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Abstract

Our main results can be stated as follows:
1. For any given numbers m, C and D, the class of m-dimensional

simply connected closed smooth manifolds with finite second ho-
motopy groups which admit a Riemannian metric with sectional
curvature bounded in absolute value by |K| ≤ C and diameter
uniformly bounded from above by D contains only finitely many
diffeomorphism types.

2. Given any m and any δ > 0, there exists a positive constant
i0 = i0(m, δ) > 0 such that the injectivity radius of any simply
connected compact m-dimensional Riemannian manifold with
finite second homotopy group and Ric ≥ δ, K ≤ 1, is bounded
from below by i0(m, δ).

In an appendix we discuss Riemannian megafolds, a generalized
notion of Riemannian manifolds, and their use (and usefulness) in
collapsing with bounded curvature.

0 Introduction

This note is a continuation of the work begun in [PetrRTu] (this issue) and
centers around the problems of establishing finiteness theorems and injec-
tivity radius estimates for certain classes of closed Riemannian manifolds.
Our first result can be stated as follows:

Theorem 0.1 (π2-Finiteness theorem). For given m,C and D, there is
only a finite number of diffeomorphism types of simply connected closed m-
dimensional manifolds M with finite second homotopy groups which admit
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Riemannian metrics with sectional curvature |K(M)| ≤ C and diameter
diam(M) ≤ D.

Note that in this theorem, no assumption can be removed. Indeed, the
assumption of an upper curvature bound is necessary, since, for example,
there exists an infinite sequence of nonnegatively curved, but topologically
distinct S3 bundles over S4 ([GrovZi]). On the other hand, uniformly
pinched sequences of Aloff-Wallach, Eschenburg and Basaikin spaces (see
[AlW], [E], [Ba]) show the necessity of requiring that the second homotopy
group always be finite. These examples show moreover that in this sense
also the following result is optimal:

Corollary 0.2 (A “classification” of simply connected closed manifolds).
For given m,C and D, there exists a finite number of closed smooth mani-
folds Ei such that any simply connected closed m-dimensional manifold M
admitting a Riemannian metric with sectional curvature |K(M)| ≤ C and
diameter diam(M) ≤ D is diffeomorphic to a factor space M = Ei/T

ki ,
where 0 ≤ ki = dimEi −m and T ki acts freely on Ei.

(For a slight refinement of the corollary see Remark 2.3.)
Here is a short account of the principal finiteness results (we know of)

which only require volume, curvature, and diameter bounds: For manifolds
M of a given fixed dimension m, the conditions
• vol(M) ≥ v > 0, |K(M)| ≤ C and diam(M) ≤ D imply finiteness

of diffeomorphism types ([C] and [Pet]); this conclusion continues to
hold for vol(M) ≥ v > 0,

∫
M |R|m/2 ≤ C, |RicM | ≤ C ′, diam(M) ≤

D ([AnC1]);
• vol(M) ≥ v > 0, K(M) ≥ C diam(M) ≤ D imply finiteness of homo-

topy types ([GrovPete]), homeomorphism types ([Pe]) and Lipschitz
homeomorphism types (Perelman, unpublished). If m > 4, these con-
ditions imply finiteness diffeomorphism types (compare [GrovPW]);
• K(M) ≥ C and diam(M) ≤ D imply a uniform bound for the total

Betti number ([Gro1]).
The π2-Finiteness theorem and Corollary 0.2 require two-sided bounds

on curvature, but no lower uniform volume bound. Thus, in spirit these
results are somewhere between Cheeger’s Finiteness and Gromov’s Betti
number theorem. Let us now point out some of their consequences.

The π2-Finiteness theorem implies by Myers’ theorem in particular the
following finiteness result:

Given any m and δ > 0, there is only a finite number of diffeomor-
phism types of simply connected closed m-dimensional manifolds M with
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finite second homotopy groups which admit Riemannian metrics with Ricci
curvature Ric ≥ δ > 0 and sectional curvature K ≤ 1.

Using Corollary 0.2 one can show (see [Tu]) that in low dimensions the
assumption on the finiteness of the second homotopy groups in Theorem 0.1
can actually be dropped:

For given C and D, there is only a finite number of diffeomorphism types
of simply connected closed m-manifolds, m < 7, which admit Riemannian
metrics with sectional curvature |K| ≤ C and diameter ≤ D.

This last result (for an independent proof see [FR2]) explains in particu-
lar why 7 is the first dimension where infinite sequences of closed simply con-
nected manifolds of mutually distinct diffeomorphism type and uniformly
positively pinched sectional curvature (see [AlW], [E]) can appear.

For positively curved manifolds, by building on the results from
[PetrRTu] (on which, by the way, the π2-Finiteness theorem does not de-
pend at all), one can in fact obtain stronger versions of Theorem 0.1.

Theorem 0.3 (π2-theorem). For each natural number m and any δ > 0
there exists a positive constant i0(m, δ) > 0 such that the injectivity radius
ig of any δ-pinched Riemannian metric g on a simply connected compact
m-dimensional manifold M with finite second homotopy group is uniformly
bounded from below by ig ≥ i0(m, δ).

Note that in Gromov-Hausdorff convergence terms the π2-theorem can
be formulated as follows:

Theorem 0.3′. There is no collapsing sequence of simply connected mani-
folds with finite second homotopy groups and fixed dimension and positively
pinched curvature 1 ≥ K ≥ δ > 0.

Theorem 0.3 proves in particular a principal case of the following con-
jecture of Klingenberg and Sakai:

Conjecture ([KlS2]). Let M be a closed manifold and δ > 0. Then there
exists i0 = i0(M, δ) > 0 such that the injectivity radius ig of any δ-pinched
metric g on M , i.e., any metric with sectional curvature δ ≤ Kg ≤ 1, is
bounded from below by ig ≥ i0.

A different proof of Theorem 0.3 (but also based on [PetrRTu]) has
been given by Fang and Rong ([FR1], in this issue). Theorem 0.3 actually
also holds under the more relaxed curvature conditions of positive Ricci
pinching:

Using a synthetic version of positive Ricci curvature for (a very spe-
cial class of) Alexandrov spaces, we show why for the existence of lower
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injectivity radius bounds the finiteness of the second homotopy groups is a
sufficient condition also under the conditions K ≤ 1 and Ric ≥ δ > 0 (for
an alternative proof see also the end of the present paper’s Appendix):

Theorem 0.4. There is no collapsing sequence of simply connected mani-
folds with finite second homotopy groups and fixed dimension with curva-
ture conditions K ≤ 1 and Ric ≥ δ > 0. In other words:

Given any m and any δ > 0, there exists a positive constant i0 =
i0(m, δ) > 0 such that the injectivity radius of any simply connected
compact m-dimensional Riemannian manifold with finite second homotopy
group and Ric ≥ δ, K ≤ 1, is bounded from below by i0(m, δ).

Note that since a positive Ricci pinching condition does not allow to
make use of Synge’s lemma (as in [Kl1]), this last result is new even in even
dimensions.

We show that this result is optimal even if (as in the Klingenberg-Sakai
Conjecture) we fix the topological type. Namely, there is a sequence of
metrics gn on S2 × S3 which satisfy the bounds Kgn ≤ 1 and Ric ≥ δ > 0,
but for which the spaces (S2 × S3, gn) collapse to S2 × S2. This and more
interesting examples will be discussed in section 4.

In fact, all results from [PetrRTu] (among them the Continuous Collapse
theorem and Stable Collapse theorem, see Theorems 1.5–1.7 below and
section 3) are also valid for positive Ricci pinching conditions. Here is one
illustration (the bounded version of the Klingenberg-Sakai conjecture for
Ricci pinching conditions):

Theorem 0.5. Let M be a closed manifold, d0 be a metric on M and δ > 0.
Then there exists i0 = i0(M,d0, δ) > 0 such that the injectivity radius ig
of any Ricci-δ-pinched d0-bounded metric g on M (i.e., any Riemannian
metric g with Ricg ≥ δ, Kg ≤ 1 and distg(x, y) ≤ d0(x, y)) is bounded from
below by ig ≥ i0.

For a brief history of the problem of finding lower positive bounds for
the injectivity radii of simply connected δ- and Ricci-δ-pinched Riemannian
m-manifolds Mm which depend only on the pinching constant δ and/or (the
dimension of) the manifold, we refer the reader to [PetrRTu]. As original
sources we mention the papers [Po], [Kl1,2], [BuT], [CGr], [KlS1,2], and
[AMe].

For a Riemannian manifold M let R2 : Λ2(T (M))→ Λ2(T (M)) be the
curvature operator which occurs in the Bochner formula for two-forms, i.e.,
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the one so that for any 2-form φ on M one has that
D2φ = ∇∗∇φ+ R2(φ) .

Let us mention one more result:

Theorem 0.6. There is no collapsing sequence of simply connected com-
pact Riemannian m-manifolds with uniformly bounded diameters which
satisfies the curvature conditions K ≤ 1 and R2 ≥ δ > 0. In other words:

Given any m,D and any δ > 0, there exists a positive constant i0 =
i0(m, δ,D) > 0 such that the injectivity radius of any simply connected
compact m-dimensional Riemannian manifold with diameter ≤ D and
R2 ≥ δ, K ≤ 1, is bounded from below by i0(m, δ,D).

Note that since in dimension 3 the conditions Ric > 0 and R2 > 0 are
equivalent, Theorems 0.4 and 0.6 can be considered as direct generalizations
of the Burago-Toponogov result ([BuT]) to general dimensions. Also note
that for dimension m ≥ 4 these two conditions are independent (i.e., neither
one of them implies the other).

The remaining parts of this paper are organized as follows:
In section 1, the relevant preliminaries are presented. The proofs of the

π2-theorem and the π2-Finiteness theorem and its corollary are given in sec-
tion 2. The extensions of the π2-theorem as well as the above-mentioned
results from [PetrRTu] to positive Ricci pinching conditions are given in sec-
tion 3. In section 4 we construct some examples to show that under these
conditions, the π2-theorem is indeed optimal. There we also disprove a con-
jecture of Fukaya on the dimension of limit spaces of collapsing sequences
of manifolds with uniformly positively pinched curvature. In section 5 we
discuss several open problems. In an appendix we describe a generalized
notion of Riemannian manifold and its use in the context of our results and
collapsing with bounded curvature.

We would like to thank Stephanie B. Alexander, Yuri D. Burago, Misha
Gromov, Karsten Grove, Jürgen Jost and Wolfgang Ziller. They all know
what for.

1 Preliminaries and Rough Structure of the Proofs

In this section, we introduce some notation and review relevant results. A
little more detailed discussion is given in [PetrRTu]. For basic notions and
results about collapsed manifolds, (equivariant) Hausdorff convergence, and
Alexandrov spaces the reader is referred to [BuGroPe], [CFuGro], [Fu3] and
[GroLP].
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Let M = (Mm, g) be a Riemannian manifold of dimension m and let
FM = F (Mm) denote its bundle of orthonormal frames. When fixing
a bi-invariant metric on O(m), the Levi-Civita connection of g gives rise
to a canonical metric on FM , so that the projection FM → M becomes
a Riemannian submersion and so that O(m) acts on FM by isometries.
Another fibration structure on FM is called O(m) invariant, if the O(m)
action on FM preserves both its fibres and its structure group.

A pure N -structure on Mm is defined by an O(m) invariant fibration,
η̃ : FM → B, with fibre a nilmanifold isomorphic to (N/Γ,∇can) and
structural group contained in the group of affine automorphisms of the
fibre, whereN is a simply connected nilpotent group and∇can the canonical
connection on N for which all left invariant vector fields are parallel. A
pure N -structure on M induces, by O(m)-invariance, a partition of M
into “orbits” of this structure (see [CFuGro]), and is then said to have
positive rank if all these orbits have positive dimension. A pure N-structure
η̃ : FM → B over a Riemannian manifold (M,g) gives rise to a sheaf on
FM whose local sections restrict to local right invariant vector fields on the
fibres of η̃; see [CFuGro]. If the local sections of this sheaf are local Killing
fields for the metric g, then g is said to be invariant for the N -structure
(and η̃ is then also sometimes referred to as pure nilpotent Killing structure
for g).

Theorem 1.1 ([CFuGro], [R1]). Let form ≥ 2 andD > 0 M(m,D) denote
the class of all m-dimensional compact connected Riemannian manifolds
(M,g) with sectional curvature |Kg| ≤ 1 and diameter diam(g) ≤ D.

Then, given any ε > 0, there exists a positive number v = v(m,D, ε) > 0
such that if (M,g) ∈M(m,D) satisfies vol(g) < v, then Mm admits a pure
N-structure η̃ : FM → B of positive rank so that

(a) There is a smooth metric gε on M which is invariant for the N -
structure η̃ and for which all fibres of η̃ have diameter less than ε,
satisfying

e−εg < gε < eεg , |∇g −∇gε | < ε , |∇lgεRgε | < C(m, l, ε) ;
(b) There exists c(m) < ∞ such that the invariant metric gε in (a) also

satisfies the curvature bounds
min Kg − c(m)ε ≤ Kgε ≤ max Kg + c(m)ε ;

(c) There exist constants i = i(m, ε) > 0 and C = C(m, ε) such that,
when equipped with the metric induced by gε, the injectivity radius
of B is ≥ i and such that the second fundamental form of all fibres
of η̃ is bounded by C.
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Remark 1.2. Parts (a) and (c) of Theorem 1.1 follow from [CFuGro,
Theorem 1.3 and Theorem 1.7]. Part (b) of Theorem 1.1 is proved in
[R1]. The fact that the N-structure η̃ in Theorem 1.1 is indeed a pure
structure follows from the presence of a diameter bound (compare [Fu3]).
The assertion about the injectivity radius of B in part (c) of Theorem 1.1
can be extracted from [CFuGro, section 5].

TheO(m) invariance of a pure N-structure η̃ : FM → B implies that the
O(m) action on FM descends to anO(m) action onB and that the fibration
on FM descends to a possibly singular fibration on M , η : Mm → B/O(m),
such that the following diagram commutes.

F (Mm)
η̃−−−→ Byπ yπ̃

Mm η−−−→ B/O(m)

If π1(Mm) is finite, then the homotopy exact sequence shows that the
fibre of a pure N-structure on M is a torus. If, in particular, Mm is simply
connected, then since in this case the structure group of the torus fibration
is trivial, a pure N-structure on a simply connected M is defined, up to an
isomorphism, by a global torus action.

Theorem 1.1 and the above remark imply the following result, which we
are going to use throughout this paper. (The first part of Theorem 1.3(c)
below is a consequence of Perelman’s Stability theorem ([Pe]).)

Theorem 1.3. Assume that (Mn, gn) is a sequence of simply connected
compact Riemannian m-manifolds with sectional curvature bounds λ ≤
K(gn) ≤ Λ and diameters diam(Mn) ≤ D which collapses to an Alexandrov
space X of dimension m−k. Then, given any ε > 0, for n = n(ε) sufficiently
large the following holds:

(a) There exists on the frame bundle FMn of Mn an O(m) invariant T k

fibration structure T k → FMn → Bn for which the induced fibration
on Mn is given by a smooth global effective T k action with empty
fixed point set all of whose orbits have diameter less than ε;

(b) There exists on Mn a T k invariant metric g̃n which satisfies

e−εgn < g̃n < eεgn , λ− ε ≤ K(g̃n) ≤ Λ + ε ;

(c) The orbit space Mn/T
k is homeomorphic to X and, when equipped

with the metric induced by g̃n, the Gromov-Hausdorff distance be-
tween X and Mn/T

k is less than ε;
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(d) There exist constants i = i(ε) > 0 and C = C(ε), such that when the
frame bundle FMn is equipped with the metric defined by the Levi-
Civita connection of g̃n, then FMn has sectional curvature bounded
by |K(FMn)| ≤ C and the injectivity radius of Bn = FMn/T

k is ≥ i.
(e) If in addition Ric(gn) ≥ λ′, then the invariant metrics g̃n can also be

chosen to satisfy Ric(g̃n) ≥ λ′ − ε.
We note that 1.3(e) does not follow directly from the above. Its proof

is an exact copy of the proof of Proposition 2.5 in [R1], if one replaces
the expression A(t) used there by A(t) = supe,x Ric( gt), where e is a one-
dimensional direction in TxM . Let us also note that in 1.3(d), one can in
addition also obtain that the sectional curvatures of all manifolds Bn are
uniformly bounded in absolute value. This follows for instance from [Fu2]
(but we will not use this fact).

We will refer to the torus actions arising from Theorem 1.3(a) as collapse-
related torus actions or collapsing torus actions associated to the (suffi-
ciently collapsed) metrics gn.

For the proof of the π2-theorem we will use the Stable Collapse theorem
from [PetrRTu]. To this means recall the following notion of stability of a
collapsing sequence of metric spaces:

Definition 1.4. A sequence of metric spaces Mn is called stable if there
is a topological space M and a sequence of metrics dn on M such that
(M,dn) is isometric to Mn and such that the metrics dn converge uniformly
as functions on M ×M to a continuous pseudometric.

In [PetrRTu], the following results were obtained:

Theorem 1.5 (Stable Collapse theorem) ([PetrRTu]). Suppose that a
compact manifold M admits a sequence of metrics (gn)n∈N with sectional
curvatures λ ≤ Kgn ≤ Λ, such that, as n → ∞, the metric spaces (M,gn)
Hausdorff converge to a compact metric space X of lower dimension. Then,
provided that {(M,gn)} contains a stable subsequence, the metrics gn can-
not be uniformly positively pinched, i.e., λ cannot be positive.

Theorem 1.6 (Continuous Collapse theorem) ([PetrRTu]). Suppose that
a compact manifold M admits a continuous one parameter family (gt)0<t≤1
of Riemannian metrics with sectional curvature λ ≤ Kgt ≤ Λ, such that,
as t → 0, the family of metric spaces (M,gt) Hausdorff converges to a
compact metric space X of lower dimension. Then these metrics cannot be
uniformly positively pinched, i.e., λ cannot be positive.
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Theorem 1.7 (Bounded version of the Klingenberg-Sakai conjecture)
([PetrRTu]). Let M be a closed manifold and d0 be a metric on M and
δ > 0. Then there exists i0 = i0(M,d0, δ) > 0 such that the injectivity
radius ig of any δ-pinched d0-bounded metric g on M , i.e., any Riemannian
metric g with sectional curvature δ ≤ Kg ≤ 1 and distg(x, y) ≤ d0(x, y), is
bounded from below by ig ≥ i0.

To prove the π2-theorem (Theorem 0.3 in the Introduction), we therefore
simply have to show that any collapsing sequence of m-dimensional com-
pact simply connected Riemannian manifolds with finite second homotopy
groups and uniformly bounded curvatures contains a stable subsequence
and then apply the Stable Collapse theorem.

The Stable Collapse theorem relies on the following result:

Theorem 1.8 (Gluing theorem) ([PetrRTu]). Let {Mn} be a stable se-
quence of simply connected Riemannian manifolds with uniformly bounded
sectional curvatures λ ≤ Kgn ≤ Λ such that the sequence of metric spaces
Mn Hausdorff converges to a compact metric space X of lower dimen-
sion. Then there exists a noncompact complete Alexandrov space Y =
Y (X, (gn)) with the same lower curvature bound λ.

The Stable Collapse theorem then follows by contradiction from the
Gluing theorem and the following extension of Myers’ theorem:

Theorem 1.9 ([BuGroPe]). A complete Alexandrov space with lower pos-
itive curvature bound has finite diameter and hence is compact.

The Continuous Collapse theorem and the bounded version of the Klin-
genberg-Sakai Conjecture theorem are proven by showing that inside a con-
tinuous and collapsing one parameter family of metrics, or, respectively,
inside a collapsing sequence of d0-bounded metrics one can always find an
infinite sequence of collapsing metrics which is stable in the sense of Defi-
nition 1.4, so that the Stable Collapse theorem applies.

Note that the procedure of finding such stable subsequences in [PetrRTu]
works for sectional curvature just bounded in absolute value. Thus, the π2-
theorem, the Continuous Collapse theorem and the bounded version of the
Klingenberg-Sakai Conjecture theorem will immediately extend to positive
Ricci pinching conditions once we have shown that the proof of the Stable
Collapse theorem extends to positive Ricci pinching conditions – and for
this we only have to establish an analogue of the Bonnet-Myers theorem
for the Alexandrov spaces Y that arise from the Gluing theorem.
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2 The π2-theorem and Diffeomorphism Finiteness

In this section, we will prove the π2-Diffeomorphism Finiteness theorem,
the classification theorem 0.2 and the π2-theorem for sectional curvature
pinching:

Theorem 2.1 (π2-Finiteness theorem). For given m,C and D, there is
only a finite number of diffeomorphism types of simply connected closed m-
dimensional manifolds M with finite second homotopy groups which admit
Riemannian metrics with sectional curvature |K(M)| ≤ C and diameter
diam(M) ≤ D.

Theorem 2.2 (A “classification” of simply connected closed manifolds).
For given m,C and D, there exists a finite number of closed smooth mani-
folds Ei such that any simply connected closed m-dimensional manifold M
admitting a Riemannian metric with sectional curvature |K(M)| ≤ C and
diameter diam(M) ≤ D is diffeomorphic to a factor space M = Ei/T

ki ,
where 0 ≤ ki = dimEi −m and T ki acts freely on Ei.

Remark 2.3. Using the same technique, one can strengthen the conclu-
sions as follows:

For given m,C and D, there exist finitely many closed manifolds Ei
with a torus action, (Ei, T si), such that any simply connected closed m-
dimensional manifold M admitting a Riemannian metric with sectional
curvature |K(M)| ≤ C and diameter diam(M) ≤ D is diffeomorphic to a
factor space M = Ei/T

ki , where 0 ≤ ki = dimEi −m, T ki is a subgroup
of T si , and T ki acts freely on Ei.

Theorem 2.4. There is no collapsing sequence of simply connected mani-
folds with finite second homotopy groups and fixed dimension and positively
pinched curvature 1 ≥ K ≥ δ > 0.

For the proof of the above theorems, let us first introduce some notation
and prove two lemmas.

Definition 2.5.A. Let (Zn, G, ρn) and (Z,G, ρ) be compact spaces with
metrics ρn and ρ, and isometric actions of a compact group G. We say that
(Zn, G, ρn) converges to (Z,G, ρ) in the G-equivariant Hausdorff topology,
if there is a metric d on the disjoint union of {Zn} and Z such that:

(a) d|Zn ≡ ρn for all n and d|Z ≡ ρ;
(b) the spaces Zn (as subsets) converge to Z in the standard Hausdorff

sense, i.e., for any ε > 0 we have (with respect to the d-metric) that
Z ⊂ Bε(Zn) and Zn ⊂ Bε(Z) when n is sufficiently large;
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(c) there exist automorphisms An : G→ G such that, with respect to d,
the G action on the disjoint union of all {(Zn, An(G))} and (Z,G) is
an isometric action.

Definition 2.5.B. Let (M,G) and (M ′, G) be G manifolds, where G is a
Lie group. Then (M,G) and (M ′, G) are said to be (G) diffeomorphic, if
there exists a diffeomorphism h from M to M ′ and an automorphism A of
G which conjugate the G actions, i.e., for which for all x ∈ M and g ∈ G
it holds that h(gx) = A(g)h(x).

When we will construct or speak aboutG-diffeomorphisms (orG-conver-
gence), the automorphisms A (An) will not be explicitly mentioned.

Key Lemma 2.6. Let (F,G × T k) and (F ′, G × T k) be simply connected
compact G×T k manifolds with finite second homotopy groups, where G is
a connected compact Lie group whose fundamental group is finite. Assume
that the T k subactions on F and F ′ are free and that there is a G diffeomor-
phism h : (F/T k, G)→ (F ′/T k, G). Then there is a G×T k diffeomorphism
h̃ : (F,G× T k)→ (F ′, G× T k) such that the following diagram commutes:

(F,G× T k) h̃−−−→ (F ′, G× T k)yπ yπ′
(F/T k, G) h−−−→ (F ′/T k, G)

Proof of Key Lemma 2.6. Set (Y,G) := (F/T k, G) =h (F ′/T k, G). First
note that from the homotopy exact sequence for fibre bundles we have that

π2(F )→ π2(Y ) e→ π1(T k)→ π1(F ) = 0 ,

where the mapping e ∈ H2(Y,Zk) is the T k bundle version of the Euler
class for circle bundles.

So if Tor is the torsion part of π2(Y ), then π2(Y )/Tor = Zk and there is
an isomorphism π2(Y )/Tor e→ π1(T k). This isomorphism induces a unique
isomorphism A : T k → T k, where the first torus T k acts on F and the
second on F ′. Thus, from now on we can think that the same torus T k is
acting on both F and F ′, and that the T k-Euler class of these actions is
the same.

Therefore it is possible to construct a diffeomorphism h∗ from F to
F ′ which conjugates the T k actions, so that (F, T k) and (F ′, T k) are T k
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diffeomorphic and which makes the following diagram commute:

(F, T k) h∗−−−→ (F ′, T k)yπ yπ′
(F/T k, G) h−−−→ (F ′/T k, G)

To show that (F,G×T k) is diffeomorphic to (F ′, G×T k), we now only
need to correct the constructed diffeomorphism h∗ in such a way that the
G× T k actions are conjugate.

The idea of the following construction is essentially the same as one
used in [GrovK].

We will proceed in the following way: After applying h∗ : F → F ′, we
simply rotate each T k orbit T k ·h∗(x) of F ′ by multiplying by an appropri-
ately chosen element w−1(x) ∈ T k. In other words, we obtain a smooth map
w−1 : F → T k which is T k invariant (i.e., which satisfies w−1(τx) = w−1(x)
for all τ ∈ T k and x ∈ F ), and the map h̃ := w−1 · h∗ will then be the
desired one.

Since π (and π′) commutes with theG action, from the last commutative
diagram we have that π′ ◦ h∗(gx) = π′(gh∗(x)). Therefore h∗(gx) and
gh∗(x) live in the same orbit (of the free T k-action), and thus there exists
a mapping η : G× F → T k such that

η(g, x)h∗(gx) = gh∗(x).

The mapping η(g, x) is T k invariant, i.e., η satisfies η(g, τx) = η(g, x) for
any τ ∈ T k, g ∈ G and x ∈ F . Moreover, one has that

η(g′g, x) = η(g′, gx)η(g, x) . (∗)
Now set w(x) = mean valueG(η(g, x)), and note that this average of

η(·, x) over G is well defined. In fact, since G has finite fundamental group,
there is a continuous lift of η to η̃ : G×F → Rk, where Rk is the universal
covering Lie group of T k = Rk/Zk. Now all such lifts differ from each
other by an element of Zk, so that for different lifts of η the mean values of
those lifts also only differ by elements of Zk. Therefore the projections of
these mean values back to the torus T k give us for fixed x always the same
element, so that w(x) is well defined.

Integrating (∗) by g′ we get that for all x ∈ F , the mean value w(x)
satisfies

w(x) = η(g, x)w(gx) .
Now consider the map h̃ : F → F ′, defined by h̃(x) := w−1(x)h∗(x)

(where w−1(x)w(x) = id ∈ T k).
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We claim that h̃ is a diffeomorphism which conjugates the (G × T k)
actions on F and F ′.

Let us first see why this map is a diffeomorphism: Note that h̃ is a bi-
jection, because since w−1 is T k invariant, h̃ is one-to-one on each T k orbit.
Moreover, h̃ is a smooth map because w, being the average of smooth func-
tions G → T k, is smooth. To see that also the inverse of h̃ is smooth, one
could check by using local coordinates that the differential of h̃ is invertible
in every point. However, a shorter argument for this last assertion is the
following one: Choose any T k invariant volume form on F ′. Then, since
w−1 is simply rotating the T k orbits, the smooth map sending h∗(x) to
w−1(x)h∗(x) is volume preserving and thus a diffeomorphism of F ′. There-
fore h̃ is a diffeomorphism.

It remains to show that h̃ preserves the G × T k actions: Indeed, in
noting that w−1(x)g = gw−1(x) (since the G and T k subactions commute
and g ∈ G and w−1(x) ∈ T k) we have that
gh̃(x)

= w−1(x)gh∗(x) = w−1(x)η(g, x)h∗(gx) = w−1(x)η(g, x)w(gx)h̃(gx)

= h̃(gx) .
The following lemma is just slightly more general than Theorem 6.9 of

[Fu3] (which in [Fu3] is stated without proof).

Lemma 2.7. Let (Yi, G) → (Y,G) be a sequence of smooth compact m-
dimensional Riemannian G manifolds Yi with diameter diam(Yn) ≤ D,
injectivity radius ≥ i0 > 0 and curvature bounded from below by K ≥ λ,
which G-Hausdorff converges to an Alexandrov space Y of the same dimen-
sion, where G is a compact connected Lie group.

Then Y is a C1-smooth manifold with a Riemannian metric of class
C0, and for i sufficiently large there exist C1 diffeomorphisms πi : Yi → Y ,
which are also bi-Lipschitz almost isometries, such that the corresponding
sequence of G actions on Y is in fact converging in C1. In particular,
by [GrovK], for i sufficiently large all G actions are conjugate by a C1

diffeomorphism which is also a bi-Lipschitz almost isometry.

Proof of Lemma 2.7. The idea of the proof of Lemma 2.7 lies in the follow-
ing simple fact: Assume that a sequence of concave C1-smooth functions
fi converges in C0 to a C1 smooth function. Then in the interior of any
interval, the convergence takes in fact place in C1.

That the limit space Y is a manifold with C1 smooth structure and
Riemannian metric of class C0 follows directly from [AnC2] or [OShi] by our
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assumption on the injectivity radii of the Riemannian manifolds Yi. (This
can actually also be checked directly by showing that distance functions on
Y give us C1-charts.)

We now construct the mappings πi by using a construction from
[BuGroPe]. From our assumptions we have that Y has injectivity radius
bounded from below by i0 and curvature ≥ λ. For each point p ∈ Y , we
find a collection of points a1, a2, . . . , am, b1, b2, . . . , bm in Y so that for the
comparison angles in the model space of constant curvature λ, the follow-
ing is true: The angles ∠̃aipbi satisfy ∠̃aipbi > π − ε, and for i 6= j and
|pai|, |paj | < i0, one has that ∠̃aipbj , ∠̃aipaj , ∠̃bipbj > π/2− ε.

Then the collection of distance functions to each ak,
fk(x) := |akx| ,

gives us in a neighborhood U of p a C1 smooth chart f = (f1, . . . , fm) :
U → Rm. Now we can consider points in Yi which are close to the above
points in Y and construct another smooth chart in a neighborhood Ui of a
point in Yi which is close to p. After eventually shrinking U and Ui, these
two charts then give us local C1 diffeomorphisms φi,U : Yi ⊃ Ui → U ⊂ Y .

Now consider a finite covering {Ul} of Y by C1 smooth charts of the
above kind. For each corresponding local map φi,Ul : Ui,l → Ul one can then
construct a C1-almost identity diffeomorphism hl of Ul such that all local
C1 diffeomorphisms hl◦φi can be glued together to yield a global C1 diffeo-
morphism πi : Yi → Y . (For a concrete construction of these global diffeo-
morphisms using special imbeddings of Yi and Y into a Euclidean space RS
of high dimension, the reader may compare with [Y, p. 325]. Since in our
case Y does not necessarily have an upper curvature bound, these imbed-
dings are only of class C1. To obtain the mapping πi from Yamaguchi’s
construction, one then has only to replace the orthogonal projection from
a normal bundle by a projection along some fixed transversal distribution
of (S −m)-dimensional planes.)

Since then, as i → ∞, on each Ui,l the C1 distance between φi,Ul and
πi|Ui,l converges to 0, we only have to show that the lemma is true for the C1

mappings φi = φi,Ul . Since G is connected and compact, it is furthermore
enough to prove our lemma under the assumption g ∈ Bε(e) ⊂ G, where ε
is suitably small.

Thus we must only show that for any x ∈ Y and any unit vector
ξ ∈ Tx(Y ) and g ∈ Bε(e) ⊂ G one has that

lim
i→∞

φi
(
gφ−1

i (ξ)
)

= gξ .

(Here we use the same notation for both a mapping and for its differential.)
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Since each φi is close to a standard Hausdorff approximation, and since the
actions of G on Yi converge to the G action on Y , we have that α :=
limi→∞ φi(gφ−1

i (ξ)) and gξ are elements in Tgx(Y ).
Therefore it is enough to show that for any coordinate function fk of a

local chart (U, f) around x one has that ∂fk/∂α = ∂fk/∂(gξ).
There is a unique minimal unit speed geodesic γ = γ(t) : [−l, l] → Y ,

γ(0) = x, starting at x in the direction of ξ. Choose l in such a way that
γ ends in some point y ∈ U , y 6= x, and such that for g ∈ Bε(e) ⊂ G the
geodesic gγ(t) is still contained in U . The geodesic gγ(t) then connects the
points gx and gy and has initial direction gξ.

Now consider (see the diagram below) in Yi the geodesic γi(t) from
φ−1
i (x) to φ−1

i (y). Extend it in the opposite direction beyond φ−1
i (x). We

then claim that, as i → ∞, the angle β, between φ−1
i (ξ) and the initial

direction of γi(t) at t = 0 goes to zero.

iφφ (ξ)φ (  )

φ (  )y

x-1 -1

-1

β

γ

i

i i

i

i

ξx

y

γ

YY

To show this, note that γ is the limit of γi. Therefore for each fk it
follows that fk ◦ φi ◦ γi(t) converges to fk ◦ γ(t).

Our curvature conditions imply that for some suitably chosen c, the
functions fk ◦ φi ◦ γi(t) − ct2 are concave. The function fk ◦ γ(t) − ct2 is
even C1 smooth, because fk is C1 and γ is a geodesic. Therefore, by our
observation at the beginning of the proof we have that for all k = 1, . . . ,m,
the derivatives d

dt(fk ◦φi ◦γi(t))t=0 converge to d
dt(fk ◦γ(t))t=0. This proves

our intermediate claim that for i→∞ the angle between φ−1
i (ξ) and γ′i(0)

converges to zero, so that the vectors φi(γ′i(0)) converge to ξ = γ′(0).
Finally, consider the geodesics gγi. They must converge to gγ, and from

the same reasoning as above we obtain that φi(gγ′i(0)) converges to gγ′(0).
Hence the lemma is proved.

Proof of the π2-Finiteness theorem. Step 1. Assume that the theo-
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rem is false. Then, for some m,C and D, there exists an infinite se-
quence (Mi)i∈N of mutually non-diffeomorphic compact simply connected
m-dimensional Riemannian manifolds with finite second homotopy groups
and with sectional curvatures uniformly bounded by |K(Mi)| ≤ C and
uniformly bounded diameters diam(Mi) ≤ D. By Cheeger’s Finiteness
theorem, the injectivity radii of the manifolds Mi must converge to zero
as i → ∞. By Gromov’s compactness theorem one can find a converging
subsequence Mi

GH→ X, where X is an Alexandrov space with m − k =
dimX < dimMi = m.

Step 2. By Theorem 1.3 one can slightly perturb the metrics gi on Mi

such that for sufficiently big i, the metrics on Mi are smooth and invariant
with respect to the collapsible T k actions associated to them, such that
|K(Mi)| ≤ C ′, diam(Mi) ≤ D′ and such that the diameter of all T k orbits
will uniformly converge to 0. Moreover (also by Theorem 1.3), the oriented
frame bundles F (Mi), equipped with the metrics induced by the Levi-Civita
connections of the invariant metrics on the Mi, will have uniformly bounded
curvatures |K(F (Mi))| ≤ C ′′ and uniformly bounded diameters as well.
From now on we assume that all Mi carry such invariant metrics.

Since the T k actions on the Mi are effective and isometric, the SO(m)
principal bundles F (Mi) admit natural SO(m) × T k actions, so that the
SO(m) subaction as well as the T k subaction on each F (Mi) are free and
isometric actions.

Step 3. Now we construct a sequence of spaces (Fi)i∈N to which Key
Lemma 2.6 is applicable.

Let Fi := F̃ (Mi) denote the universal Riemannian coverings of F (Mi).
Each Fi is either isometric to F (Mi), or else it is a two-sheeted covering
of F (Mi). (Here we must assume that dimMi ≥ 3, but since there are no
closed simply connected two- and one-manifolds with finite π2, no one can
complain.)

Therefore all Fi will satisfy similar curvature and diameter bounds as
the frame bundles F (Mi).

It follows that we can lift the SO(m) action on F (Mi) to a covering
and isometric action of G := Spin(m) on Fi . Moreover, by lifting the T k

action on Mi to Fi, we obtain on each Fi an isometric G× T k action such
that the T k subaction is free on each Fi.

Step 4. After eventually passing to a subsequence, we may assume that
the sequence of compact simply connected G× T k manifolds Fi converges
in the equivariant (G × T k) Hausdorff distance (see [Fu3]). Let Y be its
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Hausdorff limit. Note that the T k action on Y is trivial, and that Y is also
a G limit of the Riemannian manifolds Fi/T k. In particular, by Theorem
1.3, Y is a C1-smooth compact manifold of dimension dim Fi−k with lower
curvature bound and a lower bound for the injectivity radius.

Step 5. We apply Lemma 2.7 to the sequence of manifolds (Fi/T k, G),
and after that Key Lemma 2.6 to the manifolds (Fi, G × T k). It follows
that for sufficiently big i all Fi are G× T k diffeomorphic. In particular, all
manifolds (Mi, T

k) = (Fi/G, T k) are (T k equivariantly) diffeomorphic to
each other.

Therefore our collapsing sequence (Mi)i∈N contains an infinite subse-
quence of diffeomorphic manifolds. This is a contradiction, so that the
π2-Finiteness theorem is proved.

For the proof of Theorem 2.2, we will employ the following definition:

Definition 2.8. Let M be a simply connected compact manifold. Then a
simply connected manifold E is called universal T k bundle of M if one has
that

(a) the second homotopy group π2(E) of E is finite;
(b) for some natural number k, the manifold E admits the structure of

a T k bundle T k → E → M . (In particular, if π2(M) is finite, then
k = 0 and the universal T k bundle of M is M itself.)

Using the exact homotopy sequence, one sees that universal T k bundles
exist and that they are unique.

Proof of Theorem 2.2. Fix given numbers m,C and D. If M is any simply
connected closed m-dimensional manifold admitting a Riemannian metric
with sectional curvature bounded by |K(M)| ≤ C and diameter bounded
by diam(M) ≤ D, let E be its universal T k-bundle. The dimension of
E can be estimated from Gromov’s Betti number theorem (see [Gro1]):
dim(E) = dim(M) + b2(M) ≤ m + L1+

√
CD

m . Therefore we have an upper
bound for the dimension of all such universal bundles.

Now note that on each such a bundle one can construct a metric with
just slightly worse curvature and diameter bounds, say, |K| ≤ C ′ and di-
ameter ≤ D′, where C ′ and D′ only depend on C and D. Since all universal
T k bundles have by definition finite second homotopy groups, by the π2-
Finiteness theorem there are only finitely many of them, so that the theorem
is proved.

Proof of the π2-theorem. This proof actually almost coincides with the
proof of the π2-Finiteness theorem. The only new ingredient here consists
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of applying the Stable Collapse theorem from [PetrRTu].
Suppose that for some m and δ > 0 there exists a sequence (Mi)i∈N

of m-dimensional compact simply connected Riemannian manifolds with
finite second homotopy groups and uniformly positively pinched sectional
curvatures 0 < δ ≤ K(Mi) ≤ 1 whose injectivity radii converge to zero as
i→∞. We may assume that the sequence (Mi) Hausdorff converges to an
Alexandrov space of lower dimension m− k.

After performing the smoothing procedure described in Theorem 1.3,
we obtain on all manifolds Mi metrics that will remain to have uniformly
positively pinched curvature, say, 0 < δ′ ≤ K(Mi) ≤ 1, and which now are
also invariant under their associated collapsible T k actions.

Now let Fi be as in the proof of the π2-Finiteness theorem (Step 3), and
recall that G = Spin(m).

Fix almost isometric diffeomorphisms χ̃i : (Fi/T k, G) → (Y,G), which
exist by Lemma 2.7. Then Key Lemma 2.6 gives us diffeomorphisms h̃i,l :
(Fi, G× T k)→ (Fl, G× T k) which make the following diagram commute:

(Fi, G× T k)
h̃i,l−−−→ (Fl, G× T k)yπi yπl

(Fi/T k, G)
χ̃−1
l ◦χ̃i−−−−→ (Fl/T k, G)

Therefore the diffeomorphisms χ̃i : (Fi/T k, G) → (Y,G) induce almost
isometric homeomorphisms χi : Mi/T

k = Fi/(G× T k)→ Y/G = X on the
factors, where X is the Hausdorff limit of the sequence (Mi). In the same
way, the diffeomorphisms h̃i,l induce diffeomorphisms h̄i,l : (Mi, T

k) →
(Ml, T

k) for which the following diagram commutes:

(Mi, T
k)

h̄i,l−−−→ (Ml, T
k)yπi yπl

Mi/T
k

χ−1
l ◦χi−−−−→ Ml/T

k

Now fix some l and set in Definition 1.4 M := Ml and di(h̄i,l(x), h̄i,l(y))
:= distMi(xy). Then the sequence (Mi, gi) is stable. Thus applying the
Stable Collapse Theorem 1.5 finishes the proof.

Remark 2.9. It is possible to simplify the proofs of the π2 and the Stable
Collapse theorem. This is done by using the following arguments:

Note that the above proof in fact shows that the sequence (Mi) satisfies
a more special condition: Namely, in this case not only the sequence (Mi),
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but also the sequence of bundles (Fi) is stable, and the homeomorphisms
h̃i,l (which one can use in the definition of stable collapse, see 1.4) already
conjugate the collapse related T k actions on Fi (which are free actions!).
By considering a subtorus T k−1 ⊂ T k, one only needs to apply the simplest
case of the Stable Collapse theorem, namely, the case of a stable collapse
where the collapse related T k actions are given by a free S1 action (see
[PetrRTu]), to obtain a noncompact complete Alexandrov space, say, a
space Z (in [PetrRTu] this space is always called “Y ”, but here this letter
is already occupied). So far this is nothing exciting; the space Z simply
is some noncompact space with curvature bounded from below by some
negative constant. However, the excitement now comes from the following
fact: One can reconstruct the G action from the limit of the local actions
of G on the limit “tubes” C̃∞α (in the notation of [PetrRTu]) to obtain an
isometric action of G on Z. (Again, this is only true if dimM ≥ 3, see the
remark in Step 3 above.) Then, because G is compact, the factor space
Z/G will be noncompact. Now Z/G locally looks like the limit of the local
factors C̃iα/G, which are locally isometric to Mi. Therefore we have our
lovely contradiction to Myers’ theorem: Z/G is a complete, noncompact
Alexandrov space with a strictly positive lower curvature bound.

In the same way one can also simplify the proof of the Stable Collapse
theorem, since in fact the following theorem holds: If (Mn) is a stable se-
quence of compact simply connected Riemannian manifolds with uniformly
bounded curvatures and diameters collapsing to an Alexandrov space X,
then after smoothing (see Theorem 1.3) the sequence of orthonormal frame
bundles Fn = F (Mn), equipped with the induced metrics, contains an infi-
nite subsequence which is also stable.

3 The π2-theorem and Collapsing under Ricci Pinching
Conditions

In the π2-theorem, until now we were dealing with positively pinched sec-
tional curvature, namely, the case 1 ≥ K(M) ≥ δ > 0. In this section, we
would like to explain why the π2-theorem as well as the Stable and Con-
tinuous Collapse and bounded version of the Klingenberg-Sakai Conjecture
theorems from [PetrRTu] (see section 1) are in fact true for the case of
positive Ricci pinching, i.e., under the conditions K ≤ 1 and Ric ≥ δ > 0,
so that in fact the following results hold:

π2-theorem for Ricci pinching. There is no collapsing sequence of
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simply connected manifolds with finite second homotopy groups and fixed
dimension with curvature conditions K ≤ 1 and Ric ≥ δ > 0.

Continuous Collapse theorem for Ricci pinching. Suppose that a
compact manifold M admits a continuous one parameter family (gt)0<t≤1
of Riemannian metrics satisfying the curvature conditions Kgt ≤ 1 and
Ricgt > 0, such that, as t→ 0, the family of metric spaces (M,gt) Hausdorff
converges to a compact metric space X of lower dimension. Then these
metrics cannot be uniformly positively Ricci pinched, i.e., there is no δ > 0
such that Ricgt ≥ δ for all t.

Stable Collapse theorem for Ricci pinching. Suppose that a compact
manifold M admits a sequence of metrics (gn)n∈N satisfying the curvature
conditions Kgn ≤ 1 and Ricgn > 0, such that, as n → ∞, the metric
spaces (M,gn) Hausdorff converge to a compact metric space X of lower
dimension. Then, provided that {(M,gn)} contains a stable subsequence,
the metrics gn cannot be uniformly positively Ricci pinched, i.e., there is
no δ > 0 such that Ricgn ≥ δ for all n.

Bounded version of the Klingenberg-Sakai Conjecture theorem
for Ricci pinching. Let M be a closed manifold, d0 be a metric on
M and δ > 0. Then there exists i0 = i0(M,d0, δ) > 0 such that the
injectivity radius ig of any Ricci-δ-pinched d0-bounded metric g on M , i.e.,
any Riemannian metric g with Ricg ≥ δ, Kg ≤ 1 and distg(x, y) ≤ d0(x, y),
is bounded from below by ig ≥ i0.

The general reason for why all these theorems extend to positive Ricci
pinching conditions is that our proofs do not really depend on the very
condition of sectional curvature pinching. In order to deal with the Ricci-
condition, and generalize our results to positive Ricci pinching, we simply
must know a little about limit spaces with such more relaxed curvature
bounds.

The following remarks will fill these gaps. They do not pretend to be of
complete generality in any sense, like, say, trying to give a general synthetic
definition of Ricci curvature for Alexandrov spaces; they are just designed
for dealing with our particular problem.

First of all, let us make some trivial comments on the the condition of
positive Ricci pinching:

Obviously, this condition is more general than the condition of posi-
tively pinched sectional curvature. But the difference is not that big. In
particular, K(M) ≤ 1 and Ric(M) ≥ δ > 0 imply |K(M)| ≤ dim(M),
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i.e., under positive Ricci pinching one automatically has that also sectional
curvature is uniformly bounded. Therefore, if we do not have a collapse,
under the Ricci pinching condition any Hausdorff limit is an N -manifold.

By an N -manifold we understand a Riemannian manifold with two-
sided bounded curvature in the sense of Alexandrov, i.e., every triangle
is neither too fat nor too thin (see [BeN]). Now N -manifolds behave in
many respects just as ordinary Riemannian manifolds. In particular, in
such spaces one can define a Ricci tensor, and it has the same geometric
sense as in the Riemannian setting (see [N], [BeN]), so that the notion of N -
manifold with Ric ≥ c is well defined. Phrased differently, an N -manifold
of dimension m has Ric ≥ c if it can be obtained as a Lipschitz limit of a
sequence of m-dimensional Riemannian manifolds (Mi)i∈N with a two sided
uniform curvature bound and RicMi ≥ c− εi, where εi → 0 as i→∞.) In
the very same way one defines N -orbifolds and N -orbifolds with Ric ≥ c.

Definition 3.1. Let (X,µ) be a complete metric space with a locally finite
measure. We say that (X,µ) has n-Ricci curvature ≥ δ, if for any point
x ∈ X there is a neighbourhood Ux of x with the following properties:
There exists an open n-dimensional N -orbifold Nx with Ric ≥ δ and an
isometric action of an Abelian group Ax on Nx, so that Ux = Nx/Ax, and
so that µ is proportional to the factor measure induced from Nx. In this
case we call Nx a Ricci chart of X.

Definition 3.2. A function f : X → R is λ-subharmonic if its pullback to
any Ricci chart is λ-subharmonic.

Note that the subharmonicity of a function on X depends only on (X,µ),
but not on a Ricci chart.

These two definitions make it possible to adapt the Laplacian compar-
ison proof of Myers’ theorem for Riemannian manifolds (or orbifolds) (see,
for example, [Z]) to spaces with n-Ricci curvature ≥ δ:

Proposition 3.3. A space (X,µ) with n-Ricci curvature ≥ δ > 0 has
finite diameter diam(X) ≤ c(n, δ). In particular, there is no noncompact
complete metric space with n-Ricci curvature ≥ δ > 0.

On the other hand, from the above definitions and properties one easily
sees: If we have a stable collapse of Mn with positive Ricci pinching, then
the noncompact complete space Y constructed in the Gluing theorem of
[PetrRTu] (see Theorem 1.5) carries a measure µ so that (Y, µ) has n-
Ricci curvature ≥ δ. (Here is the place where we need Theorem 1.3(e)).
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Therefore, by what has been said above, the Stable Collapse theorem will
extend to positive Ricci pinching conditions.

The measure µ on Y can be constructed as follows: We first consider
the limit measure µX on X of the normalized measures µi/µi(Mi) on Mi =
(M,gi), where µi is the n-dimensional Hausdorff measure on Mi. (See [Fu1]
for more on this measure on X.) Then, since there is a free and isometric
action of Rk′ on Y such that X = Y/Rk′ , one can construct an Rk′ invariant
measure µ on Y whose “factor measure” is µX .

So the Stable and Continuous Collapse and thus the π2 and bounded
version of the Klingenberg-Sakai Conjecture theorems also hold for positive
Ricci pinching conditions.

4 Examples of Collapses with Positive Pinching

A. Let us first show that Theorem 0.4 is indeed optimal, even if we restrict
ourselves to sequences of metrics on a fixed manifold and to collapses with
nonnegative sectional curvature:

Example 4.1 (The S2 × S3-example). There exists on M = S2 × S3 a
sequence of metrics gn with sectional curvatures 0 ≤ Kgn ≤ 1 and Ricgn ≥
δ > 0, but for which, as n→∞, the spaces (M,gn) collapse to S2 × S2.

To see this, let E := (S3 × S3, gcan) be the Riemannian product of two
standard 3-spheres. View E as a subset of C2 × C2, so that the standard
torus T 2 = S1

1 × S1
2 acts on E by isometries and so that each S1 fac-

tor acts on the corresponding S3 by complex multiplication. For integers
p, q ∈ Z, let S1

p,q < T 2 denote the S1-subgroup of T 2 which corresponds to
p[S1

1 ] + q[S1
2 ] ∈ π1(T 2). Note that if p and q are relatively prime, then S1

p,q

acts freely and isometrically on E.
Consider now the sequence of factor spaces Mn := E/S1

1,n. Using the
Gysin sequence, one observes that for all n = 0, 1, 2, · · · ∈ N, the homology
groups and second Stiefel Whitney classes of Mn and S2 × S3 coincide.
By Barden’s diffeomorphism classification of simply connected 5-manifolds
([B]), we can therefore identify all Mn with M = S2 × S3.

It is easy to see that, as n→∞, the sequence of manifolds Mn Hausdorff
converges to S2 × S2 = S3 × S3/T 2. Moreover, from for instance ([E,
Proposition 22]) it follows that the sectional curvatures of Mn converge to
the sectional curvatures of S3 × S2 = S3 × S3/S1

0,1. In particular, we have
that for sufficiently big n (here in fact for any n) all Mn satisfy a positive
Ricci pinching condition with nonnegative sectional curvature.
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Remark 4.2. We would like to note that in a different context, Example
3.4 was earlier discussed by M. Wang and W. Ziller in [WZi]; compare also
[Gro2]. The results in [WZi] in particular imply the following: For any
natural number q 6= 0, the manifolds M = CP1 × S2q+1 carry a sequence
of metrics with Ric ≡ 1 so that M , when equipped with these metrics,
collapses with sectional curvature uniformly bounded in absolute value to
CP1 ×CPq.

B. Note that in the last example the collapsing S1 actions on (S3×S2, gn)
are not conjugate. Therefore one could ask whether under positive Ricci
pinching conditions such a collapse is still possible if we require in addition
that all collapse-related torus actions belong to one fixed conjugacy class.

However, we will now give an example of a collapse with positive Ricci
pinching of a simply connected six-manifold where all collapsing torus ac-
tions are given by a free S1 action with fixed conjugacy class. This example
builds on S3 × S2#S3 × S2 and shows in particular that the definition of
stability and the assumptions of the Stable Collapse theorem cannot be
weakened to mere conjugacy of the torus actions associated to collapsed
metrics.

The following lemma follows directly from ([B, Theorem 2.2]):

Lemma 4.3. Let X be the connected sum X := S3 × S2#S3 × S2. Then
any automorphism θ : H2(X) → H2(X) is induced by a diffeomorphism
f : X → X.

Corollary 4.4. Assume that (M,S1) and (M ′, S1) are two simply con-
nected manifolds with free S1 action and factor spaces M/S1 and M ′/S1

both diffeomorphic to X = S3 × S2#S3 × S2. Then there is a diffeomor-
phism f̃ : M →M ′ which conjugates the S1 actions.

Proof of Corollary 4.4. Let e ∈ H2(M/S1) and e′ ∈ H2(M ′/S1) be the Eu-
ler classes that classify M and M ′ as principal circle bundles over X. Since
M and M ′ are simply connected, both e and e′ are indivisible. There-
fore there exists an isomorphism θ : H2(M/S1) → H2(M ′/S1) such that
θ(e) = e′. By Lemma 4.3 we can find a diffeomorphism f : M/S1 →M ′/S1

which makes both S1 actions on M and M ′ to have the same Euler class.
This implies that we can construct a conjugation diffeomorphism f̃ : M →
M ′ which makes the diagram below commutative, so that the corollary is
proved.
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M
f̃−−−→ M ′y y

M/S1 f−−−→ M ′/S1

Example 4.5 (A collapsing sequence with positive Ricci pinching and
fixed conjugacy class). Let as above X be the connected sum X :=
S3 × S2#S3 × S2.

By [ShYa], X admits a Riemannian metric g with positive Ricci curva-
ture. By [GPaTu] now the following holds: For each nontrivial cohomology
class e ∈ H2(X) one can find a corresponding closed 2-form ω on X and
a smooth function h : X → R such that the S1 principal bundle over X
determined by the cohomology class e = [ω] carries a S1 invariant metric
with positive Ricci curvature so that ω is the curvature form of this metric
and so that h(x) equals the length of the S1 fibre over x ∈ X.

Choose a basis e1, e2 ∈ H2(X). By what we said above, for e1 there is
a closed 2-form ω1 on X and a smooth function h : X → R such that the
S1 principal bundle over X determined by [ω1] = e1 carries an S1 invariant
metric with positive Ricci curvature with ω1 as curvature form and h as
fibre-length function.

Now take any smooth closed 2-form ω2 whose cohomology class cor-
responds to e2, and consider the S1 principal bundle Mn over X with
indivisible Euler class ne1 + e2. On Mn we can construct an S1 invariant
warped product metric gn with curvature form nω1 + ω2 and fibre-length
function hn = (1/n)h.

Direct calculation then shows the following: If pn ∈ Mn and p ∈ M
are points which all project to the same point in X, then for n → ∞
the curvature tensors Rpn converge to Rp. Therefore all curvature bounds
on (Mn, gn) will converge to the curvature bounds of (M,g), so that for
sufficiently large n we have that Ric(gn) ≥ δ > 0 and K(gn) ≤ C <∞ for
some fixed C and δ > 0. On the other hand, for n → ∞ the manifolds
(Mn, gn) collapse to X. By Corollary 4.4 all Mn are diffeomorphic and all
collapsing S1 actions are conjugate.

Question 4.6. Let X be as above. Consider the product space X × [0, 1]
and glue X × 0 to X × 1 by some diffeomorphism f of X for which the
corresponding automorphism of H2(X) has infinite order. Let Y be the
resulting space, which we can view as an X bundle over S1. Is it then
possible to find a Riemannian metric on Y so that each X fibre has positive
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Ricci curvature?
A positive answer to this question would allow us to construct on a six-

manifold M6 a continuous family of metrics (gt) that satisfied the positive
Ricci pinching curvature bounds K ≤ C < ∞, Ric ≥ δ > 0, but which
would be collapsing. In particular, this would imply that in the Continuous
Collapse theorem, the assumption of the convergence of the family (M,gt)
to a fixed limit space X cannot be removed.

C. To close this section, we will construct counterexamples to the follow-
ing conjecture:

Conjecture 4.7 ([Fu3, 15.7]). Let X be a Gromov-Hausdorff limit of a
sequence of uniformly positively pinched m-dimensional simply connected
Riemannian manifolds. Then dim(X) ≥ m− 1.

However, we will now show that collapsing with uniform pinching to
spaces with codimension higher than one indeed takes place:
Example 4.8. There exist sequences (M7

i )i∈N of uniformly positively
pinched Eschenburg spaces which collapse to a 4-dimensional Alexandrov
space X4 = T 2\SU(3)/T 2.

Example 4.8 in particular shows that the following dimension estimate
is optimal:

Proposition 4.9 ([R2]). Let X be as in Conjecture 4.7. Then dim(X) ≥
(m+ 1)/2.

Remark 4.10. Using Basaikin spaces, we can also construct counter-
examples to Fukaya’s conjecture in dimension 13. Here we obtain sequences
that collapse with uniform positive pinching to 9-dimensional limits of the
form X9 = T 5\U(5)/(Sp(2)× S1).

Before we start to show how to obtain Example 4.8, let us first recall
from [E] the definition of the Eschenburg spaces: Let p, q, k, l be integers
which are relatively prime. Then the quadruple (p, q, k, l) ∈ Z4 is called
admissible if and only if each of the following pairs of integers is relatively
prime:

(k − p, l − q) , (k − p, l + p+ q) , (k − q, l + p+ q) ,
(k − q, l − p) , (k + p+ q, l − p) , (k + p+ q, l − q) .

Let G = SU(3) and U be a closed subgroup of G2 = G × G. Then U
acts on G by (u, g) 7→ u1gu

−1
2 , where g ∈ G and u = (u1, u2) ∈ U .

Every admissible quadruple (k, l, p, q) determines a closed one parameter
subgroup U = Uklpq of G2 by requiring that U ⊂ T 4, where T 4 = T 2×T 2 is
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the maximal torus of diagonal matrices in SU(3)×SU(3), and by requiring
that vklpq := 2πi(diag(k, l,−k− l),diag(p, q,−p− q)) be a generator of the
kernel of the exponential map of u. Moreover, for any admissible quadruple
(k, l, p, q) the group Uklpq acts freely on G, and the quotient space Mklpq :=
Uklpq\G is a compact simply connected seven-dimensional manifold.

It is proved in [E] that there are many admissible quadruples (k0,l0,p0,q0)
for which the corresponding spaces Mk0l0p0q0 admit a metric of positive sec-
tional curvature.

Note that when equipped with the metrics from [E], the curvature
bounds of the spaces Mklpq depend continuously on the direction of the
vector (k, l, p, q). In fact, from ([E, Proposition 22]) one easily deduces the
following:

Lemma 4.11. Let (k, l, p, q) and, for i = 1, 2, · · · ∈ N, (ki, li, pi, qi) ∈ Z4 be
admissible quadruples. Assume that, as i→∞, the directions (ki,li,pi,qi)

‖(ki,li,pi,qi)‖

converge to the direction (k,l,p,q)
‖(k,l,p,q)‖ . Then the sectional curvature bounds

of the corresponding spaces Mkilipiqi converge to the curvature bounds
of Mklpq.

Therefore, for every positively curved Eschenburg space Mk0l0p0q0 there
exists an open cone C ⊂ R4, containing the line through (k0, l0, p0, q0), such
that for any admissible quadruple (p, q, k, l) ∈ C the corresponding space
Mpqkl has curvature 0 < δ0 < K(Mpqkl) ≤ 1, where δ0 depends only on the
pinching of Mk0l0p0q0 .

The construction of Example 4.8. Take a totally irrational direc-
tion in C, i.e., a line which is not contained in any rational hyperplane.
Choose a sequence of admissible points {(pi, qi, ki, li)}i∈N ⊂ C which ap-
proach this direction, and consider the sequence of corresponding Eschen-
burg spaces Mi = Mpiqikili . Then it is easy to see that the Mi Hausdorff
converge to X = T 2\SU(3)/T 2.

Therefore, to complete our construction, it remains only to prove the
existence of a sequence of admissible quadruples with the above properties.
This follows from the following claim. Its proof is an exercise in elementary
geometry of numbers, but we are giving it here because we had a lot of fun
proving it:

Claim 4.12. Let hi : Zn → Z2 be a finite collection of homomorphisms,
and assume that there exists an element α ∈ Zn such that every hi(α) is
a relatively prime pair of integers. Then every open cone C ⊂ Rn ⊃ Zn
contains infinitely many elements α′ ∈ Zn with the same property.
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Proof of the claim. Choose any rational direction x ∈ C, x ∈ Zn such that
for every i, hi(α) and hi(x) are not collinear, and consider the sequence
αm = mx + α. Then for any i there is a number ni such that hi(αmni) is
relatively prime. Therefore, for any i one also has that hi(αmN ) is relatively
prime, where N =

∏
i ni. For sufficiently large m it follows that αmN ∈ C.

Thus C contains infinitely many elements αj for which all hi(αj) are rela-
tively prime, and our claim is proved.

5 Remarks and Questions

Related to the above conjecture of Fukaya we have a conjecture for mani-
fold Hausdorff limits of sequences of positively curved manifolds which are
subject only to a lower positive curvature bound.

Conjecture 5.1. Let X be a Hausdorff limit of a sequence of simply
connected m-dimensional Riemannian manifolds with sectional curvatures
bounded from below by K ≥ 1. Assume that X is a Riemannian manifold
(of positive dimension). Then dim X ≥ m− 1.

The following conjecture, we believe, is due to Yamaguchi, and would
follow from a positive answer to Conjecture 5.1.

Conjecture 5.2. Let X be a Hausdorff limit of a continuous one pa-
rameter family of Riemannian metrics on an m-dimensional manifold with
sectional curvatures bounded from below by K ≥ 1 . Assume that X is
a Riemannian manifold. Then dim X = m. In other words: there is no
continuous collapse with lower positive curvature bound to a Riemannian
manifold.

We would also like to mention again our question from section 4 (see
also the discussion given there):
Question 5.3. Let X = S3 × S2#S3 × S2. Consider the product space
X × [0, 1] and glue X × 0 to X × 1 by some diffeomorphism f of X for
which the corresponding automorphism of H2(X) has infinite order. Let
Y be the resulting space, which we can view as an X bundle over S1. Is it
then possible to find a Riemannian metric on Y so that each X fibre has
positive Ricci curvature?

Recall once more the notion of universal T k bundle (Definition 2.8):

Definition. Let M be a simply connected compact manifold. Then a
simply connected manifold E is called universal T k bundle of M if one has
that
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(a) The second homotopy group π2(E) of E is finite;
(b) For some natural number k, the manifold E admits the structure of

a T k bundle T k → E →M .
Now let us take a look at the Klingenberg-Sakai conjecture in the case

where the second homotopy group of the manifold has infinite order.

Conjecture 5.4. Let B be a compact simply connected manifold. Sup-
pose that over B there are infinitely many different principal T k bundles
with total space diffeomorphic to a fixed simply connected manifold F .

Then the diffeomorphism group of the universal T k bundle E of F
contains a subgroup which generates an infinite group of automorphisms of
the cohomology ring H∗(E).

It seems that a positive solution to this purely topological conjecture
could make it possible to prove the Klingenberg-Sakai Conjecture 0.6 in
the introduction for all Aloff-Wallach, Eschenburg, and Basaikin spaces.
In particular, this would establish the Klingenberg-Sakai conjecture for all
positively curved manifolds that are known today.

Let us also note that the usefulness of the notion of stable collapse in
this paper as well as [PetrRTu] suggests to understand it better and in a
more general setting.
Question 5.5. Let (M,dn) be a sequence of metric spaces which converges
to a compact metric space X. What kind of topological and/or curvature
conditions for M and dn will insure that any such sequence is stable?

For example, is it true that any converging sequence of metrics on Sm

with uniform lower curvature bound and upper bound on the diameter has
a stable subsequence?

Let us also recall that to prove Theorem 0.3, we showed that any con-
verging sequence of 2-connected manifold contains a stable subsequence.
But is it true that in this case the whole sequence we started with is actu-
ally already stable?
Question 5.6. Is it possible to also “classify” all non-simply connected
manifolds in a way that is close to Theorem 0.2 ?

Question 5.7. For which kinds of curvature pinching does there ex-
ist an analogue of the π2-theorem (see Theorems 0.3, 0.4, and 0.6 in the
Introduction)?

Since we already have two cases where this works (positive Ricci pinch-
ing, see Theorem 0.4, and positive pinching of the “second Bochner curva-
ture” R2, see Theorem 0.6), there might be more general (or at least other)
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pinching conditions which imply the existence of uniform estimates for the
injectivity radius.

In this regard it is also interesting to ask if the diameter bound in
Theorem 0.6 could actually be removed.

Question 5.7 is closely related to the following one (the notation we use
here is explained in the Appendix):
Question 5.8. Assume that a sequence of manifolds Mn, with uniformly
bounded curvatures and diameters, Grothendieck-Lipschitz converges to
a megafold M. Then what can be said about the relations between the
topology of the Mn and the topology of M?

In particular we do not know a counterexample to the following:
Assume that a sequence of odd-dimensional spheres Mn := (S2m+1, gn),

with uniformly bounded curvatures and diameters, Grothendieck-Lipschitz
converges to a megafold M. Then either M is homeomorphic to S2m+1 and
the Mn Lipschitz converge to M, or H∗dR(M) = H∗dR(CPm × S1).

Appendix: Collapsing and Grothendieck-Lipschitz
Convergence

In this appendix we would like to provide the right notions for the above
business (including [PetrRTu]). Though our proofs above do not use these
concepts at all, in some sense they were always present, but the reason
why we did not use them explicitly is that (at least for geometers) at first
contact it is not easy to like them.

However, as the reader will see below, this approach, when compared to
the standard one, not only simplifies our proofs a lot; it also gives a clear
reason why they work. We also hope that the compactness theorem below
(see Theorem A.5) will give rise to further results and applications.

It is our pleasure to note that about two years ago Professor Gromov
was trying to explain to the first author some ideas similar to the following
(but we understood them only now). We would also like to thank Vladimir
Voevodsky for friendly help with topoi.

First, using Grothendieck topologies∗ let us give a (very formal) defini-
tion of an appropriate generalization of the notion of Riemannian manifold
(for an informal one see below). For readers who are not familiar with topos
theory we suggest skipping directly to A.2, at least for a first reading. (We

∗As general references for Grothendieck topologies and topos theory, we mention the
books [J] and [MMo].
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will, as far as notation is concerned, usually not distinguish between a
topological space and its corresponding Grothendieck topos.)

Definition A.1. A Riemannianm-megafold M = (M, g) is a Grothendieck
topos such that there is an epimorphism Y → X onto the final object X of
M so that the slice topos M/Y is isomorphic to a topos corresponding to
an m-manifold and such that the following is true:

(i) M is linearly separable, i.e. any two continuous maps fi : [0, 1]→M,
i = 1, 2, which coincide on [0, 1) coincide on the whole interval [0, 1].

(ii) On M/Y a specific choice of a Riemannian metric g is made such that
for any two morphisms Z

p→ Y and Z
q→ Y , the induced pullback

metrics on M/Z coincide.
(Note that since the topos which corresponds to a topological space is

nothing but the category of all local homeomorphisms to this space, we
can talk about pull-back metrics without ambiguity. Also note that the
Riemannian metric g on M does in the following sense NOT depend on
the choice of the epimorphism Y → X: The choice of a Riemannian metric
on M/Y , as above, uniquely determines a metric on each M/Z (if it is a
manifold), and this metric makes any morphism Z

p→ Z ′ correspond to a

local isometry M/Z
p′→M/Z ′.)

In particular, if F is a foliation on some Riemannian manifold M with
(locally) equidistant fibres, then the factor M/F admits a natural structure
of a Riemannian megafold of dimension dimM − dimF .

Another class of examples can be constructed in the following way: Let
M be a Riemannian manifold, and G be any group of isometries of M .
If now as open sets one takes all local homeomorphisms U → M and as
morphisms all commutative diagrams

U −−−→ Vy y
M

γ−−−→ M
where γ : M → M denotes multiplication by some (and every) element
of G, then this category generates a Riemannian megafold which we will
denote by (M : G). Note that (M : G) has the same dimension as M .

This example can be generalized to the case of natural pseudogroup
actions on M , whose definition is as follows:

Definition A.2. A pseudogroup action (or pseudogroup of transforma-
tions) on a manifold M is given by a set G of pairs of the form p = (Dp, p̄),
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where Dp is an open subset of M and p̄ is a homeomorphism Dp →M , so
that the following properties hold:

(1) p, q ∈ G implies p ◦ q = (q̄−1(Dp ∩ q̄(Dp)), p̄ ◦ q̄) ∈ G;
(2) p ∈ G implies p−1 = (p̄(Dp), p̄−1) ∈ G;
(3) (M, id) ∈ G;
(4) if p̄ is a homeomorphism from an open set D ⊂ M into M and D =⋃

αDα, where Dα are open sets in M , then the property (D, p̄) ∈ G
is equivalent to (Dα, p̄|Dα) ∈ G for any α.

We call the pseudo-group action natural if in addition the following is
true:

(i)′ If (D, p̄) ∈ G and p̄ can be extended as a continuous map to a bound-
ary point x ∈ ∂D, then there is an element (D′, p̄′) ∈ G such that
x ∈ D′, D ⊂ D′ and p̄′|D = p̄.

By taking U = M/Y (as in Definition A.1) one sees that any Rieman-
nian megafold (M, g) can be represented as ((U, g) : G), where (D, p̄) ∈ G
if and only if there are two morphisms q1, q2 : V → U such that D = q1(V )
and p̄ = q2 ◦ q1. Note that A.1(i) implies A.2(i)′, i.e., the G (pseudogroup)
action is natural. (It is moreover easy to see that the pair (U,G) contains
all information about M.)

Therefore any megafold admits a representation ((U, g) : G), where G
is a natural action by local isometries on a (possibly open) Riemannian
manifold (U, g). This representation is similar to representing a manifold
by using a collection of charts and gluing maps.

Recall that for manifolds everything like tensors, forms, maps between
manifolds, etc., can be defined either purely intrinsically or by using lo-
cal coordinate representations, and note that the very same is true for
megafolds. Here one can either use Definition A.1, or define everything
via megafold representations. For example: two Riemannian m-megafolds
M1 and M2 are said to be isometric iff there exists an isomorphism of
topoi I : M1 → M2 such that for any object Y of M1 for which the
slice topos M1/Y corresponds to a manifold, the induced isomorphism
M1/Y → M2/I(Y ) corresponds to an isometry of Riemannian manifolds.
Equivalently, M1 = ((U1, g1) : G1) and M2 = ((U2, g2) : G2) are isometric
iff there exists a megafold representation ((U, g) : G) and a locally isomet-
ric covering pi : (U, g) → (Ui, gi) such that the pulled back actions of the
pseudogroups Gi on U coincide with the G action on U .

Note that if the pseudogroup action G is properly discontinuous and
free, then the corresponding megafold is simply a Riemannian manifold,
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and if the pseudogroup action is only assumed to be properly discontinuous,
then one obtains a Riemannian orbifold (V -manifold).†

In this regard note also that the infinitesimal motions of the pseudo-
group G give rise to a Lie algebra of Killing fields on (U, g), and from this
one can recover an isometric local action of a connected Lie group on (U, g).
Let us call this group Go.

It is obvious that Go = Go(M), i.e., Go does not depend on the special
representation (U : G) (of a connected Riemannian megafold (M, g)). If
the Go(M, g) action is trivial, then (M, g) is a Riemannian orbifold.

Definition A.3. A Riemannian megafold (M, g) is called complete if any
finite length curve f : [0, 1)→M can be extended to the end (i.e., there is
a continuous map f̄ : [0, 1]→M such that f = f̄ |[0,1)).

A Riemannian megafold (M, g) = ((U, g) : G) is called H-complete if
G together with any converging sequence of local isometries also contains
their limit.

Now we come to the main point of this note:

Definition A.4. A sequence of Riemannian megafolds (Mn, gn) is said to
Grothendieck-Lipschitz converge (GL-converge) to a Riemannian megafold
(M, g) if there are representations (Mn, gn) = ((Un, gn) : Gn) and (M, g) =
((U, g) : G) such that

(a) The (Un, gn) Lipschitz converge to (U, g), and
(b) For some sequence εn → 0 there is a sequence of e±εn-bi-Lipschitz

homeomorphisms hn : (Un, gn) → (U, g), such that the pseudogroup
actions on (Un, gn) converge (with respect to the homeomorphisms hn)
to a pseudogroup action on (U, g).

I.e., for any converging sequence of elements pnk ∈ Gnk(Unk ,Mnk) there
exists a sequence pn ∈ Gn which converges to the same local isometry
on U , and the pseudogroup of all such limits, acting on U , coincides with
the pseudogroup action G(U,M).

It is obvious that the Grothendieck-Lipschitz limit of Riemannian mega-
folds is always H-complete.

Here are two simple examples of GL-convergence:
Consider the sequence of Riemannian manifolds S1

ε ×R, which for ε→ 0
Gromov-Hausdorff converge to R. Then this sequence converges in the GL-
†This is actually also the motivation for the name “megafold”: A manifold is an object

which is glued from many pieces by UNIQUE gluings; a megafold is obtained by gluing
many pieces along MANY (in general actually infinitely many) gluings.
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topology to a Riemannian megafold M, which can be described as follows:
It is covered by one single chart U = R2, and the pseudogroup G simply
consists of all vertical shifts of R2. I.e., M is nothing but (R2 : R) where R
acts by parallel translations. (Note that (R2 : R) 6= R2/R, these megafolds
even have different dimensions!)

The Berger spheres, as they Gromov-Hausdorff collapse to S2, converge
in Grothendieck-Lipschitz topology to the Riemannian megafold (S2×R:R).
Here R acts by parallel shifts of S2 ×R.

A Riemannian metric on a megafold ((U, g) : G) defines a pseudomet-
ric on the set of G orbits. In particular one has that the diameter of a
Riemannian megafold is well defined. Now here is the basic result:

Theorem A.5. (i) The set of Riemannian m-manifolds with bounded
sectional curvature |K| ≤ 1 and diameter diam ≤ D is precompact in the
Grothendieck-Lipschitz topology.

(ii) The set of complete Riemannian m-megafolds with bounded sec-
tional curvature |K| ≤ 1 (in the sense of Alexandrov) and diameter diam ≤
D is compact in the Grothendieck-Lipschitz topology. The same holds for
the corresponding set of complete and H-complete Riemannian megafolds.

Proof. Since the proofs of (i) and (ii) are almost identical, we will only
prove the first statement.

Assume we are given a sequence of Riemannian manifolds (Mn, gn) of
dimension m with sectional curvature |K| ≤ 1 and diam ≤ D.

For each n we can find a finite collection of points pi,n ∈ Mn, i ∈ N,
where i ≤ N(m,D), such that the images of π/2-balls under the exponential
mappings exppi,n : Bi,n = Bπ/2 ⊂ Tpi,n → Mn will cover all Mn. Let
(Un, gn) be the disjoint union of these balls, equipped with the pullback
metric. Note that even if we assume that Mn is a manifold, the covering
Bi,n describes Mn as a megafold.

Now let us consider the Grothendieck-Lipschitz limit of the Mn.
Passing to a subsequence if necessary we can assume that the coverings

Un Lipschitz converge to some U . Moreover the same arguments as in [Fu3]
show that (after maybe again passing to a subsequence) the pseudogroup
actions Gn = G(Un,Mn) converge to a pseudogroup action G on U .

Now U and G define a Riemannian megafold M, which is obviously the
Grothendieck-Lipschitz limit of the manifolds Mn. �

Let us state some natural questions which arise from this theorem:
1. Which Riemannian megafolds can be approximated by manifolds with

bounded curvature and diameter?
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It follows from [CFuGro] that if (M, g) is a limit of Riemannian mani-
folds with bounded curvature, then Go(M) is nilpotent. A direct construc-
tion moreover shows that this condition is also sufficient.

(Note that since a pure N -structure on a simply connected manifold
is given by a torus action (see section 1), one also has the following:
If a megafold can be approximated by simply connected manifolds with
bounded curvature, then Go(M) = Rk.)

2. How can one recover the Gromov-Hausdorff limit space from the
Grothendieck-Lipschitz limit?

Let M = ((U, g) : G) be a GL-limit of Riemannian manifolds. Then M

is H-complete, and the GH-limit is the space of G orbits with the induced
metric, in other words: The Gromov-Hausdorff is nothing but (U, g)/G.

Now note that for Riemannian megafolds one can define the de Rham
complex just as well as for manifolds. A megafold version of the Gluing
theorem (see section 1) can then be stated as follows:

Theorem A.6. Let (Mn, gn) be a sequence of compact simply connected
Riemannian m-manifolds with bounded curvatures and diameters which
Grothendieck-Lipschitz converges to a Riemannian megafold (M, g).

If H2
dR(Mn) = 0 then M is either a Riemannian manifold and the man-

ifolds Mn converge to M in the Lipschitz sense, or H1
dR(M) 6= 0.

Theorem A.6 actually also holds if instead of the H2 condition one only
assumes that the sequence (Mn, gn) is stable.

The proof of this result follows from the one of the Gluing theorem
in [PetrRTu] and the above. However, anyone who knows the proof of
the Gluing theorem will see that, using the megafold notion now, many
technical problems in [PetrRTu] completely disappear (and only nice parts
of it remain). In fact, the proof of Theorem A.6 (given the H2-condition)
almost coincides with the proof of Theorem A.7 (see the sketch below).

Note that Riemannian megafolds share almost all the properties of Rie-
mannian manifolds. In fact (one might think of this as a meta-theorem)
we are not aware of a single theorem in Riemannian geometry which would
not admit a straightforward generalization to the megafold case – and the
above Compactness theorem makes megafolds even nicer.

It is in particular straightforward to show that if Ric > 0, then H1
dR(M)

= 0. Moreover, a Grothendieck-Lipschitz limit of manifolds with uniformly
bounded sectional curvatures and Ric ≥ δ > 0 is a Riemannian megafold
with Ric ≥ δ > 0.
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Now, to obtain for example the π2-theorem for Ricci pinching conditions
(Theorem 0.4) we only have to apply the Bochner formula for 1-forms to
the GL-limit of a sequence of positively Ricci-pinched manifolds (and this,
moreover, allows one to get rid of the whole section 3 of this paper). (For
more details see also the proof of Theorem A.8).

Riemannian megafolds are actually not that general objects as they
might seem at first sight. Indeed, given a Riemannian megafold (M, g)
we can consider its orthonormal frame bundle (FM, g̃), equipped with the
induced metric. Now consider some representation of it, say, (FM, g̃) =
((U, g̃) : G). Then the G pseudogroup action is free on U , so that its
closure Ḡ also acts freely. Therefore the corresponding factor, equipped
with the induced metric, is a Riemannian manifold Y = (U/Ḡ, ḡ), and
there is a Riemannian submersion (FM, g̃) → Y whose fibre is Go/Γo,
where Γo is a dense subgroup of Go. (Roughly speaking, Γo is generated by
the intersections of Go and G.) If we assume that M is simply connected,
then Go = Rk and Γo is the homotopy sequence image of π2(Y ). (In our
case simply-connectedness is equivalent to the fact that there is no other
complete megafold (W : G′) such that M = (W : G) and G′ ⊂ G, but this
notion can also be defined for general topoi, see [J].)

From this last characterization of Riemannian megafolds it is not hard
to obtain the following:

Theorem A.7. Assume that (Mn, gn) is a sequence of simply connected
compact Riemannian m-manifolds with uniformly bounded curvatures and
diameters which GL-converges to a Riemannian megafold M.

Then M is either a Riemannian manifold and the Mn converge to M in
the Lipschitz sense, or H2

dRM 6= 0.

Let us briefly recall some facts about Bochner formulas:
There is a linear operator Rn : Λn(T (M)) → Λn(T (M)) on a Riemannian

manifold M , such that
D2φ = ∇∗∇φ+ Rn(φ) ,

where φ is any n-form onM (see [LaMic, p. 155]). In particular, if on a Riemannian
manifold or megafold it holds that Rn > 0, then every harmonic n-form on it must
vanish, so that Hn

dR = 0.
It is well known that R1 is nothing but the Ricci curvature. The operator R2

is also still understandable: For dim≤ 2 it is better to think that it is undefined,
for dimension = 3 the condition R2 ≥ 0 is equivalent to Ric ≥ 0, in dimension
= 4 the property R2 ≥ 0 is the same as Kisotr

C ≥ 0 (for Kisotr
C and its algebra see

[MiMoo] and [H]).
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Furthermore, at least in even dimensions, the condition R2 ≥ 0 follows from
the condition Kisotr

C ≥ 0. The relations between R2 and Kisotr
C are in many

respects the same as the ones between Ricci and sectional curvature.
For dimension ≥ 4 the conditions R2 ≥ 0 and Ric ≥ 0 are independent

(i.e., neither one is a consequence of the other). Therefore, and also in
view of Theorem 0.4, the following generalization of the Burago-Toponogov
theorem ([BuT]) is interesting in several respects.

Theorem A.8. There is a positive constant i0(m, δ,D) > 0 such that the
injectivity radius of any simply connected compact m-dimensional Rieman-
nian manifold M with K(M) ≤ 1, R2(M) ≥ δ > 0 and diameter ≤ D is
bounded from below by i(M) ≥ i0(m, δ,D).

Proof of the theorem. Assume that this is wrong. Then there is a se-
quence of compact simply connected Riemannian m-manifolds Mn such
that K(Mn) ≤ 1, R2(Mn) ≥ δ > 0, and diam(Mn) ≤ D, but whose injec-
tivity radii satisfy i(Mn)→ 0 as n →∞ (i.e., this sequence is collapsing).
Passing to a subsequence if necessary we can assume that this sequence con-
verges in the Grothendieck-Lipschitz sense, Mn

GL→ M. Now R2(M) ≥ δ,
therefore H2

dR(M) = 0. Thus Theorem A.7 implies that M is a manifold
and that the Mn converge to M in the Lipschitz sense. Therefore this
sequence does not collapse, which is a contradiction. �
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