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Introduction

1. A comparison theorem for complete Riemannian manifolds with sectional curva-
tures ≥ k says that distance functions in such manifolds are more concave than in the
model space Sk of constant curvature k. In other words, the restriction of any distance
function distp to any geodesic γ (always parametrised by the arclength) satisfies a certain
concavity condition (∗)k. For example, the condition (∗)o reads

(∗) dist2p ◦ γ(t)− t2 is concave in t

In fact, the condition (∗)k for a Riemannian manifold is equivalent to the corresponding
lower curvature bound. On the other hand, it characterises geodesics among all curves,
parametrised by the arclength.

Geodesics in (complete, finite dimensional) Alexandrov spaces with curvature ≥ k also
satisfy (∗)k. However, in this case (∗)k usually holds for some other curves as well. The class
of all arclength parametrised curves satisfying (∗)k, or quasigeodesics, is our main object
in this paper. We prove that, unlike geodesics in Alexandrov spaces, quasigeodesics can
be constructed with arbitrary initial data and are extendable (§§4,5), and have a natural
compactness property (§2). We also give a local description of quasigeodesics (1.7).

Several applications of quasigeodesics are discussed in [Pet]. Here we present a typical
one.

Proposition. Let Σn be a compact Alexandrov space of curvature ≥ 1, with radius > π/2.
Then for any p ∈ Σ the space of directions Σp has radius > π/2.

Remark. This proposition implies, by an inductive argument, that Σn is homeomorphic
to the sphere Sn. Another proof of this “radius sphere theorem” is due to Grove and
Petersen [GP]. Yet another proof follows immediately from [PP, 1.2, 1.4.1].

Proof of the proposition. Assume that Σp has radius ≤ π/2, and let ξ ∈ Σp be a
direction, such that clos Bξ(π/2) = Σp. Suppose there is a geodesic of length π/2 starting
at p in direction ξ. Then the other endpoint q of this geodesic satisfies clos Bq(π/2) = Σ.
(Indeed, for any point r ∈ Σ we have ∠rpq ≤ π/2, therefore |rq| ≤ π/2 by the comparison
inequality). This contradicts our assumption that Σ has radius > π/2. Now in general
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there may be no such geodesic, but we can always construct a quasigeodesic with the
prescribed data, and the argument goes through. �

2. Another important feature of manifolds with sectional curvature ≥ k is the con-
tracting property of the exponential map in a neighborhood of the origin in the tangent
space. Here the tangent space is the space of constant curvature k. In an Alexandrov space,
for the purpose of defining a contracting exponential map, the tangent space at a point p
can be defined as the k-cone on the space of directions Σp (that is the ordinary cone if k = 0
and the spherical suspension if k = 1). However, the exponential map may not be defined
in any open neighborhood of the origin. In §3 we define a gradient-exponential map, which
is defined and contracting on the whole tangent space if k ≤ 0 and on the half of it if
k > 0. It maps the rays of the tangent space to the corresponding gradient curves for the
distance function from the base point; the gradient curves have a special parametrisation,
which ceases to coincide with the arclength as soon as the curve ceases to be a shortest
line. In addition, it turns out that the restrictions of arbitrary distance functions to the
gradient curves with this special parametrisation satisfy a certain monotonicity condition,
which is often as useful as the concavity condition (∗)k. This monotonicity condition also
allows us to use gradient curves as the first step in the construction of quasigeodesics.

Gradient curves and gradient-exponential maps can be constructed in infinite-dimensional
Alexandrov spaces as well (see the Appendix). This construction complements the work
of Plaut to settle the problem of equivalence of Hausdorff and topological dimensions for
Alexandrov spaces.

3. Several natural questions about quasigeodesics remain open. Probably the most
important are

(1) Is it true that quasigeodesics with almost all initial data are unique? (There are
simple examples of geodesics without common arcs having the same initial data.)
Is there an analog of the Liouville theorem for “quasigeodesic flow”?

(2) Is it true that any quasigeodesic can be approximated by quasigeodesics made up
of shortest lines? or by broken geodesics with small negative turn?

4. Historic remarks. Quasigeodesics on convex surfaces in R
3 were introduced by

Alexandrov [A1]. He defined them by a local condition (nonnegative left and right turns),
which seems to be hard to generalize for ambient spaces of higher dimensions. A number of
results were proved by Alexandrov [A2] and Pogorelov [Pog]. Later Alexandrov extended
his definition to the curves in two-dimensional manifolds of bounded (integral) curvature;
quasigeodesics in such spaces were discussed in [AB]. Many arguments were based on the
fundamental fact that the spaces under consideration can be approximated by polyhedral
metrics with some geometric control; for multidimensional Alexandrov spaces such results
are not known. Quasigeodesics in multidimensional polyhedra were considered by Milka
[M]. Our approach to gradient curves was influenced by the work of Sharafutdinov [Sh], who
considered gradient curves for concave non-smooth functions on Riemannian manifolds of
nonnegative sectional curvature.

5. Prerequisites. We will freely use the basic results about Alexandrov spaces,
which can be found in [BGP]. The discussion in §6 relies on certain arguments from [PP].
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Notation

We denote by M complete n-dimensional Alexandrov spaces of curvature ≥ k.

Sk is the simply connected complete surface of constant curvature k; we fix an origin
o ∈ Sk; the constant π/

√
k equals ∞ for k ≤ 0.

Σ denotes complete finite dimensional Alexandrov spaces of curvature ≥ 1.

For a point p in an Alexandrov space, Σp and Cp denote the space of directions and
the tangent cone at p respectively; o ∈ Cp is the origin; Σp is embedded in Cp as the unit
sphere. logp : M → Cp is a multivalued map; for each q ∈ M the set logp(q) consists of
all elements v ∈ Cp such that |ov| = |pq| and the direction of v is the direction of some
shortest line pq.

The directional derivative of a function f is denoted by f ′; it is defined on a space of
direction Σp and can be naturally extended to Cp; this extension is called a differential
and denoted by df ; thus df(λv) = λdf(v) for any v ∈ Cp, λ ≥ 0.

The comparison angle ∠̃pqr is the angle at q̃ in the triangle p̃q̃r̃ on Sk whose side have
lengths |p̃q̃| = |pq|, |p̃r̃| = |pr|, |q̃r̃| = |qr|. For a Lipshitz curve γ, with Lipschitz constant

1, we denote by ∠̃pγ(t1)
⌣γ(t2) the angle in the triangle on Sk whose sides have lengths

|pγ(t1)|, |pγ(t2)| and |t2 − t1|; similarly, if γ1, γ2 are two such curves, γ1(0) = γ2(0) = p,

then ∠̃γ1(t1)
⌣p⌣γ2(t2) denotes the angle in the triangle on Sk whose sides have lengths

|t1|, |t2|, |γ1(t1)γ2(t2)|; if such a triangle does not exist, then the comparison angle is equal
to 0.

Bp(R) ⊂ M denotes the open metric ball of radius R centered at p, Sp(R) the corre-
sponding metric sphere.

For a function φ on R, φ+ and φ− denote its right and left derivatives respectively.

§1. Preliminaries and Definitions

1.1 Lipshitz curves. (cf. [B]) In this paper a curve will always mean a parametrised
Lipschitz curve, very often with Lipschitz constant 1. A Lipschitz curve is always rectifi-

able; moreover, the length of its arc, say γ|[t1,t2], can be computed as
∫ t2

t1
|γ̇|(t)dt, where

|γ̇|(t) := limτ→0 |γ(t)γ(t+ τ)|/|τ | exists for almost all t. In particular, if γ is parametrised
by the arc length, then |γ̇|(t) = 1 a.e.

1.2 Development. (cf. [A3]) Fix a real k. Let γ : [a, b] → X be a 1-Lipschitz curve

in a metric space X, p ∈ X, 0 < |pγ(t)| < π/
√
k for all t ∈ [a, b]. Then there exists a

unique (up to rotation) curve γ̃ : [a, b] → Sk, parametrised by the arclength, and such that
|oγ̃(t)| = |pγ(t)| for all t and the segment oγ(t) turns clockwise as t increases. (This is easy
to prove.) Such a curve γ̃ is called the development of γ with respect to p on the k-plane
Sk. The development γ̃ is called convex if for every t ∈ (a, b) and for sufficiently small
τ > 0 the curvilinear triangle, bounded by the segments oγ̃(t± τ) and the arc γ̃|t−τ,t+τ , is
convex.
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1.3 Differential inequalities. Let φ be a continuous function on (a, b), t ∈ (a, b).
We write φ′′(t) ≤ B if φ(t+ τ) ≤ φ(t) + Aτ + Bτ2/2 + o(τ2) for some A ∈ R; φ′′(t) < ∞
means that φ′′(t) ≤ B for some B ∈ R. If f is another continuous function on (a, b), then
φ′′ ≤ f means φ′′(t) ≤ f(t) for all t. We will use several equivalent conditions as well:

(1) φ− F is concave, where F is the solution of F ′′ = f .
(2) φ′′(t) ≤ f(t) for all t 6= t0, and φ+(t0) ≤ φ−(t0).
(3) φ′′(t) < ∞ for all t and φ′′(t) ≤ f(t) + δ for almost all t and all δ > 0.
(4) There exist sequences {φi}, {fi} uniformly converging to φ and f respectively, and

such that φ′′
i ≤ fi for each i.

The equivalence is easy to check, except maybe the sufficiency of (3), which requires a
lemma from [T,11.82].

1.4 Comparison theorems. Let M be a complete Riemannian manifold with sec-
tional curvatures ≥ k, γ : [a, b] → M be a geodesic, parametrised by the arclength, p ∈ M ,

0 < |pγ(t)| < π/
√
k for all t. Then, according to a comparison theorem for the shape op-

erator, the function distp ◦ γ satisfies a certain concavity condition. One way to express
this condition is to say that

(L1) The development of γ w.r.t. p on the k-plane is convex.

Another way is to write it as a differential inequality

(L2)

f ′′ ≤ 1− kf , where f = ρk ◦ distρ ◦ γ , and

ρk(x) =











1/k(1− cos(x
√
k)) , if k > 0

x2/2 , if k = 0

1/k(1− cosh(x
√
−k)) , if k < 0

((L1) and (L2) are equivalent because the inequality (L2) becomes an identity for a geodesic
on the k-plane.)

It is well known that the local (in t) conditions (L1), (L2) imply global comparison
statements (versions of Toponogov comparison theorem).

(G1). Let q1 = γ(t1), q2 = γ(t2), q3 = γ(t3), t1 < t2 < t3, t3 − t1 ≤ |pq1| + |pq3| <
2π/

√
k − (t3 − t1). Let p̃, q̃1, q̃2, q̃3 ∈ Sk form a comparison triangle, so that |p̃q̃1| = |pq1|,

|p̃q̃3| = |pq3|, |q̃1q̃2| = t2 − t1, |q̃2q̃3| = t3 − t2, |q̃1q̃3| = t3 − t1. Then |pq2| ≥ |p̃q̃2|.

(G2). Let q1 = γ(t1), q2 = γ(t2), t2 > t1, t2 − t1 < π/
√
k, and let p̃, q̃1, q̃2 ∈ Sk form a

comparison triangle, so that |p̃q̃1| = |pq1|, ∠p̃q̃1q̃2 = ∠pq1q2. Then |pq2| ≤ |p̃q̃2|.

(G3). For any t, the comparison angle ∠̃pγ(t)⌣γ(t+ τ) is non-increasing in τ

for 0 ≤ τ < π/
√
k.

(A geometric proof of (G1)–(G3) from (L1) is based on Alexandrov’s lemma, see [BGP,2.5].)
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1.5 Convex curves and quasigeodesics.
Definition. A 1-Lipschitz curve γ in a metric space X is called k-convex if it satisfies

(L1) for each p ∈ X such that 0 < |pγ(t)| < π/
√
k for all t. A k-convex curve is a

k-quasigeodesic (QG) if it is parametrised by the arclength.

Clearly, a convex curve satisfies (L2) and (G1),(G3). Conversely, each of these conditions
can be taken as a definition of convex curves. The condition (G2) can also be adapted to
hold for convex curves; namely, one should replace the angle ∠pq1q2 by arccos(−(distp ◦
γ)+(t1)).

1.6 Alternative definition of Alexandrov spaces. Although we introduced quasi-
geodesics in arbitrary metric spaces, all our further results are about QG in Alexandrov
spaces. The only exception is the following alternative description of Alexandrov spaces
themselves.

Proposition. A length space X is an Alexandrov space of curvature ≥ k if every two
points in X can be connected by a shortest line, which is a k-quasigeodesic.

Proof. Repeat the arguments from [BGP, 2.7–8] substituting “shortest line which is a
k-quasigeodesic” for “shortest line”. �

1.7 A local, invariant description of quasigeodesics.

Proposition. Let γ : [a, b] → M be a curve, parametrised by the arclength, in an Alexan-
drov space of curvature ≥ k. Then γ is a k−QG iff for every t ∈ (a, b)

1
2 (dist

2
q ◦ γ)′′(t) ≤ 1 + o(|qγ(t)|).

Proof. The “only if” implication follows easily from the definitions. The “if” implica-
tion will be proved here in the case k = 1; in the other cases the proof is similar.

We have to prove that (− cos ◦distp ◦ γ)′′ ≤ cos ◦distp ◦ γ. In fact we will check the
conditions 1.3(3).

Fix t ∈ (a, b) and p ∈ M such that 0 < |pγ(t)| < π. Pick a point q on a shortest line
pγ(t) close to γ(t). The comparison inequalities imply that

(cos |pγ(t′)|−cos |qγ(t′)| cos |pq|) sin |qγ(t)|+(cos |γ(t)γ(t′)|−cos |qγ(t′)| cos |qγ(t)|) sin |pq| ≥ 0

or
− cos |pγ(t′)| ≤ (− cos |qγ(t′)| sin |pγ(t)|+ cos |γ(t)γ(t′)| sin |pq|)/ sin |qγ(t)| .

Our assumption implies that

(− cos ◦distq ◦ γ)′′(t) ≤ 1 + o(|qγ(t)|) .

On the other hand, obviously

(cos ◦distγ(t) ◦ γ)′′(t) ≤ 0 .
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Therefore,
(− cos ◦distp ◦ γ)′′(t) < ∞ .

Moreover, since γ is parametrised by the arclength, for almost all t we have

|γ(t)γ(t′)| = |t− t′|+ o(|t− t′|)

hence
(cos ◦distγ(t) ◦ γ)′′(t) ≤ −1 .

It follows that for all such t,

(− cos ◦distp ◦ γ)′′(t) ≤ ((1 + o(|qγ(t)|)) sin |pγ(t)| − sin |pq|)/ sin |qγ(t)| ≤ cos |pγ(t)|+ δ

if q was chosen sufficiently close to γ(t). �

Corollary. If k ≥ k′ then the classes of k−QG and k′−QG in an Alexandrov space of
curvature ≥ k coincide.

§2. Tangent Vectors and Compactness

It is clear that a uniform limit of k-convex curves is a k-convex curve, cf. 1.3(4). Our
main goal in this section is to show that the length of the limit curve is equal to the limit
of lengths of converging curves; in particular, a limit of QG is a QG.

2.1 Tangent cones and tangent vectors. An Alexandrov space has a tangent cone
at each point; at most points it is isometric to euclidean space, but there may be singular
points as well. Still it is convenient to treat elements of any tangent cone C as vectors.
We define the norm of a vector v ∈ C by |v| = |ov|, and the scalar product of two vectors
u, v ∈ C by 〈u, v〉 = (|u|2 + |v|2 − |uv|2)/2. Clearly, 〈λu, v〉 = λ〈u, v〉 for λ ≥ 0.

Two vectors u, v ∈ C are called polar, if 〈u,w〉+ 〈v, w〉 ≥ 0 for all w ∈ C, and opposite,
if 〈u,w〉 + 〈v, w〉 = 0 for all w ∈ C. Clearly, u and v are opposite iff 2|u| = 2|v| = |uv|.
The existence of a pair of nonzero opposite vectors in C gives rise to an isometric splitting
C = R× C ′; in contrast, any vector in any cone C has a polar one, see 3.1.1.

Let γ : [a, b] → M be a Lipschitz curve, t ∈ [a, b]. A vector v ∈ Cγ(t) is called a left

tangent vector of γ at t if v = limj→∞ τ−1
j logγ(t) γ(t− τj) for some sequence τj → 0+. A

right tangent vector is defined in a similar way. There always exist right and left tangent
vectors at each point (except the endpoints, where only right or only left tangent vectors
exist), but they are not necessarily unique. The right and left tangent vectors of γ at t
will be denoted by γ+(t) and γ−(t) respectively.

Proposition. (a) The left and right tangent vectors are unique and opposite for almost
all t.

(b) If γ is k-convex, then the tangent vectors are unique and polar for all t.
(c) If γ1 : [a, b] → M , γ2 : [b, c] → M are k-convex, γ1(b) = γ2(b), γ−

1 (b) is polar
to γ+

2 (b), then the curve γ : [a, c] → M obtained by gluing γ1 and γ2 together, is also
k-convex.
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Proof. Let f be a distance function, such that (f ◦ γ)+(t) exists. Then for any right
tangent vector γ+(t) we have (f ◦ γ)+(t) = df(γ+(t)). Similarly, if (f ◦ γ)−(t) exists, then
for any γ−(t) we have (f ◦ γ)−(t) = −df(γ−(t)). Choose a family of distance functions
fi = distpi

, such that {pi} is a countable dense subset of M . Now the statement (a) follows
from the fact that each Lipschitz function fi ◦γ has derivative a.e., while (b) holds because
each function fi ◦ γ has right and left derivatives satisfying (fi ◦ γ)+(t) ≤ (fi ◦ γ)−(t) for
all t, if γ is k-convex. The assertion (c) follows from 1.3(2). �

Convention. We will sometimes use the right and left tangent vectors in the situations
where they are not necessarily unique. In these cases an appearance of, say, γ+ in an
assumption means “there exists a right tangent vector γ+ such that . . . ”, whereas its
appearance in a conclusion means “for all right tangent vectors γ+ . . . ”. We will also use
signs “±” and “∓” to write one formula instead of two similar ones.

2.2 Theorem. Let γi : [a, b] → M be a sequence of k-convex curves converging uniformly
to a curve γ. Then length(γ) = lim length(γi). Moreover, the conclusion holds if γi are
curves in different Alexandrov spaces Mi, with the same lower curvature bound and the
same dimension, converging to M in Gromov-Hausdorff sense.

Proof. The statement is an immediate consequence of the formula for the length of a
Lipschitz curve (see 1.1), Proposition 2.1(1), and the following

2.2.1 Key Lemma. If t is a point where γ+(t) and γ−(t) are unique and opposite, then
|γ±(t)| = lim |γ±

i (t)|.
Proof of the lemma. For simplicity consider only the case when k = 0 and M has

curvature ≥ 0. Let p = γ(t), pi = γi(t). Passing to a subsequence, we may assume
that Cpi

converge in the Gromov-Hausdorff sense to a cone C of the same dimension, and
γ±
i (t) tend to ω± ∈ C. (In general, C is different from Cp.) We can also construct a

non-contracting map log : M → C, such that for every x ∈ M there exists a sequence
xi ∈ Mi converging to x and such that logpi

(xi) ⊂ Cpi
converge to log(x). (First define

log on a countable dense subset of M using diagonal argument, then extend it to the
whole M .) Obviously, | log(x)| = |px| for all x ∈ M .

Fix a point q ∈ M and a sequence qi ∈ Mi as in the definition of log; let fi =
1
2dist

2
qi
◦γi,

f = 1
2dist

2
q ◦ γ. Since γi are k-convex, k = 0, we have

fi(t+ τ) ≤ fi(t)± f±
i (t)τ + τ2 .

Using the first variation formula and passing to the limit we get

(1) f(t+ τ) ≤ f(t)∓ 〈ω±, log(q)〉τ + τ2 .

Assume that there is only one shortest line between p and q. Then f is differentiable at
t because γ+(t) and γ−(t) are opposite. In this case (1) implies

(2)
∓ f ′(t) = 〈ω±, log(q)〉 , and, in particular,

〈ω+, log(q)〉+ 〈ω−, log(q)〉 = 0 .
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Let ν± = lim τ−1
j log γ(t ± τj) for some sequence τj → 0+. Then ∓f ′(t) =

− lim τ−1
j (f(t±τj)−f(t)) = − lim 1

2τ
−1
j (|qγ(t±τj)|2−|qp|2) ≥ − lim 1

2τ
−1
j (| log(q) log(γ(t±

τj))|2 − | log q|2) = lim τ−1
j < log q, log(γ(t± τj))〉 = 〈log, ν±〉, whence

(3) 〈ω±, log(q)〉 ≥ 〈ν±, log(q)〉 .

On the other hand, clearly |ν±| = |γ±|, and |ν+ν−| = lim τ−1
j | log(γ(t + τj)) log(γ(t −

τj))| ≥ lim τ−1
j |γ(t + τj)γ(t − τj)| = |γ+γ−| = 2|γ±|, whence ν+ and ν− are opposite. It

follows that

(4) 〈ν+, log(q)〉+ 〈ν−, log(q)〉 = 0 .

Comparing (2),(3),(4) we conclude that

(5) 〈ν±, log(q)〉 = 〈ω±, log(q)〉 .

This conclusion holds for all q which can be connected to p by only one shortest line. The
set of such q has full measure in M (see [OS,3.1]), hence its log-image has positive measure
in C. It follows easily that ω± = ν±. Thus,

|γ±| = |ν±| = |ω±| = lim |γ±
i | .

�

2.3 Corollaries. (1) If γ is k-convex then |γ+(t)| = limτ→0+ |γ+(t + τ)| and |γ−(t)| =
limτ→0+ |γ−(t− τ)| for all t.

Proof. Let p = γ(t), τi → 0+. Consider a sequence of τik-convex curves γi in the
spaces Mi = τ−1

i ·M , defined by γi(s) = τ−1
i · γ(t + sτi), s ≥ 0. Clearly Mi converge to

Cp, and γi converge to a curve γ∞ in Cp, defined by γ∞(s) = sγ+(t), s ≥ 0. Applying
the Key Lemma for s = 1 we get |γ+(t)| = |γ+

∞(1)| = lim |γ+
i (1)| = lim |γ+(t + τi)|. The

proof for left tangent vectors is similar. �

(2) If γ is a quasigeodesic then |γ±(t)| = 1 for all t. In particular, QG satisfies (G2) in
its original form.

(3) Under the assumptions of Theorem 2.2, a limit of QG is QG.
(4) If pq is a shortest line, and γ is a QG starting at p in the same direction then γ and

pq have a common arc. In particular, any QG in a Riemannian manifold is a geodesic.

Proof. Consider the developments of γ with respect to points qi close to q, and use
(2) for the right tangent vector at p.

§3. Gradient Curves

A Lipschitz function f in a domain U ⊂ M is called λ-concave if for every shortest
line γ in U , (f ◦ γ)′′ ≤ −2λ; f is called semiconcave if for every p ∈ U there exists
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a number λ(p) such that f is λ(p)-concave in a neighborhood of p. For example, if M
is an Alexandrov space, p ∈ M , then distp is semiconcave in M\{p}, whereas dist2p is
semiconcave in M . Clearly a semiconcave function is differentiable at every point and its
differentials are concave homogeneous functions on the tangent cones.

Let f be any function differentiable at p. A vector v ∈ Cp is called the gradient of f at
p, and is denoted by ∇f(p), if df(v) = |v|2 and the function df(u)/|u| attains its positive
maximum value at v. We let ∇f(p) = 0 if df(u) ≤ 0 for all u ∈ Cp; in this case p is called
a critical point for f . If df is concave on Cp then it is not hard to show that ∇f(p) is
unique and can be characterised by the property df(u) ≤ 〈∇f, u〉 for all u ∈ Cp. (Indeed,
assume that there exist u ∈ Cp violating this condition and use concavity of df to show
that df(w)/|w| > |∇f | for vectors w near ∇f on the shortest line between u and ∇f .)

3.1.1 Example. Let M = Cp, f(u) = −〈u, v〉 for some v ∈ Cp. Then ∇f(p) is polar
to v, and |∇f(p)| ≤ |v|.

3.2 Gradient curves. Let f be a semiconcave function without critical points in
U ⊂ M . A locally Lipschitz curve γ : (a, b) → U is called a gradient curve for f (or
f -gradient curve), if f ◦ γ(t) = t and γ+(t) = ∇f(γ(t))/|∇f(γ(t))|2 for all t ∈ (a, b).

Proposition. For each p ∈ U there is a unique complete f -gradient curve starting at p.

(Complete means having no limit points in U .)
The proof is based on the following

3.2.1 Lemma. Let f be λ-concave in U . Then

(a) For any shortest line γ : [a, b] → U we have

〈γ+(a),∇f(γ(a))〉+ 〈γ−(b),∇f(γ(b))〉 ≥ 2λ(b− a)

(b) |∇f | is semicontinuous in U , i.e.

lim inf
pi→p

|∇f(pi)| ≥ |∇f(p)| for all p ∈ U

Proof of the lemma. (a) Since f ◦ γ(t) + λt2 is a concave function of t, we have

(f ◦ γ)+(a)− (f ◦ γ)−(b) ≥ 2λ(b− a) .

This implies (a) because

(f ◦ γ)+(a) = df(γ+(a)) ≤ 〈γ+(a),∇f(γ(a))〉 and

−(f ◦ γ)−(b) = df(γ−(b)) ≤ 〈γ−(b),∇f(γ(b))〉

(b) Fix a sequence pi → p and choose a sequence qi → p such that (f(qi)−f(p))/|pqi| →
|∇f(p)| and |pqi|/|ppi| → ∞. The λ-concavity of f implies that lim inf(df(vi)/|vi|) ≥
|∇f(p)| for vi ∈ logpi

(qi), hence lim inf |∇f(pi)| ≥ |∇f(p)|. �
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3.2.2 Proof of the proposition (sketch; see Appendix for more details). Since
the statement is essentially local, we may assume that f is λ-concave in U and that
infq∈U |∇f(q)| > 0. The gradient curve can be constructed as limit of broken geodesics,
made up of short segments with directions close to the gradient directions. The conver-
gence, as well as uniqueness, is ensured by the assertion 3.2.1(a), while 3.2.1(b) guarantees
that the limit is indeed a gradient curve, having a unique right tangent vector at each
point. �

3.3 Monotonicity estimates for gradient curves. ¿From here forth we consider
gradient curves for distance functions. For technical reasons we restrict ourselves to the
case of nonnegative curvature, cf. 3.6

Let γ be a complete gradient curve for f = distp, defined for t ∈ (0, a). Consider a
reparametrised curve γ ◦ ρ−1, where ρ(t) is determined by the conditions

(1) dρ/ρ = dt/t · |∇f(γ(t))|−2 , ρ/t → 1 as t → 0 .

Proposition. (a) The curve γ ◦ ρ−1 can be correctly defined for ρ ∈ (0,∞).

(b) For arbitrary q ∈ M the comparison angle ∠̃qp⌣γ ◦ ρ−1(ρ) is non-increasing in
ρ. (c) If γ1 is another distp-gradient curve, and ρ1 is defined in a similar way, then the

comparison angle ∠̃γ ◦ ρ−1(ρ)⌣p⌣γ1 ◦ ρ−1
1 (ρ1) is non-increasing as ρ and ρ1 increase in

such a way that dρ/ρ = dρ1/ρ1.

Proof. We will use differential inequalities which may make sense only almost every-
where in the parameter domain; the conclusions can be easily justified using semicontinuity
of the gradient.

(a) Integrating (1) formally we get ρ(t) = t exp(Iγ(t)), where

Iγ(t) =

∫ t

0

τ−1(|∇f(γ(τ))|−2 − 1)dτ .

At this point we make an assumption (justified in the end of the proof) that Iγ(t) converges
at t = 0. In this case it is clear that ρ ≥ t because |∇f | ≤ 1. Moreover, |(γ ◦ ρ−1)+(ρ)| =
t
ρ
|∇f(γ(t))|−1 ≤ 1, hence γ ◦ ρ−1 is 1-Lipshitz. Therefore, if ρ is bounded on a complete

f -gradient curve γ, then γ converges to a single critical point, and we simply let this point
be the image of the curve γ ◦ ρ−1 for ρ ≥ ρ(a).

(b) and (c). The angle monotonicity condition in (c) can be written as

dh ≤ ρ2 + h2 − ρ21
2ρh

dρ+
ρ21 + h2 − ρ2

2ρ1h
dρ1 ,

where h = h(ρ, ρ1) = |γ(t)γ(t1)|.
On the other hand, the actual dh can be estimated as

dh ≤ −〈∇f(γ(t)), ξ〉|∇f(γ(t))|−2dt− 〈∇f(γ1(t1)), ξ1〉|∇f(γ1(t1))|−2dt1 ,
10



where ξ ∈ ∑

γ(t) and ξ1 ∈ ∑

γ1(t1)
are directions of a shortest line γ(t)γ(t1). The scalar

products can be estimated as

−〈∇f(γ(t)), ξ〉 ≤ −df(ξ) ≤ cos ∠̃pγ(t)γ1(t1) =
t2 + h2 − t21

2th
,

and similarly

−〈∇f(γ1(t1)), ξ1〉 ≤
t21 + h2 − t2

2t1h
.

Thus our assertion (c) reduces to

(2)

ρ2 + h2 − ρ21
2ρh

dρ+
ρ21 + h2 − ρ2

2ρ1h
dρ1

≥ t2 + h2 − t21
2th

|∇f(γ(t))|−2dt+
t21 + h2 − t2

2t1h
|∇f(γ1(t1))|−2dt1 .

This inequality becomes an identity for ρ and ρ1 defined by (1) and satisfying dρ
ρ

= dρ1

ρ1
.

(Strictly speaking, this is true only until γ or γ1 hits a critical point; after that we get
a strict inequlaity, as can be easily checked.) To check (b) it suffices to prove (2) when
ρ1 = t1 and dρ1 = dt1 = 0. In this case (2) reduces to a correct inequality ρ2 ≥ t2.

It remains to verify our assumption about convergence of Iγ(t). It obviously converges if
γ is a shortest line on some subinterval (0, a′). In the general case, we can approximate our
gradient curve γ by gradient curves γi which coincide with γ on (ai, a) and are shortest
lines on (0, ai), ai → 0. Choose a finite collection of points qj near p, such that the
directions of shortest lines pqj form a π/4-net in Σp. Applying the conclusion of (b) to
curves γi and points qj we see that the parameters ρi are uniformly bounded in some
neighborhood of p. Therefore the integrals Iγi

(t) are uniformly bounded for small t, and
Iγ(t) converges. �

3.3.3 Corollary. If γ|(0,a′) and γ1|(0,a′

1
) are shortest lines, then ∠̃γ ◦ ρ−1(ρ)⌣p⌣γ1 ◦

ρ−1
1 (ρ1) ≤ ∠̃γ(a′)pγ1(a

′
1) whenever ρ ≥ a′, ρ1 ≥ a′1.

Proof. Assume that ρ/a′ ≥ ρ1/a
′
1 and let ρ = ρa′1/ρ1. Then ∠̃γ ◦ ρ−1(ρ)⌣p⌣γ1 ◦

ρ−1
1 (ρ1) ≤ ∠̃γ◦ρ−1(ρ)⌣pγ1(a

′
1) according to (c) and ∠̃γ◦ρ−1(ρ)⌣pγ1(a

′
1) ≤ ∠̃γ(a′)pγ1(a

′
1)

according to (b), whence the result. �

3.4 Unique gradient curves in all directions. Let p ∈ M , ξ ∈ Σp. We are going
to construct a unique complete distp-gradient curve γ : [0, a) → M such that γ+(0) = ξ.
Let ξi → ξ be directions of shortest lines pqi, qi → p. Extend each of pqi to a complete
distp-gradient curve γi. Since the gradient of distp is bounded away from zero near p, the
curves γi are uniformly Lipshitz there, and we can consider a limit curve γ near p. The
semicontinuity of the gradient implies easily that γ is also a distp-gradient curve; of course
γ can be extended to a complete one. To check γ+(0) = ξ apply 3.3(b) to curves γi and
points qj , with i >> j. Uniqueness follows from 3.3(c).
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3.5 Gradient-exponential map. Now we are in a position to define the gradient-
exponential map, g expp : Cp → M . Namely, given v ∈ Cp, construct a complete distp-

gradient curve γ starting at p in direction v/|v|, and let g expp(v) = γ ◦ρ−1(|v|). Of course,
g expp ◦ logp =Id. The gradient-exponential map is non-expanding on the whole Cp — this
follows from 3.3(c).

3.6 There are versions of 3.3–3.5 for arbitrary lower curvature bound. They tend
to be more complicated when it is positive. For example, if it is 1, then the definition
(1) of ρ becomes dρ

tan ρ
= dt

tan t
|∇f(γ(t))|−2, 3.3(b) holds true for ρ < π/2, 3.3(c) is valid

for ρ < π/2, ρ1 < π/2 when ρ and ρ1 vary in such a way that dρ
sin ρ cos t = dρ1

sin ρ1 cos t1
,

Corollary 3.3.3 holds true for ρ, ρ1 < π/2, and the gradient-exponential map is defined and
is non-expanding on the half of the spherical suspension S(Σp).

§4. Construction of pre-quasigeodesics

Our goal in this and the next section is to construct infinite QG with arbitrary initial
data. This will be done in two steps. At first we construct so-called pre-quasigeodesics.
(This class of curves does not seem to have any independent significance; it just comes out
in an attempt to construct QG in a natural way.) Then, in the next section, we obtain
QG as limits of appropriately chosen pre-quasigeodesics.

We assume that lower curvature bound k = 0. The case k < 0 is very similar whereas
in the case k > 0 there are certain additional problems. Therefore in this case we simply
consider our space as having nonnegative curvature, and use in the end the invariant
description 1.7.

4.1 Monotone curves.
Definition. A 1-Lipschitz curve γ : [a, b) → M is called monotone if ∠̃qγ(a)⌣γ(t)

is non-increasing in t for every q ∈ M . According to the discussion in 1.5, any arc of a
convex curve is monotone and conversely if any arc of a curve is monotone then this curve
is convex.

Technical definition. A Lipschitz curve γ : [0,∞) → M is called normal if its Lipschitz
constant is equal to |γ+(0)|.

According to 3.4, 3.3(b), given a point p ∈ M and a unit vector v ∈ Cp one can always
construct a normal monotone curve γ with γ(0) = p, γ+(0) = v. In fact, the condition
|v| = 1 can be relaxed to |v| ≤ 1 due to the following observation.

4.1.1 If γ is monotone (convex) then for arbitrary λ ≤ 1 the curve γγ(t) = γ(λt) is
also monotone (convex). (Note that the corresponding statement for k > 0 is generally
false.) The proof is straightforward.

4.2 Compactness.
12



Proposition. A uniform limit of monotone curves is monotone. Moreover, if γi are
converging normal monotone curves, γi(0) = p, then the limit curve γ is also normal, and
γ+
i (0) → γ+(0). In particular, the right tangent vector of a normal monotone curve at the

origin is unique.

Proof. The first statement is obvious. To prove the second one, consider an arbitrary
function f of the type 1

2dist
2
q. Since γi are monotone, we have

f(γi(t)) ≤ f(p) + df(γ+
i (0))t+ t2

whence for any limit v of a subsequence of γ+
i (0),

f(γ(t)) ≤ f(p) + df(v)t+ t2 .

On the other hand,

f(γ(tj)) = f(p) + df(γ+(0))tj + o(tj)

for some sequence tj → 0. It follows that df(v) ≥ df(γ+(0)), for any choice of v, γ+(0) and
f . Since each of γi is normal, the limit curve γ is |v|-Lipschitz, and therefore |v| ≥ |γ+(0)|.
Now if fj = 1

2dist
2
qj
, where qj tends to p in such a way that the direction of pqj tends to

that of v, then dfj(v) < dfj(γ
+(0)) for large j unless γ+(0) = v. �

4.3 Gluing.

Proposition. Let γ1, γ2 be normal monotone curves, such that γ1(a) = γ2(0), γ+
1 (a) =

γ+
2 (0) for some a ≥ 0. Then a curve γ, defined by

γ(t) =

{

γ1(t) , if 0 ≤ t ≤ a

γ2(t− a) , if t ≥ a

is normal and monotone.

Proof. The normality of γ is obvious, so we only need to check monotonicity of
∠̃qγ(0)⌣γ(t) for t ≥ a. It is equivalent to the condition (distq ◦ γ)+(t) ≤ cos ∠̃qγ(t)⌣γ(0),

while from monotonicity of γ2 we know that (distq ◦ γ)+(t) ≤ cos ∠̃qγ(t)⌣γ(a). Ac-

cording to Alexandrov’s lemma, the inequality ∠̃qγ(t)⌣γ(0) ≤ ∠̃qγ(t)⌣γ(a) is equivalent

to ∠̃qγ(a)⌣γ(t) + ∠̃qγ(a)⌣γ(0) ≤ π, or cos ∠̃qγ(a)⌣γ(t) + cos ∠̃qγ(a)⌣γ(0) ≥ 0. This

inequality is true because cos ∠̃qγ(a)⌣γ(0) ≥ (distq ◦ γ1)
+(a) (since γ1 is monotone),

cos ∠̃qγ(a)⌣γ(t) ≥ −(distq ◦ γ2)
+(0) (since γ2 is monotone), and the right-hand sides of

these two inequalities match (since γ+
1 (a) = γ+

2 (0)). �

4.3.1 Corollary. If γ1, γ2 are convex then γ is convex as well.

4.4 Construction of convex curves.
13



Proposition. Given p ∈ M , v ∈ Cp, |v| ≤ 1, there exists a normal convex curve γ with
γ(0) = p, γ+(0) = v.

Proof. Fix δ > 0. Construct inductively normal monotone curves αi, such that α0 = p,
α+
0 (0) = v, αi+1(0) = αi(δ), α+

i+1(0) = α+
i (δ). Define a curve γδ by γδ(t) = αi(t − δi)

for iδ ≤ t ≤ (i + 1)δ. According to 4.3, γδ is a normal monotone curve. Any limit γ of
a subsequence of γδ as δ → 0 is obviously a normal convex curve with the required initial
data. �

4.5 Pre-quasigeodesics.
Definition. A convex curve γ : [a, b) → M is called a pre-quasigeodesic (pre-QG) if for

every s ∈ (a, b) the curve γs(t) = γ(s + t/|γ+(s)|) is also convex. (If |γ+(s)| = 0 then we
require γ(t) = γ(s) for all t ∈ (s, b).)

Note that if γ is a pre-QG then each γs is pre-QG as well. A pre-QG is called complete
if it is defined on [0,∞). Note that a complete pre-QG need not have infinite length.

Proposition. Given p ∈ M , v ∈ Cp, |v| = 1, there exists a complete pre-QG γ with
γ(0) = p, γ+(0) = v.

Proof. Fix δ > 0. Use 4.4 to construct inductively normal convex curves αi such that
α0(0) = p, α+

0 (0) = v, αi+1(0) = αi(δ), α+
i+1(0) = α+

i (δ), and such that the curves

ααi defined by ααi(t) = αi(t/|α+
i (0)|) are also convex. (At each step we construct a

normal convex ααi+1 with ααi+1(0) = αi(δ), αα+
i+1(0) = α+

i (δ)/|α+
i (δ)|, and then obtain

αi+1 by reparametrisation; if |α+
i (δ)| = 0 then all further αj map [0,+∞) to the point

αi(δ).) Define curves γj,δ and γγj,δ by γj,δ(t) = αi+j(t − δi) for iδ ≤ t ≤ (i + 1)δ and
γγj,δ(t) = γj,δ(t/|α+

j (0)|).
According to 4.3, each γj,δ is normal and convex. Morever, each γγj,δ is normal and

convex as well. (Indeed, γγj,δ can be obtained by gluing the curves βi,j defined by βi,j(t) =
ααi(t · |α+

i (0)|/|α+
j (0)|), i ≥ j, each of these βi,j is normal and convex, because |α+

j (0)| ≤
|α+

j (δ)| = |α+
j+1(0)| ≤ · · · ≤ |α+

i (0)|, cf. 4.1.1.)
Let γ be any limit of a subsequence of γγ0,δ as δ → 0. Then γ is a normal convex curve

with the required initial data, cf. 4.2. Moreover, it follows from the Key Lemma 2.2.1
that for almost all s ≥ 0 the curve γs is a limit of an appropriate sequence of curves γγj,δ.
Therefore γs is convex for almost all s ≥ 0, and an application of the corollary 2.3(1) shows
that the same is true for all s. �

4.6 Entropy.
Definition. Let γ : [a, b) → M be a pre-QG. A measure µ on [a, b) defined by µ(t, t′) =

log |γ+(t)| − log |γ−(t)| is called the entropy of γ. (Note that |γ+(t)| ≥ |γ−(t′)| if t′ > t
because γt is 1-Lipschitz.) It follows from 2.1(a) and 2.3(1) that µ{t} = log |γ−(t)| −
log |γ+(t)| for each t ∈ (a, b). A pre-QG γ is a QG iff |γ+(0)| = 1 and the entropy µ ≡ 0.
Thus our goal will be to construct a pre-QG with given initial data and zero entropy.

§5. Construction of quasigeodesics
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5.1 Reduction to a local problem. Let γ1 : [a, b) → M and γ2 : [b, c) → M be
pre-QG, and suppose that γ1(b) = γ2(b), |γ−

1 (b)| ≤ |γ+
2 (b)| and γ+

1 (b) is polar to γ−
1 (b).

Then a curve γ, defined by

γ(t) =

{

γ1(t) , if t ≤ b ,

γ2(t) , if t ≥ b

is a pre-QG with entropy

µ(t, t′) =











µ1(t, t
′) , if t′ ≤ b ,

µ2(t, t
′) , if t ≥ b ,

µ1(t, b) + µ2(b, t
′) + log |γ−(b)| − log |γ+

2 (b)| , if t < b < t′ .

This follows from 2.1(c), 4.1.1 and 4.6.

In particular, every pre-QG is extendable, because for any vector one can find a polar
one which is not longer, see 3.1.1.

Note the problem of existence of infinite QG with given initial data, as well as the
problem of extendability of QG, has been reduced to the verification of two statements

(1) There exists local QG with arbitrary initial data
(2) For every unit vector there exists a polar unit vector

In fact, the second statement follows from extendability of QG in lower dimensional spaces.
Indeed, given a unit vector η ∈ Σq construct an arbitrary QG (in Σq) of length π, starting
at η; the comparison inequality (G2) implies that the second endpoint ζ of this QG satisfies
|ηξ| + |ξζ| ≤ π for all ξ ∈ Σq, which is equivalent to the statement that η, ζ are polar in
Cq.

The proof of statement (1) occupies the rest of this section.

Since the problem is local, we will assume that M is compact; the general case requires
only minor modifications.

5.2. We are going to construct local QG with prescribed initial data as limits of pre-
QG with the same initial data. Note that a uniform limit of pre-QG is a pre-QG, and
the entropies weakly converge to the entropy of the limit curve — this follows from 2.2.1,
2.3(1). Therefore we have to find a way to estimate the entropy.

At this point we fix the initial data p0 ∈ M , ξ0 ∈ Σp and choose a small number a such
that the directions of shortest lines p0p of length 10a form a 1/100-net in Σp0

, and for any

two shortest lines p0p1, p0p2 of length ≤ 10a we have ∠p1p0p2 − ∠̃p1p0p2 ≤ 1/100. From
now forth we will consider only pre-QG γ defined on [0,∞) with γ(0) = p0, γ+(0) = ξ0,
and their reparametrised arcs γs, s ∈ [0, a).

5.3 Lemma. Let s ∈ [0, a), p = γ(s), ξ = γ+(s)/|γ+(s)|, q ∈ M , η ∈ Σp — the
direction of pq, α = ∠(ξ, η). Suppose that α < 1/10. Then

(a) |(γs)+(|pq|/4)| ≥ 1− 2α2.
(b) µ(0, |pq|/4) ≤ 4α2.
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In particular

(c) |γ+(a)| > 1− 1/100, µ[0, a) < 1/100
(d) For any ν > 0 there exists s′ ∈ (s, a) such that if q = γ(s′) then µ(s, s′) <

ν(s′ − s+ α). Moreover, s′ can be chosen arbitrarily close to s.

Proof. Since γs is convex, |qγs(|pq|/2)| ≤ (1 + α2)|pq|/2. On the other hand, |pq| ≤
|qγs(|pq|/2) + 1

4 |pq||(γs)+(0)|+ 1
4 |pq||(γs)+(|pq|/4), since (γs)+(t) is non-increasing. Sub-

tracting we get (a); (b) follows immediately. The assertion (c) follows from (a),(b) applied
for s = 0 and appropriately chosen q. To prove (d) consider a sequence si = s+4−i(a−s).
If for some large i we have µ(s, si) < 10µ(s, si+1) then using (b) we easily get µ(s, si) < να;
on the other hand, if µ(s, si) ≥ 10µ(s, si+1) for all large i then obviously µ(s, si) = o(si−s)
as i → ∞, and the assertion (d) follows. �

5.4 The preceding lemma gives us no means to estimate the point charges of µ. In
fact we should not worry about such charges, because we can always modify our pre-QG
to remove all of them above a certain level. Indeed, if µ{s} is “large” then we can replace
the arc γs by another one, choosing as (γs)+(0) a unit vector, polar to γ−(s)/|γ−(s)|.

5.5 Consider a model example. Let γ : (0, a) → s0 be a Lipschitz curve, (locally)
convex in the usual sense of euclidean geometry, and let µ be a (locally) finite measure
on (0, a), satisfying 5.3(d) and having no point charges. Then µ ≡ 0. This conclusion
essentially follows from the fact that for any approximation of γ by an inscribed broken
geodesic, the sum of arc-chord angles α is (locally) uniformly bounded.

The following estimate is essentially an attempt to relate the arc-chord angles of a
convex curve in M to the corresponding angles for its development. For technical reasons,
we express it in somewhat different terms.

Lemma. Let f be a function of the type 1
2dist

2
x, p = γs(0), q = γs(t), ξ = (γs)+(0),

η ∈ Σp — the direction of pq. Then (f ◦ γs)+(0) − (f ◦ γs)−(t) ≥ df(ξ) − df(η) − 2t,
provided that df(η) ≥ 0.

Proof. Clearly, f(q) ≤ f(p) + df(η)|pq|+ |pq|≤f(p) + df(η)t+ t2. On the other hand,
f(p) ≤ f(q) − (f ◦ γs)−(t)t+ t2, since γs is convex. Therefore, (f ◦ γs)−(t) ≤ df(η) + 2t,
whence the result. �

5.6 The preceding lemma allows us to estimate from above the expressions of the
form df(ξ)− df(η) rather than ∠(ξ, η). If Σp is the standard unit sphere then, given ξ and
η, it is easy to find many functions f for which the difference df(ξ)− df(η) is positive and
of order ∠(ξ, η). However, for a general Σp there may be no such functions at all. In the
next lemma we describe a specific situation where such functions can be found.

Let A0 = 1
2 infx∈M Vol(Σx). Clearly A0 > 0 since M is compact.

Lemma. There exists a small constant c0 = c0(n,A0) such that if R > 0, A ≥ A0,
q ∈ M , p ∈ Bq(c0R), pi tends to p and directions of shortest lines ppi tend to ξ ∈ Σp,
Vol(Σp) ≥ AVol(Sn−1), Vol(Σpi

) ≤ A(1 + c0)Vol(S
n−1), R1−nVol(Sq(R)) ≥ A(1 −

c0)Vol(S
n−1), then for any η ∈ Bξ(π/4) ⊂ Σp there exists a subset Vη ⊂ Sq(R) with
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Vol(Vη) ≥ c0Vol(Sq(R)) such that for each x ∈ Vη the function f = distx satisfies df(ξ)−
c0|ξη| ≥ df(η) ≥ 0.

Proof. It is easy to check that if Mn
i → Mn in Gromov-Hausdorff sense, and xi ∈ Mi

tend to x ∈ M , then Vol(Σx) ≤ lim inf Vol(Σxi
). In particular, considering the convergence

of rescaled M to its tangent cone Cp, we see that Vol(S(Σξ)) ≤ A(1+ c0)Vol(S
n−1), where

S(Σξ) denotes the spherical suspension of Σξ. Now imagine that c0 = 0. In this case,
expξ is an isometry of S(Σξ) onto Σp, whereas expp ◦R is a similarity of Σp onto Sq(R).
For very small c0 > 0 these assertions are “almost true”. Given η ∈ Bξ(π/4) ⊂ Σp

let Uη = {ζ ∈ S(Σξ) : |ξζ| ≥ 3π/4, | logξ(η) logξ(ζ)| < π/4}, and define Vη = {x ∈
Sq(R) : logp(x) ⊂ Cp projects into expξ(Uη) ⊂ Σp}. The verification that Vη satisfies our
requirements is easy. �

5.7 Now, having prepared the necessary estimates, we can start the formal proof.
First introduce some notation.

Let MA = {p ∈ M : Vol(Σp) > AVol(Sn−1)}, 0 ≤ A ≤ 1. MA is an open set for each
A, M1 = ∅, MA0

= M . Let MA(δ) = {x ∈ M : Bx(δ) ⊂ MA}, δ > 0. MA(δ) is a
compact subset of MA, and the open sets intMA(δ) form an exhaustion of MA as δ → 0.
A pre-QG γ is called an A-pre-QG if its entropy satisfies µ(γ−1(MA)) = 0. Thus our goal
is to construct infinite A0-pre-QG with prescribed initial data. It will be achieved by an
inductive argument: we already know (4.5) that 1-pre-QG can be constructed, and we will
show how to construct A-pre-QG assuming the existence of A(1 + c0)-pre-QG.

Since the class of A-pre-QG is closed with respect to gluing along a pair of polar unit
vectors, as well as taking limits, the problem again reduces to a local one. Furthermore,
it suffices to prove the following statement

(∗)
For any ν > 0, δ > 0 there exists an

A(1 + c0)-pre-QG γ : [0,∞) → M with γ(0) = p0, γ+(0) = ξ0,

such that µ(γ−1(intMA(δ)) ∩ [0, a)) < ν

Proof of (*). All pre-QG γ appearing in the argument will be A(1 + c0)-pre-QG
defined on [0,∞) and having initial data (p0, ξ0).

Choose a finite covering of MA(δ) by balls Bqj (c0rj), 1 ≤ j ≤ N , such that

R1−n
j Vol(Sqj (Rj)) > A(1 − c0)Vol(S

n−1) for each j, and consider (−1)-concave functions

fj = (Vol(Sqj (Ri)))
−1

∫

x∈Sqj
(Rj)

1
2dist

2
x. Obviously the expressions (fj ◦ γ)+(t) − (fj ◦

γ)−(t′) + t′ − t are positive and bounded independently of γ for 0 ≤ t < t′ ≤ a. Therefore,
it suffices to show that for any ν′ > 0 there exists γ satisfying

(1) µ(γ−1(intMA(δ)) ∩ [0, s)) ≤ ν′(s+

N
∑

j=1

((fj ◦ γ)+(0)− (fj ◦ γ)−(s) + s)) ,

for s = a. We will “construct” γ satisfying (1) for all s ≤ a using Zorn’s lemma. Obviously,
if γ satisfies (1) for s = si and si → s−, then γ satisfies (1) for s = s. It remains to show
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that if γ satisfies (1) for some s ∈ [0, a) then γs can be modified to make γ satisfy (1) for
some s′ > s.

Suppose that γ satisfies (1) for some s ∈ [0, a). Modify γs to make (γs)+(0) a unit
vector polar to γ−(s)/|γ−(s)|; clearly this makes µ{s} = 0. (If s = 0 then γ+(0) = ξ0
and µ{0} = 0.) If γ(s) 6∈ MA then γ−1(intMA(δ)) ∩ (s, s′) = ∅ for some s′ > s and (1)
is trivially satisfied for such s′. If γ(s, s′) ⊂ MA(1+c0) for some s′ > s, then again (1)
is satisfied for such s′ becuase γ is an A(1 + c0)-pre-QG. In the remaining case we are
in the conditions of 5.6, with p = γ(s), pi = γ(si), si → s+, Bq(R) = Bqj (Rj) for

some j. Using Lemmas 5.5. 5.6 and (–1) concavity of functions 1
2dist

2
x, we get ∠(ξ, η) ≤

10c−2
0 R−1

j ((fj ◦ γ)+(s) − (fj ◦ γ)−(s′) + 2(s′ − s)) for s′ ∈ (s, a). Thus, using 5.3(d), we

conclude that (1) holds for s′ slightly larger than s. �

§6. Semiconcave functions and QG on Extremal Subsets

In this section we assume that our space M has no boundary.

6.1 Semiconcave functions and QG.

Proposition. Let γ : [a, b] → U be a QG, and let f be a λ-concave function in U . Then

(1) (f ◦ γ)′′ ≤ −2λ

Proof.We’ll show that (1) holds for every function g of the form
g(x) = infy∈U (f(y) +A|xy|2) , where A is a large positive number, and then pass to

the limit as A → ∞ .
Take any t ∈ (a, b) , let p = γ(t) and let q satisfy g(p) = f(q)+A|pq|2 . Then according

to 6.2(a) below, the derivative at q of the function f + Adist2p vanishes. It follows easily
that there is only one shortest line qp , and its direction at q is a pole of Σq (which turns
out to be a spherical suspension). Now the estimate (g ◦ γ)′′ ≤ −2λ can be proved by
an argument similar to [Per,6.1] ,where it was shown that the distance function from the
boundary of nonnegatively curved Alexandrov space is concave. �

6.2 Lemma. Let φ be a spherically concave function on Σ, ∂Σ = ∅. Then

(a) If φ ≥ 0 on Σ then φ ≡ 0.
(b) If ξ ∈ Σ is the point where φ attains its minimal value, then φ ≤ φ(ξ) · cos ◦distξ

on Σ.
(c) In particular, if f is a semiconcave function near p ∈ M , then there exists v ∈ Cp

such that df(u) ≤ −〈v, u〉 for all u ∈ Cp.

Proof. (a) We use induction. If dim Σ = 0, then Σ is a couple of points {ξ1, ξ2}
at distance π, and our assertion follows from the condition of spherical concavity φ(ξ1) +
φ(ξ2) ≤ 0. To carry out the induction step, consider the derivative φ′ on the space of
directions Σξ at the point ξ where φ attains its minimal value. Clearly φ′ ≥ 0 on Σξ,
therefore, by the induction assumption, φ′ ≡ 0 on Σξ. On the other hand, if η ∈ Σ is such
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that f(η) ≥ f(ξ) ≥ 0 and at least one of these inequalities is strict, then the spherical
concavity of φ implies that φ′ is strictly positive at the direction of ξη at ξ. Thus, φ ≡ 0
on Σ.

(b) It follows from (a) that φ′ ≡ 0 on Σξ. Now to prove the inequality φ(η) ≤ φ(ξ) ·
cos |ξη| for some η ∈ Σ it suffices to observe that the left- and the right-hand sides have
the same values and equal derivatives at ξ, and the right-hand side is spherically linear on
ξη, whereas the left-hand side is spherically concave.

(c) Apply (b) to Σ = Σp, φ = f ′ and let v = −φ(ξ) · ξ.

6.3 QG on extremal subsets.

Theorem. Let F ⊂ M be an extremal subset, p ∈ F , ξ ∈ ΣpF . Then

(a) An f -gradient curve starting at p remains in F for any semiconcave f .
(b) There exists an infinite QG with initial data (p, ξ), contained in F .

Proof. (a) The only new ingredient in the proof is the following.

6.3.1 Lemma.

(a) ∇f(q) ∈ CqF for any q ∈ F and any semiconcave f .
(b) Let Φ ⊂ Σ be an extremal subset, ∂Σ = ∅, φ a spherically concave function on Σ,

x ∈ Σ — the point where φ attains its positive maximal value. Then x ∈ Φ.

Proof of the Lemma. (b) Let y ∈ Φ be the point of Φ closest to x, y 6= x, and let
η ∈ Σy denote the direction of yx. Then φ(y) < φ(x) and |xy| ≤ π/2 (see [PP, 1.4.1]),
therefore φ′(η) > 0. Applying 6.2(b) to φ′ on Σy, we find ξ ∈ Σy such that |ηξ| > π/2;
this contradicts extremality of Φ. (a) follows from (b) applied to f ′ on Σq, with Φ = ΣqF .

�

(b) The arguments of §§4,5 work in our situation once we know that for any q ∈ F ,
η ∈ ΣqF , there exists ζ ∈ ΣqF polar to η. This again requires an inductive argument, as
in 5.1, with the base of induction provided by

6.3.2 Lemma. Let Φ ⊂ Σ be an extremal subset, η ∈ Φ be an isolated point of Φ. Then
there exists ζ ∈ Φ such that |ξη|+ |ξζ| ≤ π for all ξ ∈ Σ.

Proof. If clos(Bη(π/2)) = Σ then we can take ζ = η. Otherwise let ζ be the point of
Σ farthest from η, |ηζ| > π/2. According to [PP, 1.6], ζ ∈ Φ. Now for any ξ ∈ Σ we have
|ξη| < |ζη| and ∠ξηζ ≤ π/2 (since η is isolated in Φ). Therefore, by comparison inequality,

∠̃ηξζ > π/2. It follows that Φ = {η, ζ}, since otherwise we would have ∠̃ηξζ ≤ π/2 if ξ is
the point of Φ closest to η. Since ζ also turned out to be isolated in Φ, we have ∠ηζξ ≤ π/2
and ∠ζηξ ≤ π/2 for any ξ ∈ Σ, whence by comparison inequality, |ξη|+ |ξζ| ≤ π. �

6.4 Spaces with boundary.
Strong QG in a space M with boundary can be defined by requiring (f ◦ γ)′′ ≤ −2λ to

hold only for those λ-concave f whose tautological extension to the double of M remains
λ-concave. (Note that distance functions satisfy this additional condition, as can easily
be checked.) Proposition 6.1 generalizes easily (because it is not hard to check that any
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QG in M can be obtained from some QG in the double by reflection), while Theorem
6.3(b) requires an additional observation that if F is a primitive extremal subset in M ,
not contained in ∂M , then its double is extremal in the double of M . This is not hard
to prove. Finally, Theorem 6.3(a) and Lemma 6.3.1 hold true for semiconcave f whose
tautological extension is semiconcave.

Appendix
Gradient Curves in Infinite-Dimensional Alexandrov Spaces

A.1 Let X be a complete Alexandrov space of curvature ≥ k. We will pretend that
every two points in X can be connected by a shortest line. (The general case requires
minor modifications based on the fact that for any countable collection of points xi ∈ X
there exists a dense set of points x ∈ X, which can be connected with each of xi by a
unique shortest line, see [Pl].) Define an absolute gradient |∇f | of a semiconcave function
f by

|∇f |(p) = max{0, lim sup
pi→p

(f(pi)− f(p))/|ppi|} .

A point p is critical for f if |∇f |(p) = 0.
Let f be a semiconcave function without critical points in a domain U ⊂ X. A curve

γ : (a, b) → U is called an f -gradient curve if f ◦ γ(t) = t and limt′→t+ |γ(t′)γ(t)|/|t′ −
t| = |∇f |−1(γ(t)) for all t ∈ (a, b). An f -gradient curve is called complete if it has no
accumulation points in U .

A.2 Proposition. For each p ∈ U there exists a unique complete f -gradient curve,
starting at p.

In the finite-dimensional case the proof was based on two facts: the semi-continuity of
the absolute gradient (3.2.1(b)) and the inequality 〈∇f, u〉 ≥ df(u), which implied 3.2.1(a).
The first fact is valid in our situation, and the proof needs no changes. The second one is
replaced by the first statement of the following

A.2.1 Lemma. (a) Let f be λ-concave in U ⊂ X, q, x, y ∈ U , |∇f |(x) > 0, and
f(y)−f(x)

|xy| + λ|xy| ≥ (1 − δ2)|∇f |(x) for some small δ > 0. Then cos ∠̃qxy ≥
(

f(q)−f(x)
|qx| + λ|qx|

)

|∇f |−1(x) + Cδ, where C may depend on |∇f |(x), λ, diamU and

Lipschitz constant of f , but not on δ.
(b) Let p, q, x, y ∈ U , |∇distp|(x) > 0, and − cos ∠̃pxy ≥ (1 − δ2)|∇distp|(x) for some

small δ > 0. Then cos ∠̃qxy ≥ − cos ∠̃pxq · |∇distp|−1(x) + Cδ, where C may depend on
|∇distp|(x), and the distances between p, q, x, but not on δ.

The proof of (a) goes as follows. Take a point z1 on a shortest line xy very close to x,
then take a point z2 on z1q such that |z1z2| = δ|xz1|, estimate f(z1) from below in terms of
f(x), f(y) using λ-concavity, then f(z2) in terms of f(z1) and f(q), then estimate |xz2| from
below in terms of |∇f |(x), f(x), f(z2) using λ-concavity, then apply comparison inequality

to ∆xz1z2 to estimate ∠xz1z2, and finally observe that ∠̃qxy cannot be substantially bigger
than ∠yz1q = π − ∠xz1z2 if z1 was chosen close enough to x. The proof of (b) is similar.
The details are routine. �
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A.2.2 Proof of the Proposition. First of all observe that it suffices to construct
unique gradient curves locally, since if a gradient curve γ is not complete in U , and q is its
accumulation point, then |∇f |−1 is bounded near q, and therefore it is easy to see that γ
converges to q and can be extended by a local gradient curve starting at q. Thus we may
assume that U is bounded, f is Lipschitz and λ-concave in U , and |∇f |−1 is bounded in
U .

Fix a small δ > 0. A finite sequence x0, x1, . . . , xN will be called admissible if x0 = p,
f(xi+1) > f(xi), |xixi+1| < δ2 and

(1)

∑

i∈Ix

|xixi+1| < δ2(f(xN )− f(x0)) ,

where Ix = {i : f(xi+1)− f(xi) < (1− δ2)|∇f |(xi)|xixi+1|} .

Since |∇f |−1 is bounded in U , we have an estimate

(2)
N
∑

i=1

|xi−1xi| ≤ C(f(xN )− f(x0)) .

An infinite sequence x0, x1, . . . will be called admissible if x0, x1, . . . , xNi
are admissible

for some N1 < N2 < . . . . We can find an infinite admissible sequence x0, x1, . . . without
accumulation points in U . Indeed, if x0, x1, . . . is such a sequence with an accumulation
point x ∈ U , then (2) implies that xj → x; so if x′ ∈ U satisfies |xx′| < δ2 and f(x′) −
f(x) > (1−δ2)|x′x|, then x0, x1, . . . , xNi

, x, x′ is an admissible sequence for i large enough;
thus our claim follows from Zorn’s lemma.

Now let x0, y1, . . . and y0, y1, . . . be two admissible sequences. We are going to estimate
the distances |xiyj | for such pairs (i, j) that |f(xi)− f(yj)| < δ2.

Assume that for some such (i, j) we have |xi, yj | ≥ δ and, say, f(xi) ≤ f(yj). Consider
the pair (xi+1, yj). If i 6∈ Ix, then we can estimate

(3) |xi+1yj | − |xiyj | ≤ C|xiyj ||xixi+1|

according to A.2.1(a). If Ix were empty then we could easily “integrate” (3), using an
inductive argument, to get |xiyj | < Cδ for all pairs (i, j) such that |f(xi) − f(yj)| < δ2.
In fact, using (1), it is easy to check that the same conclusion holds even if Ix 6= ∅.

Therefore, any family of admissible sequences with δ → 0 converges to some curve
γ; this curve does not have accumulation points in U if those sequences did not. Using
semicontinuity of the absolute gradieint, it is easy to see that γ is an f -gradient curve.
Finally, to prove uniqueness it suffices to observe that any f -gradient curve γ starting at
p can be easily approximated by admissible sequences with xi = γ(ti). �

A.3. Let γ : (0, a) → X be a complete distp-gradient curve. Then the monotonicity
estimates 3.3 are valid under the assumption that Iγ(t) converges at t = 0. The only change

in the proofs is the derivation of the inequality dh ≤ t2+h2−t21
2th dt +

t21+h2−t2

2t1h
dt1; namely,

in 3.3 we used inequalities −〈∇f, ξ〉 ≤ −df(ξ), and now we have to use an argument based
on A.2.1(b) instead.
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The convergence condition is obviously satisfied if γ starts as a shortest line. Moreover,
the argument in the end of proof 3.3 justifies this condition for those γ which have a definite
direction at p in the following sense. We say that γ has direction ξ at p if for any sequences
pi → p, ti → 0+ such that |piγ(ti)| = o(|ppi|), the direction of shortest lines ppi converge
to ξ. Applying 3.3(c) we immediately see that a complete distp-gradienit curve starting at
p in direction ξ is unique. The existence also holds, but is a little more delicate than in the
finite-dimensional case because we can no longer claim that |∇distp|−1 is bounded near p.
Still, it is not hard to see from the monotonicity estimate 3.3(b) that if γi : (0, ai) → X are
complete distp-gradient curves, such that their directions at p form a relatively compact
set, then there exists a > 0 such that all ai > a and |γ+

i (t)| are uniformly bounded on
(0, a). Therefore the argument in 3.4 proving existence goes through.

A.4 As a corollary to the previous discussion and the work of Plaut [Pl] we can
now prove that if the Hausdorff dimension of X is infinite then its topological dimension
is infinite as well. Indeed, suppose dimH(X) > n. Then, according to [Pl], there is a
point p ∈ X, such that the space of directions at p contains an isometrically embedded
standard unit sphere Sn. The distp-gradient curves γξ starting at p in directions ξ ∈ Sn

are all defined on some interval (0, a), and each map Γt : S
n → X, given by Γt(ξ) = γξ(t),

is Lipschitz for t < a, according to 3.3(c). On the other hand, it is easy to see, using
compactness of Sn and monotonicity estimate 3.3(b), that the diameters of Γt-inverse
images uniformly converge to zero at t → 0. Therefore, topological dimension of X must
be at least n, and letting n → ∞ completes the proof.
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