain
homotopy groups. These imply that in fact collapse is not possible except for
the case where the dimension of the manifold is equal to 4. Therefore in all nice
casesCi is nothing butRm.

There is a vast amount of literature on noncompact complete Riemannian
manifolds whose sectional curvature at infinity is zero (and on many different
specific ways in which the curvature is allowed to go to zero). For a detailed
account of what is known and wanted to be known about such spaces, the reader
is recommended to look at the survey article [Gre] and the paper [GPZ].

Here we just mention (besides the references already given) some papers in
the field which are most closely related to the results of this note: [ES], [GW1],
[GW2], [KS] and [LS].

The remaining parts of the paper are organized into a preliminaries, a proof,
and a problem section which contains further remarks and several open questions.

We would like to thank Patrick Ghanaat for pointing out to us a simplified
proof of the sublemma in Sect.2 as well as Luis Guijarro for useful comments.

1. Preliminaries

In this section we review some results about manifolds which collapse with
bounded curvature and diameter. More on this can be found in the references
given in [PRT] and [PT].

Definition. A sequence of metric spacesMi is called stable if there is a topolog-
ical spaceM and a sequence of metricsdi onM such that(M, di) is isometric to
Mi and such that the metricsdi converge as functions onM×M to a continuous
pseudometric.
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Proposition (Continous Collapse implies Stability) ([PRT]). Suppose that
a simply connected manifoldM admits a continuous one-parameter family of
metrics(gt )0<t≤1 with λ ≤ Kgt ≤ Λ such that, ast → 0, the family of metric
spacesMt = (M, gt )Hausdorff converges to a compact metric spaceX of lower
dimension. Then the familyMt contains a stable subsequence.

The version of the Limit of Covering Geometry Theorem from [PRT] we
need in this paper (it is straightforward to check that the proof given in [PRT]
also proves the result below) can be stated as follows:

Theorem (Limit of Covering Geometry Theorem ([PRT]). LetMn be a stable
sequence of Riemannianm-manifolds with curvature bounds|K(Mn)| ≤ 1 such
that for n → ∞ the sequence of metric spacesMn Hausdorff converges to a
compact metric spaceX of lower dimension. Consider any sequence of points
pn ∈ Mn and ballsBn = Bπ/2 ⊂ Tpn which are equipped with the pull back
metrics of the exponential mapsexppn : Tpn → Mn. Assume that for any such
converging subsequenceBn → B, the limitB has curvature≥ 0 in the sense of
Alexandrov.

Then for any converging subsequenceBn → B, the limitB has the same
dimension as the manifoldsMn, and in a neighbourhood of its center, the metric
onB coincides with that of a metric productR ×N , whereN is a manifold with
two-sided bounded curvature0 ≤ K(N) ≤ 1 in the sense of Alexandrov.

Our proof of TheoremA will in fact only use the following corollary of this
theorem. At first sight this corollary looks almost obvious, but it doesn’t seem
easy to adopt any of the known proofs of injectivity radius estimates to this case.

Corollary. LetMn bea (stable) sequenceof closedsimply connectedRiemannian
manifolds of dimensionm ≥ 2 with curvature|K(Mn)| ≤ C and uniformly
bounded diameters. Consider any sequence of pointspn ∈ Mn and ballsBn =
Bπ/2

√
C ⊂ Tpn which are equipped with the pull back metrics of the exponential

mapsexppn : Tpn → Mn. Assume that for any such converging subsequence
Bn → B, the limitB has at all interior points curvature= 1. Then themanifolds
Mn converge to a standard sphere.

The stability condition is actually not necessary for the above result to hold.
This can be seen from the following independent proof of the Corollary, which
does not use stability at all. The proof itself is very short, but since it uses the
notion of Grothendieck-Lipschitz convergence and Riemannian megafolds from
[PT], we decided to also incorporate the above [PRT] approach, which might be
easier to understand.

Proof of the Corollary without stability assumption.
The only nontrivial part is to establish a lower positive bound for the injectivity
radii of all manifoldsMn.
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Since because of the Gauss-Bonnet theorem the casem = 2 is trivial, we
may assume thatm ≥ 3.

If the manifoldsMn would collapse, then, after passing to a subsequence
if necessary, one may assume that the manifoldsMn Grothendieck-Lipschitz
converge to a Riemannian megafoldM which is not a manifold.

The assumptions of the Corollary imply that the limitM has constant curva-
ture= 1, so thatM = (Sm : G), whereG is a commutative group of isometries
of Sm. However, by ([PT], TheoremA.7) we have that 0�= H 2

dR(M) = H 2
dR(S

m),
which is a contradiction.��

2. Proofs

Proof of part (i) of TheoremA.
The first statement of the theorem will follow from the fact that the distance
function top, distp, for sufficiently large values does not have any critical points.

By assumption, for any sequence of numbersε > 0 converging to zero, the
pointed Gromov-Hausdorff limit of(M, εg, p) exists and is isometric to a locally
compact metric coneC with vertexo. The coneC obviously has curvature≥ 0
(in the sense of Alexandrov) everywhere except the origino ∈ C.

Let us assume that there exists a sequence of pointsxn such that|pxn| → ∞
asn→ ∞, and such that eachxn is a critical point for distp.

Consider the sequence of rescaled manifolds(M, g/|pxn|, p). By the as-
sumption of the theorem, this sequence converges to(C, o), and the points
xn ∈ (M, g/|pxn|) (after passing to a subsequence) converge to a pointx ∈ C
which has distance 1 to the origino.

SinceC is a cone, we can considery := 2x ∈ C. Choose a sequence of
pointsyn ∈ (M, g/|pxn|) which converge toy, and consider minimal geodesics
xnyn from xn to yn. Sincexn is a critical point of distp, there is for eachn
a minimal geodesicpxn which makes an angle less thanπ/2 with the min-
imal geodesicxnyn. Therefore Toponogov’s comparison theorem implies that
limn→∞ |pyn|/|pxn| ≤ √

2. But obviously limn→∞ |pyn|/|pxn| = |oy|/|ox| =
2, a contradiction.

Thus for someR > 0 the function distp does not have any critical points
outside the open ballBR(p). In particular, as follows from Morse theory for
distance functions, see ([Grov], Cor. 1.9.),M has finite topological type, i.e.,M
is homeomorphic to the interior of a compact manifold with boundary (which in
our case is simply the closed ballB̄R(p)).

This also implies that the manifoldM has only finitely many ends.
Note that the coneCi is nothing but the closure of the connected component

of C\o that corresponds toNi , in particular for eachNi the limit Ci = GH-
limε→0 εNi exists.
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Thus part (i) of TheoremA is proved.��
Proof of part (ii) of TheoremA.
The fact thatN is homeomorphic toSm−1 ×[0,∞)will follow directly from the
proofs of (ii)(a) and (ii)(b). Therefore we only need to prove these two statements.

Note that if dimCi = m = dimM, then parts (ii)(a) and (ii)(b) of the theorem
are trivially true:

Indeed, if so we have that the curvature ofCi is zero everywhere except the
origin. We can assume thatm �= 2 (otherwise all ends would be homeomorphic
toS1×[0,∞), and therefore in particular they would not be simply connected). It
follows thatCi = Rm/F , whereF is a finite group of rotations which acts freely
onRm\0. SinceCi \B1(o) is homeomorphic toNi , it follows thatF = π1(∂Ni).
Since by assumption∂Ni is simply connected,F must be trivial, and thus for
dimCi = m = dimM our claims are proved, since the above also implies that in
this caseNi is homeomorphic toSm−1 × [0,∞).

From now on we will assume that dimCi < m.
We can viewCi as a cone over its space of directions,Ci = C(Σi), where

Σi is an Alexandrov space of curvature≥ 1 or dimΣi = 1.Σi can be viewed as
a “unit sphere” inCi .

We will first construct a continuous family of hypersurfacesS2−1,ε in (M, εg)
which collapse toΣi such that the sectional curvatures ofS2−1,ε stay uniformly
bounded. The following construction is very close to one used by Kasue in [K2].
We will therefore only explain it here; all of its details can be found in ([K2,
§ 2]).

For each rescaling(M,εg, p), consider the sphere of radius 2,S2,ε(p) ⊂
(M,εg). Its principal curvatures for outcoming normal directions lie in the range
[−C(ε),∞], whereC(ε)→ 1/4 asε → 0.

Next consider, for an inward direction (top) the equidistant hypersurface
S2−1,ε at distance 1 toS2,ε(p). ThenS2−1,ε has uniformly bounded principal
curvatures which in fact lie in the range[−C ′(ε), C ′(ε)], whereC ′(ε) → 1 as
ε → 0.

Therefore, sinceM is asymptotically flat,S2−1,ε has uniformly bounded sec-
tional curvature asε → 0.

For sufficiently smallε it follows that S2−1,ε (equipped with the induced
intrinsic metric) is a continuous family which, asε → 0, collapses toΣi .

Key Lemma. Take any sequence of pointspεn ∈ S2−1,εn, εn → 0. Consider the
ballsBn = B1(0) ⊂ Tpεn (S2−1,εn), equipped with the pull back metrics.

Then asn→ ∞, theBn Lipschitz converge to the ball of radius1 in Sl−1 ×
Rm−l, for some fixedl depending onM.

MoreoverΣi = S̃l−1/A, whereA is an Abelian group of isometries of̃Sl−1

(here bỹSl−1 we understand the standardl − 1-sphere ifl ≥ 3, R if l = 2, and
a point if l = 1).
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The proof of the Key Lemma will be given below. Let us now continue with
the proof of part (ii) of TheoremA:

Obviously allS2−1,ε are homeomorphic to∂Ni and therefore simply con-
nected. Now applying the Corollary in Sect.1 we see thatl < m.

Using that∂Ni is simply connected we can moreover show that the groupA

in the Key Lemma is connected: LetAo be the identity component ofA. Then
Σ̃i = Sl−1/Ao is a branched covering ofΣi , and it is easy to see that one can find
a covering̃∂Ni → ∂Ni which is a lifting ofΣ̃i → Σi . But since∂Ni is simply
connected we have that̃Σi = Σi . ThereforeAo = A, i.e.,A is connected.

Now if l = 1, thenΣi is a point, so that∂Ni must be an infranil manifold.
But any infranil manifold has infinite fundamental group, which contradicts the
fact that∂Ni is simply connected.

If l = 2 it follows thatΣi is homeomorphic to a point orR, sinceA is
connected. The first case cannot occur by the above reasoning, and the second
contradicts thatC is locally compact.

Therefore the only serious case to deal with is the casel ≥ 3. From the above
we have that in this caseΣi is isometric toSl−1/T k

′
.

Since forε → 0 the hypersurfacesS2−1,ε collapse toΣi and sinceS2−1,ε is
homeomorphic to∂Ni , we know thatΣi is homeomorphic to∂Ni/T k and that
this homeomorphism can be chosen to preserve the natural stratifications of these
spaces.

Let us now do some topological calculations:
Let OT k be a regular orbit of theT k action on∂Ni . Consider the relative

homotopy sequence of pairs

π2(∂Ni,OT k )→ π1(T
k) = Zk → π1(∂Ni) = 0.

Therefore rkQ π2(Ni,OT k ) ≥ k.
Next consider the corresponding homotopy sequence forSl−1:

0 = π2(T
k′)→ π2(S

l−1)→ π2(S
l−1,OT k′ )→ π1(T

k′) = Zk
′ → π1(S

l−1)

Therefore rkQ π2(S
l−1,OT k′ ) = k′+ rkQ π2(S

l−1).
On the other hand one has thatk = dim∂Ni− dimΣi andk′ = l−1− dimΣi .
LetΣ#

i denoteΣi with the singular sets removed. Consider now the following
three cases:

1. Σi has no boundary. Then obviously rkQ π2(S
l−1,OT k′ ) =rkQ π2(Σ

#
i ) =

rkQ π2(∂Ni,OT k ).
2. ∂Σi has one component. Then rkQπ2(S

l−1,OT k′ ) =rkQπ2(Σ
#
i ) + 1 =

rkQπ2(∂Ni,OT k ).
3. ∂Σi has more than one component.

In both case 1 and case 2 it follows thatk′ ≥ k− rkQπ2(S
l−1), and hence

m ≤ l + rkQπ2(S
l−1).
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However, this contradicts the fact thatl < m, except ifm = 4, l = 3.
In this particular case it follows thatΣi = S2/Arot . Therefore, sinceΣi has

not more than one boundary component, we have thatArot is trivial andΣi = S2.
ThusCi = C(Σi) = R3 (and that this indeed can happen was shown in [U]).

Case 3 can only occur ifΣi is homeomorphic to[0,1]. Then, sinceNi is
simply connected, it must hold thatk, k′ ≤ 2. Since theT k action on∂Ni has
empty fixed point set, we have thatk = 2, and sincel < m, we have that
k′ = 1. Thereforem = 4, l = 3 andΣi is isometric toS2/S1 = [0, π ] , so that
Ci = C(Σi) = R × [0,∞).

The proof of TheoremA is complete. ��

Proof of Theorem B.
LetM be an asymptotically flatm-manifold with nonnegative sectional curvature.
ThenM has cone structure at infinity, and by [GP] the soulS of M is flat.
This forces the universal cover̃M of M to split isometrically as a Euclidean
part, coming from the soulS, and a nonnegatively curved complete manifoldF
homeomorphic toRk.

NowF is also asymptotically flat and has one endSk−1 × [0,∞). Therefore
by TheoremA, if k �= 2,4, then the cone at infinity ofF is isometric toRk. Since
by Toponogov’s Comparison Theorem any line in the cone corresponds to a line
in F , it follows from the Toponogov Splitting Theorem thatF itself is isometric
to Rk.

Thus to finish the proof we must only exclude the casek = 4. By TheoremA,
if k = 4 we have thatC = GH-limε→0 εF is isometric to one of the following:
R4, R3 or R × [0,∞). In all of these cases we have thatC contains a line, and
thereforeF splits isometrically asR × F ′. But sinceF is asymptotically flat it
follows thatF ′ is flat, and thereforeF is isometric toR4. ��

Proof of the Key Lemma.
Consider aν-neighbourhoodU ⊃ Σi ⊂ Ci . From the results of [CFG] (see
Sect.1 of [PRT], where also further references can be found) we have anN -
structureπ : Eε → U , whereEε is a subset of(M, εg) containing the hyper-
surfaceS2−1,ε . SinceEε is homotopically equivalent to∂Ni , it follows thatEε
is simply connected. Therefore theN -structure is given by an almost isometric
smoothT k-action without fixed points (see again Sect.1 in [PRT]).

Now take a pointx ∈ Σi ⊂ Ci (so |ox| = 1) and consider a spherical
neighbourhood ofUx � x. Consider the preimageVε = π−1(Ux) ⊂ Eε and let
Ṽε be its universal Riemannian covering. Then theT k-action induces an almost
isometricRk × F action onṼε , whereF is a finite Abelian group.

From [CFG] one has a uniform bound for the injectivity radius ofṼε , so that,
asε → 0, Ṽε converges to a flat manifold̃V0 with boundary and isometricRk×F
action (for the convergence claim see the first part of Lemma 2.1.4 in [PRT]).
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Since the interior of̃V0 is flat, there exists a map̃V0 → Rm which is for
all interior points a local isometry. Therefore theRk × F action onṼ0 can be
extended to an action of wholeRm, and the local factorsU1R

m/Rk are isometric
to local branched coverings of subsets ofCi . (Here by local factors we understand
factorizingU by the connected components of theRk-orbits inU , as is illustrated
in the following picture).

U

one R -orbitk

     of one orbit in U.
different components

Fig. 1.

Now the above groupRk can be regarded as an Abelian group of isometries
of Euclidean spaceRm. We will show that in our caseRk actually splits into a
direct sum of translations and rotations.

To this means first note the following:

Sublemma. Let a connected Abelian groupH act on Euclidean spaceRm by
isometries. Then one can representRm as an orthonormal sumV ⊕W such that
H is contained in a direct sum of translations and rotations,

H < Atr ⊕ Arot ,
so that the following holds: The groupAtr = V is the group consisting of all
parallel translations alongV , andArot ⊂ O(W) is an Abelian subgroup of
rotations ofW .

Proof of the Sublemma.
By [Al] one orbit ofH is an affine subspaceV (in fact, such an orbit corresponds
to the origino of Ci). Choose the origin of affine spaceRm so that it is contained
in this subspace. Each elementα ∈ H can be viewed as(rα, φα) ∈ V ×O(m),
such thatα(x) = rα + φα(x) for anyx ∈ Rm.
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ThenV can be viewed as the set of all pure translations ofH , Atr = V =
{r : (r, φ) ∈ H for someφ ∈ O(m)}. LetArot := {φ : (r, φ) ∈ H for somer}
be the group of pure rotations ofH . If eachφ ∈ Arot acts trivially onV , then
obviouslyH < Atr ⊕ Arot , which is exactly what we want.

Therefore we only have to prove that for anyφ ∈ Arot and anyv ∈ V we
have thatφ(v) = v.

Take any(r, φ) ∈ H andv ∈ V . For all n ∈ N there existsφn ∈ O(m)
such that(nv, φn) ∈ H . SinceH is Abelian, it follows that(r, φ)(nv, φn) =
(nv, φn)(r, φ) and thereforenv + φnr = r + φnv. Dividing by n and letting
n→ ∞ thus impliesφv = v. ��

Thus our groupRk is contained in a direct sumAtr ⊕ Ãrot , whereÃrot is
universal covering Lie group ofArot . Now note that since the local factors byRk

have a cone structure,Rk moreover itself splits asRk = Atr ⊕ Ãrot :
Indeed, since the local factorsU/Rk admit a cone structure, in radial directions

their sectional curvatures must be zero. But this is impossible unlessRk is itself
a direct productRk = H̃ = Atr ⊕ Ãrot :

To prove this, we only have to show that (in the notation of the Sublemma) it
holds thatArot ⊂ H . Assume that this is wrong.

Then we can find a rayc : [0,∞)→ Rm which is orthogonal toV , and there
will be an elementα ∈ arot in the Lie algebra ofArot which is not contained in
the Lie algebra ofH , so thatα defines a linear Jacobi field on the rayc which
can assumed to be non-zero.

Consider now the projection̄c of c along some local factor. Then̄c is a piece
of a ray in the coneC and the projectionJ̄ of the fieldJ is also a Jacobi field.
But sinceC is a cone, any Jacoby field alongc̄must be linear. On the other hand
it is straightforward to show that|J̄ (t)| is a strictly concave function, and this is
a contradiction.

Therefore the local factorsW/Arot are isometric to local branched coverings
of Ci (everywhere except the origin). ThusCi \ o is isometric to a factor of its

universal covering,˜(W \ 0)/A, by an Abelian Lie groupA. Restricting this last
isometry to the unit spheres of both cones it follows thatΣi = S̃l−1/A, and the
second part of the Key Lemma is proved.

Letρ : Ṽε → Vε be the covering map and̃S2−1,ε = ρ−1(S2−1,ε). It converges
to the preimage ofΣi under the mapV0 → V0/A = Ux ⊂ Ci , so that it
locally coincides with the cylinderV ×Sl−1, whereSl−1 is the unit sphere inW .
Therefore, sincex ∈ Σi can be chosen to be arbitrary, the covering geometry of
S2−1,ε converges to the one ofV × Sl−1, and this finishes the proof of the first
part of the Key Lemma.��
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3. Remarks and open questions

Question 1.Let M be an asymptotically flat manifold, and let the sequence
(M, εng, p) converge to(G, o) asεn → 0. Assume that dimG ≥ 3 and thatG\o
has only one connected component.

Is it true thatG is a metric cone with origino?
A positive answer to this question could possibly lead to a general classi-

fication of asymptotically flat manifold of higher dimension. To obtain such
a classification is particularly interesting because of the fact that Gromov (see
[Grom], p.96 and also [LS]) showed that any (smooth paracompact) noncompact
manifoldM admits a complete Riemannian metric whose asymptotic curvature
satisfiesA(M) ≤ C, whereC depends only on the dimension ofM.

Question 2.Does there exist in each dimensionm a positive constantC(m) such
that any noncompact complete Riemannianm-manifoldM with A(M) ≤ C(m)
is asymptotically flat?

Note that the answer (positive or negative) to the following question would
give a complete classification of the cone structures at infinity of simply con-
nected ends of asymptotically flat manifolds:

Question 3.Can the coneR×[0,∞) be a cone at infinity of a simply connected
end of an asymptotically flat 4-manifold?

It seems not possible to obtain such an example by a direct generalization of
Unnebrink’s example. Namely, one can exchange the Berger spheresS3

f (t),h(t) (in
the notation of [U]) in Unnebrink’s example byS3

a(t),f (t),h(t), where the number
a(t) describes along which one-dimensional subgroup of theT 2-action on the
standardS3 we shrink the distance (soS3

a,f,h is a Berger sphere ifa = ±1). But
direct calculation then shows that there is no triple of functionsa, f, h which
would give an asymptotically flat 4-manifold withR×[0,∞)as a cone at infinity.

However, on the other hand, if one would take asa a constant which is close
to 1, then as a result one obtains an endN whose asymptotic curvatureA(N) is
arbitrarily small and which hasR × [0,∞) as cone at infinity.

Remark.The same arguments as the one which we used in the proof of Theorem
A actually also make it possible to characterize the cones at infinity of complete
noncompact manifolds whose asymptotic curvature issmall:

Namely, if for some given sequence of simply connectedm-dimensional ends
Nn with A(Nn) → 0 asn → ∞ their cones at infinityCn Gromov-Hausdorff
converge to some metric spaceC (which then must be a cone), then for sufficently
largen it holds thatNn is homeomorphic toSm−1 × [0,∞) and moreover the
following is true:

(a) if m �= 4, thenC is isometric toRm;
(b) if m = 4, thenC is isometric to one of the following spaces:R4, R3, or

R × [0,∞).
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The above modification of the Unnebrink construction for constanta shows
that for manifolds with small asymptotic curvature all cones which are mentioned
in part (b) actually do arise.

As a last point we would like to mention that the methods we used in this paper
do not distinguish between spaces which are asymtotically flat and sequences of
spaces whose asymptotic curvature goes to zero.

Therefore, no matter how special our question whetherR × [0,∞) can be a
cone at infinity of a simply connected end of an asymptotically flat 4-manifold
might at first sight look like, any negative answer to it will require more sensitive
collapsing techniques.
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