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Abstract. We investigate asymptotically flat manifolds with cone structure at infinity. We show
that any such manifold/ has a finite number of ends, and we classify (except for the case dim
M = 4, where it remains open if one of the theoretically possible cones can actually arise) for
simply connected ends all possible cones at infinity. This result yields in particular a complete
classification of asymptotically flat manifolds with nonnegative curvature: The universal covering
of an asymptotically flat:-manifold with nonnegative sectional curvature is isometrigto 2 x

S, whereS is an asymptotically flat surface.

0. Introduction

Let (M, g) be a complete noncompact Riemannian manifold. Choose a point
p € M and set
AM) =limsup{|K.| - |px|?},
|px|—00
where| K| denotes the maximal absolute value of the sectional curvatures at the
pointx € M.
One easily checks that(M) does not depend on the choice of the reference
point p, so that the quantity (M) yields a nice geometric invariant 81 which
is, in particular, invariant under rescalings of the metric.

Definition. A noncompact complete Riemannian manifoM, g) is called
asymptotically flaif A(M) = 0.

Note that the mere condition of being asymptotically flat places in general
no restrictions whatsoever on the topology of a manifold. For instance, by a
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result of Abresch (see [AbJany noncompact surface carries a complete and
asymptotically flat Riemannian metric.

Definition. A noncompact complete Riemannian manifalf] ¢) is said to have
cone structure at infinitif there is a metric con€ with vertexo such that the
pointed Gromov-Hausdorfflimitgh, eg, p) exists for any sequence of numbers
€ > 0 converging to zero and such that this limit is isometri¢ o).

As a Gromov-Hausdorff limit of proper metric spaces, i.e., metric spaces such
that any closed ball of finite radius is compact, the céhehich arises in the
above definition is in particular proper and locally compact.

Note that large classes of Riemannian manifolds have cone structure at in-
finity. In fact, Kasue (see [K1]) showed that under certain lower curvature lim-
itations (e.g., if for som& < oo ands > 0 it holds thatk, > —C/|px|*™®) a
noncompact (complete) Riemannian manifold always has this property. Thus in
particular any noncompact Riemannian manifold with faster-than-quadratic cur-
vature decay (i.e., any noncompact Riemannian manifold for which there exists
someC ands > Osuchthatk,| < C/|px|?*?), and, especially, any noncompact
Riemannian manifold with nonnegative curvature has cone structure at infinity.

Note also that on the other hand by Abresch’s result one can easily con-
struct asymptotically flat surfacé€s, ¢) such that the Gromov-Hausdorff limit
of (S, €,¢, p) indeed depends on the choice of the sequepce- 0 and such
that for some sequences this limit is not even a metric cone. In particular, by con-
sidering product@™—2 x (S, g) one thus obtains examples of asymptotically flat
manifolds without cone structure at infinity in any dimensien> 2. (Actually
any such example we know of looks on a big scale always two-dimensional; for
more on this see Sect. 3).

Theorem A. Let M be an asymptotically flaiz-manifold. Assume tha# has
cone structure at infinity. Then

() There exists an open baB;(p) C M such thatM \ Br(p) is a disjoint
union|J; N; of a finite number of ends, i.V; is a connected topological
manifold with closed boundadN; which is homeomorphic t@V; x [0, co).
For eachN; the limitC; = GH-lim._,g e N; exists.

(ii) Ifthe endN; is simply connected, the¥i is homeomorphic t6” 1 x [0, co).
In this case moreover the following holds:

(a) ifm # 4, thenC; is isometric taR™;
(b) if m = 4, thenC; is isometric to one of the following spac&, R3, or
R x [0, 00).

A finiteness of ends statement as in part (i) of Theoremwas proved by
Abresch (see [Ab]) in a related setting.
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Part (ii)(a) of TheoremA is new even in the special case of faster-than-
guadratic curvature decay (recall that, as noted above, faster-than-quadratic cur-
vature decay implies cone structure at infinity).

TheoremA generalizes here work of Greene, Petersen, and Zhu (see Theorem
1in [GPZ], where the same conclusion as in (ii)(a) was proved under the addi-
tional assumptions of faster-than-quadratic curvature decay and nontriviality of
the tangent bundle @&fn;.

When combined with the fact that volume growth of exactly Euclidean order
implies flatness, Theorem also yields the following result, which general-
izes for manifolds of dimensiom # 4 Theorem 2 in [GPZ] from faster-than-
guadratic curvature decay to asymptotical flatness with cone structure at infinity:

Corollary. Let M be an asymptotically flatz-manifold of dimensiom: # 4
which has cone structure at infinity. M has nonnegative Ricci curvature and
one simply connected end, th&his isometric taR™.

Part (ii)(b) of TheoremA shows that four-dimensional manifolds play in
TheoremA a peculiar role and indicates that in this dimension special phenom-
ena can arise. Indeed, Unnebrink (see [U]) showed that there are examples of
asymptotically flat 4-manifolds which have (cone structure at infinity and) a sim-
ply connected endv; such that, in the notation of Theoref) C; = R3. Itis
not clear if there exists an asymptotically flat 4-manifold with cone structure at
infinity with a simply connected endl; so thatC; = R x [0, co). (We actually
conjecture that there is no such example; see also Sect. 3.)

Note also that in dimension 2 all ends are homeomorphit te [0, 0o), SO
that the ends of an asymptotically flat surface are never simply connected.

Combining Theorem and a result from [GP] we obtain proofs of statements
of Gromov (see [BGS], p.59) which till now have been treated in the literature
(compare [D] and the references therein) as conjectures, and which completely
classify the asymptotically flat manifolds with nonnegative sectional curvature:

Theorem B. Let M be an asymptotically flakz-manifold with nonnegative sec-
tional curvature. Then the universal coveringMf is isometric toR” 2 x S,
whereS is an asymptotically flat surface. If, in particulay is simply connected
andm > 3, thenM is isometric toR™.

Assuming faster-than-quadratic curvature decay and assuming that the unit
normal bundle of the soul gif has nontrivial tangent bundle, the second part of
TheoremB was proved by Drees ([D]).

As a direct consequence of Theor@none also obtains an affirmative answer
to a question of Hamilton (see [H]L9; this paper also contains some nice rela-
tions between asymptotical curvatures and the Ricci flow), which is equivalent
to the following one:

Let M be a complete noncompact Riemannian manifold of dimemsian3
with positive sectional curvature. Is it true tha{M) > 0 ?
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That in odd dimensions the answer to this question is “yes” was already
known and proved by Eschenburg, Suttei, and Strake ([ESS]).

Our results obviously also have a relation to the positive mass conjecture; in
[GPZ] the reader will find explained the precise connections.

The main idea of the proof of Theoremcan be described as follows:

Inside an endV; of an asymptotically flat manifold with cone structure at
infinity we construct a continuous family of “spheres”, which after rescaling
have uniform curvature bounds and which Gromov-Hausdorff converge to the
“unit sphere” in the con€’;.

To this continuous family of spheres we now apply two results from [PRT]:
The first says that any continuously collapsing family with bounded curvature
contains an infinite “stable” subsequence. To this sequence then a corollary of
the Limit of Covering Geometry Theorem from [PRT] applies. (This corollary
actually also holds without using a stability assumption, and the proof of Theorem
A can be given without relying on [PRT], but instead on results from [PT], see
Sect.1).

This in turn enables us to prove some inequalities for the ranks of certain
homotopy groups. These imply that in fact collapse is not possible except for
the case where the dimension of the manifold is equal to 4. Therefore in all nice
cased’; is nothing butR™.

There is a vast amount of literature on noncompact complete Riemannian
manifolds whose sectional curvature at infinity is zero (and on many different
specific ways in which the curvature is allowed to go to zero). For a detailed
account of what is known and wanted to be known about such spaces, the reader
is recommended to look at the survey article [Gre] and the paper [GPZ].

Here we just mention (besides the references already given) some papers in
the field which are most closely related to the results of this note: [ES], [GW1],
[GW2], [KS] and [LS].

The remaining parts of the paper are organized into a preliminaries, a proof,
and a problem section which contains further remarks and several open questions.
We would like to thank Patrick Ghanaat for pointing out to us a simplified

proof of the sublemma in Sect. 2 as well as Luis Guijarro for useful comments.

1. Preliminaries

In this section we review some results about manifolds which collapse with
bounded curvature and diameter. More on this can be found in the references
givenin [PRT] and [PT].

Definition. A sequence of metric spack is called stable if there is a topolog-
ical spaceM and a sequence of metrigson M such that M, d;) is isometric to
M; and such that the metries converge as functions ol x M to a continuous
pseudometric.
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Proposition (Continous Collapse implies Stability) ([PRT]). Suppose that
a simply connected manifoltf admits a continuous one-parameter family of
metrics(g,)o<:<1 With A < K,, < A such that, ag — 0, the family of metric
spacesM; = (M, g,) Hausdorff converges to a compact metric sp&oaf lower
dimension. Then the family; contains a stable subsequence.

The version of the Limit of Covering Geometry Theorem from [PRT] we
need in this paper (it is straightforward to check that the proof given in [PRT]
also proves the result below) can be stated as follows:

Theorem (Limit of Covering Geometry Theorem ([PRT]). LetM,, be a stable
sequence of Riemannianrmanifolds with curvature bound& (M,,)| < 1such
that forn — oo the sequence of metric spack Hausdorff converges to a
compact metric spac¥ of lower dimension. Consider any sequence of points
pn € M, and ballsB, = B,,» C T,, which are equipped with the pull back
metrics of the exponential mapgp, : 7,, — M,. Assume that for any such
converging subsequen® — B, the limit B has curvature> 0 in the sense of
Alexandrov.

Then for any converging subsequerge — B, the limit B has the same
dimension as the manifoldd,,, and in a neighbourhood of its center, the metric
on B coincides with that of a metric produt x N, whereN is a manifold with
two-sided bounded curvatue< K (N) < 1in the sense of Alexandrov.

Our proof of Theorem will in fact only use the following corollary of this
theorem. At first sight this corollary looks almost obvious, but it doesn’t seem
easy to adopt any of the known proofs of injectivity radius estimates to this case.

Corollary. LetM, be a(stable) sequence of closed simply connected Riemannian
manifolds of dimensiom > 2 with curvature|K(M,)| < C and uniformly
bounded diameters. Consider any sequence of ppints M,, and ballsB,, =

B, »se C T,, which are equipped with the pull back metrics of the exponential
mapsexp, : T,, — M,. Assume that for any such converging subsequence
B, — B, thelimitB has at all interior points curvature- 1. Then the manifolds

M, converge to a standard sphere.

The stability condition is actually not necessary for the above result to hold.
This can be seen from the following independent proof of the Corollary, which
does not use stability at all. The proof itself is very short, but since it uses the
notion of Grothendieck-Lipschitz convergence and Riemannian megafolds from
[PT], we decided to also incorporate the above [PRT] approach, which might be
easier to understand.

Proof of the Corollary without stability assumption.
The only nontrivial part is to establish a lower positive bound for the injectivity
radii of all manifoldsM,,.
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Since because of the Gauss-Bonnet theorem themase? is trivial, we
may assume that > 3.

If the manifoldsM,, would collapse, then, after passing to a subsequence
if necessary, one may assume that the maniféfJsGrothendieck-Lipschitz
converge to a Riemannian megafé¥iwhich is not a manifold.

The assumptions of the Corollary imply that the lirhithas constant curva-
ture= 1, so thatht = (S : G), whereG is a commutative group of isometries
of §. However, by ([PT], TheoremA.7) we have tha0H?2, (9) = HZ2,(S™),
which is a contradictiorz

2. Proofs

Proof of part (i) of Theorem A.
The first statement of the theorem will follow from the fact that the distance
function top, dist,, for sufficiently large values does not have any critical points.

By assumption, for any sequence of numbets 0 converging to zero, the
pointed Gromov-HausdorfflimitafM, eg, p) exists and is isometric to alocally
compact metric con€ with vertexo. The coneC obviously has curvature 0
(in the sense of Alexandrov) everywhere except the owginC.

Let us assume that there exists a sequence of pgirsisch thatpx,,| - oo
asn — oo, and such that eac¥, is a critical point for disf.

Consider the sequence of rescaled manifalds ¢/|px,.|, p). By the as-
sumption of the theorem, this sequence converge€t®), and the points
x, € (M, g/|px.|) (after passing to a subsequence) converge to a pontC
which has distance 1 to the origin

SinceC is a cone, we can consider:= 2x € C. Choose a sequence of
pointsy, € (M, g/|px,|) which converge ta, and consider minimal geodesics
x,y, from x, to y,. Sincex, is a critical point of disf, there is for eactn
a minimal geodesigpx, which makes an angle less than2 with the min-
imal geodesicy, y,. Therefore Toponogov’s comparison theorem implies that
im0 | pyal/|pxal < ~/2. But obviously lim_, . | pyal/|pxal = loyl/lox| =
2, a contradiction.

Thus for someR > 0 the function dist does not have any critical points
outside the open balB(p). In particular, as follows from Morse theory for
distance functions, see ([Grov], Cor. 1.94,has finite topological type, i.eM
is homeomorphic to the interior of a compact manifold with boundary (which in
our case is simply the closed balk (p)).

This also implies that the manifold has only finitely many ends.

Note that the con€’; is nothing but the closure of the connected component
of C\o that corresponds t&/;, in particular for eachv; the limit C; = GH-
lim._oeN; exists.
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Thus part (i) of Theoremd is proved.o

Proof of part (ii) of Theorem A.
The fact thatV is homeomorphic t6” 1 x [0, oo) will follow directly from the
proofs of (ii)(a) and (ii)(b). Therefore we only need to prove these two statements.

Note that if dimC; = m = dimM, then parts (ii)(a) and (ii)(b) of the theorem
are trivially true:

Indeed, if so we have that the curvature(hfis zero everywhere except the
origin. We can assume that -~ 2 (otherwise all ends would be homeomorphic
to 1 x [0, o0), and therefore in particular they would not be simply connected). It
follows thatC; = R™/F, whereF is a finite group of rotations which acts freely
onR™\0. SinceC; \ B1(0) is homeomorphic tdv;, it follows that FF = 71 (9 N;).
Since by assumptiofN; is simply connectedF must be trivial, and thus for
dimC; = m = dimM our claims are proved, since the above also implies that in
this caseV; is homeomorphic tg” 1 x [0, 0o).

From now on we will assume that dif} < m.

We can viewC; as a cone over its space of directiofs,= C(X;), where
X’; is an Alexandrov space of curvaturel or dim¥; = 1. X; can be viewed as
a “unit sphere” inC;.

We will first construct a continuous family of hypersurfadgs; . in (M, €g)
which collapse ta¥; such that the sectional curvaturesSef ; . stay uniformly
bounded. The following construction is very close to one used by Kasue in [K2].
We will therefore only explain it here; all of its details can be found in ([K2,
§ 2]).

For each rescalingM,eg, p), consider the sphere of radius $,.(p) C
(M ,eg). Its principal curvatures for outcoming normal directions lie in the range
[—C(e), oo], whereC(¢) — 1/4 ase — O.

Next consider, for an inward direction (@) the equidistant hypersurface
So-1. at distance 1 t&h,(p). Then S,_; . has uniformly bounded principal
curvatures which in fact lie in the randge C'(¢), C'(¢)], whereC’(¢) — 1 as
e — 0.

Therefore, sincé/ is asymptotically flatS,_; . has uniformly bounded sec-
tional curvature as — 0.

For sufficiently smalle it follows that S,_1 . (equipped with the induced
intrinsic metric) is a continuous family which, as— 0, collapses t&;.

Key Lemma. Take any sequence of points € Sz-1.,, &, — 0. Consider the
balls B, = B1(0) C T, (S2-1.,), €quipped with the pull back metrics.

Then as1 — oo, the B, Lipschitz converge to the ball of radidsin §'~* x
R™~! for some fixed depending on.

Moreovery; = $'-1/A, whereA is an Abelian group of isometries 6t
(here byS'~! we understand the standard- 1-sphere iff > 3, Rif / = 2, and
apointif/ = 1).
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The proof of the Key Lemma will be given below. Let us now continue with
the proof of part (ii) of Theorem:

Obviously all S,_1 . are homeomorphic téN; and therefore simply con-
nected. Now applying the Corollary in Sect. 1 we see thatm.

Using thatd N; is simply connected we can moreover show that the group
in the Key Lemma is connected: Lt be the identity component of. Then
X = §'"1/A°is abranched covering &f;, and it is easy to see that one can find
a coveringgfvfe dN; which is a lifting of £, — X,. But sincedN; is simply
connected we have thal, = ;. ThereforeA? = A, i.e., A is connected.

Now if I = 1, thenX; is a point, so thad N; must be an infranil manifold.
But any infranil manifold has infinite fundamental group, which contradicts the
fact thatd N; is simply connected.

If I = 2 it follows that X; is homeomorphic to a point dR, sinceA is
connected. The first case cannot occur by the above reasoning, and the second
contradicts tha€ is locally compact.

Therefore the only serious case to deal with is the £as@&. From the above
we have that in this casE; is isometric tas’~/ T*,

Since fore — 0 the hypersurface$,_; . collapse toX; and sinceS,_; . is
homeomorphic t@N;, we know thatX; is homeomorphic té N;/ T* and that
this homeomorphism can be chosen to preserve the natural stratifications of these
spaces.

Let us now do some topological calculations:

Let O« be a regular orbit of thg* action ondN;. Consider the relative
homotopy sequence of pairs

72(dN;, Opi) — m(T*) = 7 — 71(dN;) = 0.

Therefore rlg w2 (N;, Orv) > k.
Next consider the corresponding homotopy sequencs’fdr

0=mo(TF) = mo(S"™) = mo(8'7L, Opw) = m(TF) = ZF — my(S7h

Therefore rig 72(S'~2, O1) = k'+ rkg m2(S'™1).

On the other hand one has that dimoN; — dimX; andk’ = [ — 1— dimX;.

Let Ef denoteX’; with the singular sets removed. Consider now the following
three cases:

1. X; has no boundary. Then obviouslygkz(S'™1, O;v) =rkg m2(Z¥) =
er m2(aN;, OTk).

2. 3X; has one component. Thengkz(S'~%, Opv) =rkoma(ZF) + 1 =
tkom2(dN;, Oe).

3. 3X; has more than one component.

In both case 1 and case 2 it follows that> k— rkgm2(S'~1), and hence
m <1+ rkgma(S'71).
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However, this contradicts the fact tHak m, exceptifm = 4,1 = 3.

In this particular case it follows thaf; = S2/A™. Therefore, since&Z; has
not more than one boundary component, we haveAlfas trivial and X; = S2.
ThusC; = C(X;) = R3 (and that this indeed can happen was shown in [U]).

Case 3 can only occur if; is homeomaorphic td0, 1]. Then, sinceN; is
simply connected, it must hold that k' < 2. Since theT'* action ondN; has
empty fixed point set, we have that= 2, and sincd < m, we have that
k' = 1. Thereforen = 4,1 = 3 andX; is isometric tos?/S* = [0, ], so that
C; =C(X;) =R x [0, 00).

The proof of Theoren is complete. O

Proof of Theorem B.

Let M be an asymptotically flat-manifold with nonnegative sectional curvature.
Then M has cone structure at infinity, and by [GP] the s6ubf M is flat.
This forces the universal covet of M to split isometrically as a Euclidean
part, coming from the soul, and a nonnegatively curved complete manifgld
homeomorphic tdR*.

Now F is also asymptotically flat and has one effd! x [0, c0). Therefore
by Theoremd, if k # 2, 4, then the cone at infinity af is isometric taR*. Since
by Toponogov’s Comparison Theorem any line in the cone corresponds to a line
in F, it follows from the Toponogov Splitting Theorem thétitself is isometric
to R¥.

Thus to finish the proof we must only exclude the dase4. By Theorem\,
if k = 4 we have thaC = GH-lim._,¢ ¢ F is isometric to one of the following:
R4 R3orR x [0, 0o). In all of these cases we have ti@atontains a line, and
thereforeF splits isometrically a® x F’. But sinceF is asymptotically flat it
follows thatF' is flat, and therefore is isometric toR*. O

Proof of the Key Lemma.

Consider av-neighbourhood/ > X; C C;. From the results of [CFG] (see
Sect. 1 of [PRT], where also further references can be found) we haae an
structurer : E. — U, whereE, is a subset of M, €g) containing the hyper-
surfaceS,_1 .. SinceE, is homotopically equivalent tdN;, it follows that E.

is simply connected. Therefore thé structure is given by an almost isometric
smoothT*-action without fixed points (see again Sect. 1 in [PRT]).

Now take a pointr € X; C C; (so|ox| = 1) and consider a spherical
neighbourhood ot/ > x. Consider the preimagé. = 7 YU,) C E. and let
V. be its universal Riemannian covering. Then fHeaction induces an almost
isometricRf x F action onV,, whereF is a finite Abelian group.

From [CFG] one has a uniform bound for the injectivity radius/afso that,
ase — 0, V converges to aflat mamfol?zb with boundary and isometrig* x F
action (for the convergence claim see the first part of Lemma 2.1.4 in [PRT]).
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Since the interior ofV; is flat, there exists a maﬁo — R™ which is for
all interior points a local isometry. Therefore tRé x F action onV, can be
extended to an action of whoR”, and the local factor&;R” /R* are isometric
to local branched coverings of subset€pf(Here by local factors we understand
factorizingU by the connected components of fkfeorbits inU, as is illustrated
in the following picture).

one Rk-or bit

different components
of one orbitin U.

Fig. 1.

Now the above groufR* can be regarded as an Abelian group of isometries
of Euclidean spac&™. We will show that in our cas®&* actually splits into a
direct sum of translations and rotations.

To this means first note the following:

Sublemma. Let a connected Abelian grouf act on Euclidean spack™ by
isometries. Then one can repres&it as an orthonormal surid & W such that
H is contained in a direct sum of translations and rotations,

H < At}”@Ar()l"

so that the following holds: The groufy” = V is the group consisting of all
parallel translations alongV, and A™ C O(W) is an Abelian subgroup of
rotations ofW.

Proof of the Sublemma.

By [Al] one orbit of H is an affine subspadé (in fact, such an orbit corresponds
to the origine of C;). Choose the origin of affine spa® so that it is contained
in this subspace. Each element H can be viewed aé,, ¢,) € V x O(m),
such thate(x) = ry + ¢ (x) for anyx € R™.
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ThenV can be viewed as the set of all pure translation&ofA’ = V =
{r : (r,¢) € H forsomep € O(m)}. Let A" :={¢ : (r, ) € H for somer}
be the group of pure rotations &f. If each¢ € A" acts trivially onV, then
obviouslyH < A" @& A", which is exactly what we want.

Therefore we only have to prove that for apye A™ and anyv € V we
have that (v) = v.

Take any(r,¢) € H andv € V. For alln € N there existsp, € O(m)
such that(nv, ¢,) € H. SinceH is Abelian, it follows that(r, ¢)(nv, ¢,) =
(nv, ¢,)(r, ) and thereforeiv + ¢,r = r + ¢nv. Dividing by n and letting
n — oo thus impliespv = v. O

Thus our grougR* is contained in a direct sum” @ A", where A" is
universal covering Lie group of*’. Now note that since the local factors Ry
have a cone structur®* moreover itself splits aR* = A" @ Arot:

Indeed, since the local factdryR* admit a cone structure, in radial directions
their sectional curvatures must be zero. But this is impossible uRfessitself
a direct producRf = H = A” @ A"":

To prove this, we only have to show that (in the notation of the Sublemma) it
holds thatA™" ¢ H.Assume that this is wrong.

Thenwe canfindaray: [0, o0) — R™ which is orthogonal t&/, and there
will be an elemenix € 4" in the Lie algebra ofA”" which is not contained in
the Lie algebra off, so thate defines a linear Jacobi field on the rayhich
can assumed to be non-zero.

Consider now the projectianof ¢ along some local factor. Thenis a piece
of a ray in the con& and the projectiony of the field J is also a Jacobi field.
But sinceC is a cone, any Jacoby field aloagnust be linear. On the other hand
it is straightforward to show that (¢)| is a strictly concave function, and this is
a contradiction.

Therefore the local facto® /A" are isometric to local branched coverings
of C; (everywhere e/xge/pt the origin). Thas \ o is isometric to a factor of its

universal covering(W \ 0)/A, by an Abelian Lie groupi. Restricting this last
isometry to the unit spheres of both cones it follows that= S'~1/A, and the
second part of the Key Lemma is proved. _

Letp : V. — V. be the covering map ar}_; . = p~1(S2_1..). It converges
to the preimage of; under the map/y, — Vo/A = U, C C;, so that it
locally coincides with the cylinde¥ x S'~1, whereS'! is the unit sphere ifv.
Therefore, since € X; can be chosen to be arbitrary, the covering geometry of
S»_1.. converges to the one of x S/, and this finishes the proof of the first
part of the Key Lemmaz
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3. Remarks and open questions

Question 1.Let M be an asymptotically flat manifold, and let the sequence
(M, €,g, p) converge tdG, o) ase, — 0. Assume that dit@ > 3 and thatG\o
has only one connected component.

Is it true thatG is a metric cone with origia?

A positive answer to this question could possibly lead to a general classi-
fication of asymptotically flat manifold of higher dimension. To obtain such
a classification is particularly interesting because of the fact that Gromov (see
[Grom], p.96 and also [LS]) showed that any (smooth paracompact) noncompact
manifold M admits a complete Riemannian metric whose asymptotic curvature
satisfiesA (M) < C, whereC depends only on the dimension &f.

Question 2.Does there exist in each dimensiara positive constan® (m) such
that any noncompact complete Riemanmamanifold M with A(M) < C(m)
is asymptotically flat?

Note that the answer (positive or negative) to the following question would
give a complete classification of the cone structures at infinity of simply con-
nected ends of asymptotically flat manifolds:

Question 3.Can the con® x [0, co) be a cone at infinity of a simply connected
end of an asymptotically flat 4-manifold?

It seems not possible to obtain such an example by a direct generalization of
Unnebrink’s example. Namely, one can exchange the Berger spﬂ’fgg%) (in
the notation of [U]) in Unnebrink’s example mg(t),f(t),hm, where the number
a(t) describes along which one-dimensional subgroup offth@ction on the
standards® we shrink the distance (s.fs‘.j,3 ., Is a Berger sphere if = +1). But
direct calculation then shows that there is no triple of functieng, & which
would give an asymptotically flat 4-manifold wikix [0, co) as a cone atinfinity.

However, on the other hand, if one would takerasconstant which is close
to 1, then as a result one obtains an @hdhose asymptotic curvatue(N) is
arbitrarily small and which haR x [0, co) as cone at infinity.

Remark.The same arguments as the one which we used in the proof of Theorem
A actually also make it possible to characterize the cones at infinity of complete
noncompact manifolds whose asymptotic curvatusisit

Namely, if for some given sequence of simply conneetedimensional ends
N, with A(N,) — 0 asn — oo their cones at infinityC,, Gromov-Hausdorff
converge to some metric spacéwhich then must be a cone), then for sufficently
largen it holds thatN, is homeomorphic t&™~1 x [0, oo) and moreover the
following is true:

(@) if m # 4, thenC is isometric toR™;
(b) if m = 4, thenC is isometric to one of the following spacek4, R3, or
R x [0, 00).



Asymptotical flatness and cone structure at infinity 787

The above modification of the Unnebrink construction for consiastiows
that for manifolds with small asymptotic curvature all cones which are mentioned
in part (b) actually do arise.

As a last point we would like to mention that the methods we used in this paper
do not distinguish between spaces which are asymtotically flat and sequences of
spaces whose asymptotic curvature goes to zero.

Therefore, no matter how special our question whekher [0, oo) can be a
cone at infinity of a simply connected end of an asymptotically flat 4-manifold
might at first sight look like, any negative answer to it will require more sensitive
collapsing techniques.
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