
An upper bound for curvature integral

Anton Petrunin

Abstract

Here I show that the integral of scalar curvature of a closed Riemannian
manifold can be bounded from above in terms of its dimension, diameter,
and a lower bound for sectional curvature.

1 Introduction.

Let us start with a formulation of the main result:

1.1. Theorem. Let M be a complete Riemannian m-manifold with sectional
curvature ⩾ −1 . Then for any p ∈ M∫

B1(p)

Sc ⩽ Const(m),

where B1(p) denotes the unit ball centered at p ∈ M and Sc — scalar curvature
of M .

This result is optimal, as one can see in the following example: Consider
a convex polyhedron P in Rm+1 , and let ∂Pε denote the surface of its ε -
neighborhood (if necessary, one can smooth ∂Pε to make it C∞ -smooth). Then
∂Pε are Riemannian m-manifolds with non-negative sectional curvature and the
integral

∫
∂Pε

Sc remains nearly constant for small ε , while for any θ > 0, the
integral ∫

∂Pε

|Sc |1+θ → ∞ as ε → 0.

Note that if one takes P of codimension 2 or 3, this construction gives
an example of families of collapsing Riemannian manifolds ∂Pε with integral∫
∂Pε

Sc bounded below by a positive constant. The Corollary 1.3 below shows
that this is no longer possible if the collaps drops dimension by 3 or more.

1.2. Variations and generalizations. The Bishop–Gromov inequality im-
plies that any ball of radius R in a complete Riemannian m-manifold with
sectional curvature ⩾ −1 can be covered by exp(4mR) unit balls, so subse-
quently this theorem can be generalized the following way:∫

BR(p)

Sc ⩽ Const(m) exp(4mR).
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On the other hand, the rescaling shows that for radius R < 1,∫
BR(p)

Sc ⩽ Const(m)Rm−2.

All these together lead to

1.3. Corollary Let M be a complete Riemannian m-manifold with sectional
curvature ⩾ −1 and p ∈ M . Then∫

BR(p)

Sc ⩽ Const(m)Rm−2 exp(4mR).

Also, it is easy to see that if a Riemann curvature tensor Rmp at point p of
a Riemannian m -manifold has all sectional curvatures ⩾ 0, then

|Rmp | ⩽ Scp .

It follows that if instead we have all sectional curvatures ⩾ −1, then

|Rmp | ⩽ Sc+m2.

Therefore, the last corollary also implies that∫
BR(p)

|Rm | ⩽ Const′(m)Rm−2 exp(4mR),

where
Const′(m) = Const(m) +m2.

1.4. I believe that in 1996 Gromov asked me whether the integral of the scalar
curvature could be bounded in terms of a diameter and lower curvature bound.
However, after 10 years I can not be sure that it was exactly the question he
asked.

My proof is similar to the Perelman’s proof of continuity of the integral of
the scalar curvature

F(M) =

∫
M

Sc

on the set of all Riemannian m -manifolds with a uniform lower curvature bound.
Perelman’s proof uses exhausting of the manifold by convex hypersurfaces (this
proof is included as an appendix in [P-2003]). In fact just a slight modification
of Perelman’s proof makes it possible to prove the main theorem in the non-
collapsing case, i.e. in the case one adds a lower bound for the volume of the
ball,

vol(B1(p)) ⩾ v0 > 0

as an extra condition.
In addition I use a special form of Bochner’s formula (see 2.2); a similar

idea was used by Sergei Buyalo for lower estimates of the integral of the scalar
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curvature on a 3-manifold [Buyalo]. This formula makes it possible to estimate
curvature not only in tangent but also in normal directions to the exhausting
surfaces (which is necessarily to make the proof work in the collapsing case).
Also, I had to use exhaustions by nested sequences of semiconvex surfaces, which
causes additional technical difficulty.

The rest of the proof is a combination of converging-rescaling technique.

1.5. Frame of the proof. Arguing by contradiction, assume that there is a
sequence of m-manifolds (Mn, pn) with K ⩾ −1 such that∫

B1(pn)

Sc → ∞.

Applying Gromov’s compactness theorem we can assume that (Mn, pn) con-
verges to an Alexandrov space (A, p). Using the induction hypothesis (the fact
that a slightly more general statement is true for all smaller dimension) we prove
that the scalar curvature on Mn weakly converges to a measure on A which
is finite everywhere except a finite number of points. We choose one of these
points s ∈ A and blow up Mn with carefully chosen marked points sn ∈ Mn

near s to make curvature distribution visible, then pass to the new limit space
(A′, p′). Repeat for (A′, p′) the same procedure as for (A, p) and so on. The
statement follows since there will be only a finite number of such repetitions.
The last statement follows from the fact that (A′, p′) is in a certain sense, by
certain amount bigger than (A, p) and it can not be bigger than (Rm, 0).

1.6. Acknowledgements. I would like to thank Nina Lebedeva and Yuri Burago
for their comments to the original version of this article and noticing mistakes;
I am also thankful to Fyodor Zarkhin for correcting my English.

2 Bochner formula.

This section provides a form of Bochner formula which links the integral of
the scalar curvature of a family of hypersurfaces with the integral of the Ricci
curvature in their normal directions.

2.1. Notation. Let Mm+1 be a Riemannian (m + 1)-manifold. Assume
f : Mm+1 → R is a smooth function without critical values on [a, b] ⊂ R and
its level sets Lt = f−1(t) are compact for any t ∈ [a, b] . Let

(i) u = ∇f/|∇f | be the unit vector field normal to Lt ,

(ii) {e0, e1, e2, ..., em} an orthonormal frame such that e0 = u and each ei ,
i > 0 is chosen in a principle directions of Lf(x) at x such that the
corresponding principle curvatures

κi = ⟨∇eiu, ei⟩.

form a nondecreasing sequence

κ1(x) ⩽ κ2(x) ⩽ ... ⩽ κm(x).
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(iii) H(x) = κ1(x)+κ2(x)+ ...+κm(x) mean curvature of Lf(x) at x ∈ Lf(x) ,

(iv) G(x) = 2
∑

i<j κi(x)κj(x) the external term in the Gauss formula for the
scalar curvature of Lt , i.e.

ScL = 2
∑
i<j

⟨RM (ei, ej)ej , ei⟩+G = ScM −2RicM (u, u) +G.

2.2. Bochner formula. Using this notation one can write the Bochner formula
in the following form:∫

f−1([a,b])

RicM (u, u) =

∫
f−1([a,b])

G+

∫
La

H −
∫
Lb

H (∗)

Proof. Let us write relative Bochner formula for the vector field u = ∇f/|∇f |
in the domain f−1([a, b]) :∫

f−1([a,b])

⟨Du,Du⟩ − ⟨∇u,∇u⟩ =
∫
f−1([a,b])

RicM (u, u)−
∫
La

H +

∫
Lb

H.

Since e0 = u and ⟨∇uu, u⟩ = 0,

Du =

m∑
i=0

ei · ∇eiu =

m∑
i=1

κiei · ei + u · ∇uu =

m∑
i=1

κi + u ∧∇uu,

here “ · ” denotes the Clifford multiplication. Applying again that ⟨∇uu, u⟩ = 0,

⟨Du,Du⟩ =

(
m∑
i=1

κi

)2

+ |∇uu|2.

On the other hand

∇u =
m∑
i=1

κiei ⊗ ei +∇uu⊗ u,

hence

⟨∇u,∇u⟩ =
m∑
i=1

κ2
i + |∇uu|2.

Therefore

⟨Du,Du⟩ − ⟨∇u,∇u⟩ = 2
∑
i<j

κiκj = G.

I.e., in this notation the Bochner formula boils down to (∗).
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3 Constructions in Alexandrov’s geometry.

This section contains all the necessary technical results in Alexandrov’s geom-
etry, mainly related to corner surfaces. A corner surface is a generalization of
semi-convex hypersurfaces to all codimension. Roughly speaking it is an in-
tersection of semi-convex hypersurfaces which have acute angles between each
other.

These level sets will be used in the proof in the same manner as convex
hypersurfaces in Perelman’s original proof.

Everywhere in this section we use notation and conventions as in [P-2007].
The following definition is very similar to the definition of strained (bursted)

points in [BGP], but I use it for submanifolds and have to add an extra param-
eter ℓ which describes how wide strainers should be.

3.1. Definition. A subset M of an Alexandrov space N is a (k, δ, ℓ)-corner
surface if there is a collection of 1/ℓ-concave functions fi, gi : N → R , i ∈
{1, .., k} (called strainers of M ), defined in an ℓ-neighborhood of M such that

M = {x ∈ N |fi(x) = 0 for all 1 ⩽ i ⩽ k},
the collection fi, gi : N → R is δ -strained, i.e.

(i) all fi , gi are 1-Lipschitz,

(ii) for all i ̸= j ,

|dfi(∇gj)|, |dgi(∇fj)|, |dgi(∇gj)|, |dfi(∇fj)| ⩽ δ

(iii) dfi(∇gi), dgi(∇fi) ⩽ −1 + 2δ

and the collection fi : N → R is tight, i.e

(iv) for any x ∈ M and all i ̸= j ,

dfi(∇fj) ⩽ 0

If in addition N is a smooth Riemannian manifold and all functions {fi} are
smooth then M is called smooth (k, δ, ℓ)-corner surface.

Remarks. In this definition one can take k = 0, in this case M = N .
Conditions (i)–(iv) guarantee that functions fi do not have critical points

and their level sets intersect with acute angles which are close to π/2.
Note that if one rescales the metric on N with factor λ then a (k, δ, ℓ)-corner

surface M becomes a (k, δ, λℓ)-corner surface in λN with strainers {λfi, λgi} .

3.2. Limits of strained level sets. Assume we have a sequence of q -manifolds
(Nn, pn) with marked points and sectional curvature ⩾ −1. Let Mn ⊂ Nn be
a sequence of (k, δ, ℓ)-corner surfaces defined by collections of strainers

{fi,n, gi,n}, i ∈ {1, . . . , k}, fi,n, gi,n : Nn → R.

One can pass to a subsequence of Nn to have convergences
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(i) (Nn, pn)
GH−→ (N, p),

(ii) Mn → M ⊂ N ,

(iii) for each i ∈ {1, . . . , k} , fi,n → fi : N → R and gi,n → gi : N → R .

Clearly N is an Alexandrov space of the dimension at most q with curvature
⩾ −1 and M is a (k, δ, ℓ)-corner surface with strainers fi, gi : N → R .

Moreover, if M is compact and m = q − k , then

volm M = lim
n→∞

volm Mn.

This statement follows from the proof of [BGP, Th. 10.8].

3.3. A dimension-like invariant. Here we introduce an invariant of Alexan-
drov spaces, which has properties similar to the dimension, but a bit more
sensitive.

Let A be an Alexandrov space with dimension ⩽ q . Given a positive number
θ > 0 let us define dirθ A to be

dirθ A = min
x∈A

packθ ΣxA

where ΣxA is the space of directions at x ∈ A and packθ ΣxA denotes the
maximal number of points in ΣxA at the distance > θ from each other.

Clearly dirθ A is an integer and

dirθ A ⩽ Const(θ,dimA) ⩽ packθ S
q.

3.4. A special way to lift points. Here we introduce a special way to lift
a point from an Alexandrov space to a nearby Riemannian manifold. More
precisely, we describe a way to lift a spire (see below) on a (k, δ, ℓ)-corner
surface in an Alexandrov space to a nearby (k, δ, ℓ)-corner surface in a nearby
Riemannian manifold.

This technique will be used just once, at the very end of the proof of the
implication Bm ⇒A ′

m (4.6) of the monster-lemma 4.3; for the rest, any kind of
lifting will do the job.

Assume that Nn → N is a sequence of Riemannian q -manifolds with cur-
vature ⩾ −1 converging to an Alexandrov space N . Let δ > 0 be sufficiently
small. Let Mn ⊂ Nn be a sequence of (k, δ, ℓ)-corner surfaces which converges
to M ⊂ N (see 3.2).

Consider a positive function b on M , which takes maximal possible value
b(x) such that∣∣∇y distx

∣∣ > 1− δ for any y ∈ B2b(x)(x)\{x} and 2b(x) ⩽ max{1, δℓ}

3.5. Definition. A point x on a (k, δ, ℓ)-corner surface is called a spire if for
any y ∈ M , y ̸= x we have b(y) ⩽ |xy| .
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Let us show that if x is a spire then there is a sequence of points xn ∈ Mn

which converges to x ∈ M and satisfies the following property:

3.6. Property. Let an be the minimal number such that

|∇y distxn
| > 1− δ for all points y ∈ Nn such that an < |xny| ⩽ b

Then an = 0 for arbitrarily large n or if (N ′, x′) is a partial limit of ( 1
an

Nn, xn)
then

dirδ N
′ > dirδ N (see 3.3).

3.7. The construction. Let us define a(x̃n) = aδ,b(x̃n) for any x̃n ∈ Nn to
be the minimal number such that

|∇y distx̃n
| > 1− δ if a(x̃n) < |x̃ny| ⩽ b.

Note that for any sequences Mn ∋ x̄n → x and Mn ∋ yn → y ̸= x , we have

lim inf
n→∞

|∇yn distx̄n | ⩾ |∇y distx |,

therefore a(x̄n) → 0 as n → ∞ .
Now fix one such sequence x̄n → x and let xn ∈ Mn ∩ Br(x̄n) ⊂ Nn be a

point with minimal possible a(xn), here r is a sufficiently small fixed number.
Set an = a(xn), since x is a spire, we have xn → x and in particular

(Nn, xn) → (N, x).
All that remains to prove is that the chosen sequence satisfies property 3.6.
Assume an > 0 for all large n . Let us pass to a subsequence so that

( 1
an

Nn, xn) → (N ′, x′). Clearly, for any θ > 0

dirθ N
′ ⩾ packθ ΣxN ⩾ dirθ N.

Therefore, we only have to show that if θ = δ then the first inequality is strict.
If the equality takes place, then there is a point p ∈ N ′ such that packδ ΣpN

′ =
packδ ΣxN = s . Let us show that if pn ∈ 1

an
Nn is a sequence of points converg-

ing to p then 1
an

a(pn) → 0. In particular, for large n we have a(pn) < a(xn),

which contradicts the choice of xn (here we denote by pn point in 1
an

Nn as
well as the respective point in Nn ).

Choose points q1, q2, .., qs ∈ N such that ∠qixqj > δ if i ̸= j . Let qi,n ∈ Nn

be a sequence converging to qi ∈ N . Let yn ∈ N be a point such that |pnyn|N →
0 and |∇yn distpn | ⩽ 1− δ . Then it is easy to see that ∠ynpnqn ⩾ 2δ for large
n , and passing to the limit n → ∞ we get packδ ΣxN > s , a contradiction.

4 Proof of the Theorem

4.1. Notation. Let X be Riemannian manifold, x ∈ X and σ a sectional
direction at x . We denote by KX(σ) the sectional curvature of X in the
direction σ . Let us set

K±
X(x) = max{0,max

σ
{±K(σ)}},

where σ runs over all sectional directions at x .
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Theorem 1.1 follows from the following statement for k = 0.

4.2. Theorem. There is δ = δ(q, k) > 0 such that if N is a Riemannian
q -manifold with sectional curvature ⩾ −1 and M ⊂ N is a complete smooth
(k, δ, ℓ)-corner surface, then∫

M∩B1(x)

Sc+M ⩽ Const(q, k, ℓ)

[
1 +

∫
M∩B2(x)

K−
M

]
for any x ∈ N .

If dimM ⩾ 3, this follows from statement A ′
k of the monster-lemma 4.3

below and the case dimM = 2 follows from 3-dimensional case for M × S1 ⊂
N × S1 .

4.3. Monster-lemma. There are constants Ak = A(q, k, ℓ) , A′
k = A′(q, k, ℓ) ,

Bk = B(q, k, ℓ) and a sequence of small positive constants δk , k = {0, 1, .., q−2}
such that if

N is a Riemannian q -manifold with sectional curvature ⩾ −1 ,

M ⊂ N be a complete smooth (k, δk, ℓ)-corner surface

then for any k ∈ {0, 1, .., q − 3} the following statements are true:

Ak . If diamM ⩽ 1 , then ∫
M

Sc+M ⩽ Ak

[
1 +

∫
M

K−
M

]
.

A ′
k . For any x ∈ N ∫

M∩B1(x)

Sc+M ⩽ A′
k

[
1 +

∫
M∩B2(x)

K−
M

]
.

Bk . Assume that for some x ∈ M we have |∇y distx | > 1− δk for all y ∈ N
such that a < |xy| < 2b < max{1, δℓ} , then∫

dist−1
x ([2a,b])∩M

Sc+M ⩽ Bk

[
1 +

∫
dist−1

x ([a,2b])∩M

K−
M

]
.

Proof. Clearly A′
k ⇒ Ak . Therefore in order to prove Lemma it is enough to

prove the following statements: Aq−2 and Ak ⇒ Bk−1 , Bk ⇒ A′
k for each k .

4.4. Aq−2 . In this case dimM = 2, therefore Sc±M = 2K±
M . Then the

statement follows from the Gauss–Bonnet formula:∫
M

K+
M =

∫
M

KM +

∫
M

K−
M ⩽ 4π

(
1 +

∫
M

K−
M

)
.

So one can take Aq−2 = 8π .
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4.5. Ak ⇒ Bk−1 . Assume {fi, gi} , i = {1, .., k − 1} is a set of strainers for
M . Let us consider the function f : M → R defined by the following formula:

f(y) = (1− δk)d̃istx(y) +
δk
k

k−1∑
i=1

(gi(y)− gi(x)).

where d̃istx denotes a smoothing of the distance function distx . On the set
dist−1([a, 2b]) ∩M , we clearly have

1− 2δk ⩽
f(y)

distx y
< 1.

Therefore to prove Bk−1 , it is enough to show that for some constant B(q, k, ℓ)
we have ∫

f−1([a,b])

Sc+M ⩽ B(q, k, ℓ)

[
1 +

∫
f−1([a,

3
2 b])

K−
M

]
(∗∗)

On the set dist−1([a, 2b])∩M , the function f behaves similarly to distx , in
addition it is smooth and its level subsets form corner surfaces in N (so we can
apply Ak ). Moreover, f satisfies the following properties (compare with [BGP,
11.8])

The function f is a semiconcave in a neighborhood of f−1([a, 3
2b]) and for

some α = α(q, k, ℓ) > 0 we have:

(i) 1 ⩾ |∇f | > 1/α everywhere in f−1([a, 3
2b]) on M , in particular f : M →

R does not have critical values on [a, 3
2b] .

(ii) for any t ∈ [a, 3
2b] , the level set Lt = f−1(t) forms a compact smooth

(k, δk, t/α)-strained level set in N and if m = dimLt = q − k , we have

a) A(t)
def
= volm Lt ⩽ αtm .

b) diamLt ⩽ αt ,

c) the principle curvatures of Lt in M are at most α/t .

Namely, if u = ∇f/|∇f | ∈ TM then for any unit vector v tangent to
Lt ,

⟨∇vu, v⟩ ⩽ α/t,

where ∇ denotes the Levi-Civita connection on M .

To prove that Lt = f−1(t) is a (k, δk, t/α)-corner surface in N , it is enough
to add two functions to the collection of strainers of M , one can take fk = f
and gk = distL(1+ε)t

for a sufficiently small constant ε > 0. To prove the volume
estimate, one can argue by contradiction, using the convergence of the volume
of corner surfaces, see 3.2. Details of these proof are left to the reader.
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Notation.

(i) κ1(x) ⩽ κ2(x) ⩽ ... ⩽ κm(x) are the principle curvatures of Lt ⊂ M at
x ∈ Lt with respect to u .

(ii) β : [a, b] → R+ is an upper bound for the principle curvatures on Lt , i.e.
κm(p) ⩽ βt for any p ∈ Lt (for condition (ii), one can take β(t) = α/t
but to simplify calculations we will substitute it only at the very end)

(iii) H(x) = κ1(x)+κ2(x)+ ...+κm(x) is the mean curvature of Lt at x ∈ Lt

and
H±(x) = max{0,±H(x)}

denotes positive/negative part of H(x).

Note that we choose the signs of κi to have the following formula:

A′(t) =

∫
Lt

H/|∇f |.

(iv) G(x) = 2
∑

i<j κiκj is the external term in the Gauss formula for the
scalar curvature of Lt , i.e.

ScL = 2
∑
i<j

⟨RM (ei, ej)ej , ei⟩+G = ScM −2RicM (u, u) +G

for an orthonormal frame {ei} of the tangent space to L .

Trivial inequalities.

(i) Let L ⊂ M be a hypersurface, by the Gauss formula we have

ScL = ScM −2RicM (u, u) +G.

therefore

Sc+M ⩽ Sc+L +m(m− 1)K−
M + 2RicM (u, u)−G ⩽

⩽ Sc+L +m2K−
M + 2RicM (u, u)−G.

and
G ⩽ Sc+L +(m− 1)(m− 2)K−

M ⩽

⩽ Sc+L +m2K−
M

(ii) Again, by the Gauss formula we have

K−
L ⩽ K−

M + (H− +mβ)β.
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(iii) Clearly H+(x) ⩽ mβt for any x ∈ Lt , thus∫
Lt

H+ ⩽ mβtA(t),

therefore∫
Lt

H− ⩽
∫
Lt

H−/|∇f | =
∫
Lt

H+/|∇f | −
∫
Lt

H/|∇f | ⩽

⩽ mαβtA(t)−A′(t)

Intermediate inequality. Let us prove first that∫
f−1([a,b])

Sc+L ⩽ Const(q, k, ℓ)

[
1 +

∫
f−1([a,b])

K−
M

]
(♢)

Indeed, since |∇f | ⩾ 1/α ,∫
f−1([a,b])

Sc+L ⩽ α

∫ b

a

dt

∫
Lt

Sc+L ⩽

then, applying Ak for Lt ,

⩽ A(q, k, ℓ)α

∫ b

a

dt

(
1 +

∫
Lt

K−
Lt

)
⩽

then, applying the trivial inequalities above,

⩽ A(q, k, ℓ)α

∫ b

a

dt

(
1 +

∫
Lt

[K−
M + (H− +mβt)βt]

)
⩽

⩽ A(q, k, ℓ)α

[
(b− a) +

∫
f−1([a,b])

K−
M +m(1 + α)

∫ b

a

A(t)β2
t −

∫ b

a

A′(t)βt

]
applying that 0 < a < b ⩽ 1, α = α(q, k, ℓ), βt = α/t and A(t) ⩽ αtm we
obtain (♢).

Main inequality. ∫
f−1([a,b])

Sc+M ⩽

⩽
∫
f−1([a,b])

Sc+L +m2

∫
f−1([a,b])

K−
M + 2

∫
f−1([a,b])

Ric(u, u)−
∫
f−1([a,b])

G ⩽

by the relative Bochner formula,

⩽
∫
f−1([a,b])

Sc+L +m2

∫
f−1([a,b])

K−
M +

∫
f−1([a,b])

G+ 2

∫
La

H − 2

∫
Lb

H ⩽
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applying inequality (i),

⩽ 2

∫
f−1([a,b])

Sc+L +2m2

∫
f−1([a,b])

K−
M + 2

∫
La

H+ + 2

∫
Lb

H− ⩽

then applying the intermediate inequality (♢) and estimates for the integrals
of H± we get

⩽ Const(q, k, ℓ)

[
1 +

∫
f−1([a,b])

K−
M

]
+mβaA(a) +mαβbA(b)−A′(b) ⩽

⩽ Const(q, k, ℓ)

[
1 +

∫
f−1([a,b])

K−
M

]
−A′(b).

In particular, for any τ ∈ [b, 3
2b] we have∫

f−1([a,b])

Sc+M ⩽ Const(q, k, ℓ)

[
1 +

∫
f−1([a,

3
2 b])

K−
M

]
−A′(τ).

Since 0 ⩽ A(t) ⩽ αtm (see page 9), we get that for some τ ∈ [b, 3
2b] , (−A′(τ)) ⩽

2αbm−1 . Therefore we obtain (∗∗).

4.6. Bk ⇒ A′
k . We will argue by contradiction, assuming that A ′

k is false.
Then there is a sequence of q -manifolds Nn with sectional curvature ⩾ −1
with (k, δk, ℓ)-corner surfaces Mn ⊂ Nn defined by strainers {fn,i, gn,i} and a
sequence of points xn ∈ Nn such that∫

Mn∩B1(xn)
Sc+Mn

1 +
∫
Mn∩B2(xn)

K−
Mn

→ ∞ as n → ∞. (⋆)

One can pass to a subsequence of Nn to have the following convergences (see
3.2):

(i) (Nn, xn) → (N, x), N is an Alexandrov space of dimension at most q and
curvature ⩾ −1,

(ii) for each i ∈ {1, · · · , k} , fi,n → fi : N → R and gi,n → gi : N → R .

(iii) Mn → M ⊂ N , where M is a (k, δk, ℓ)-corner surface with strainers
fi, gi : N → R .

Case with no spires. Assume that M has no spires (see 3.5). Then, since
M ∩ B̄1(x) ⊂ N is compact, it can be covered by a finite number of annuli

Annxi = {y ∈ M |0 < |xiy| < b(xi)}, i = {1, 2, .., s}

12



Choose a sequence xi,n ∈ Mn converging to xi ∈ M . Set bi = b(xi) and
ai,n = aδk,bi(xi,n) (see 3.7). As it is shown in 3.7, ai,n → 0 as n → ∞ . Then,
if n is large, applying Bk for each xi,n with pair (ai,n, bi), we get∫

Mn∩B1(xn)

Sc+Mn
⩽

⩽
s∑

i=1

∫
{y∈Mn|2ai,n<|xi,ny|<bi}

Sc+Mn
⩽

⩽
s∑

i=1

Bk

[
1 +

∫
{y∈Mn|ai,n<|xi,ny|<2bi}

K−
Mn

]
⩽

⩽ Bks

[
1 +

∫
Mn∩B2(xn)

K−
Mn

]
.

Therefore, we get a contradiction with (⋆).

Case with spires. First let us note that one can remove from M ∩ B̄1(x)
a finite set of spires (see 3.4), such that the remaining part can be covered by
finite number of annuli:

(M\{x1, x2, . . . , xs}) ∩ B̄1(x) ⊂
S⋃

i=1

Annxi
, S ⩾ s.

So centers xi for i ⩽ s are all spires and for i > s are not. Then applying the
same estimate as before, we get∫

Mn∩B1(xn)

Sc+Mn
−

s∑
i=1

∫
{y∈Mn: |x̃i,ny|<2ai,n}

Sc+Mn
⩽

⩽
S∑

i=1

∫
{y∈Mn: 2ai,n<|x̃i,ny|<bi}

Sc+Mn
⩽

⩽
S∑

i=1

Bk

[
1 +

∫
{y∈Mn: ai,n<|x̃i,ny|<bi}

K−
Mn

]
⩽

⩽ BkS

[
1 +

∫
Mn∩B2(xn)

K−
Mn

]
.

From (⋆) we can find i ⩽ s such that∫
Mn∩B2ai,n(x̃i,n)

Sc+Mn

1 +
∫
Mn∩B4ai,n(x̃i,n)

K−
Mn

→ ∞.
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Clearly in this case ai,n > 0 for all large n and ai,n → 0 as n → ∞ .
Let us choose such i and pass to shorter notations

x := xi, b := bi, xn := xi,n, an := ai,n and so on.

Consider rescalings N ′
n = 1

2an
Nn . Let us denote by M ′

n the image of Mn

in N ′
n and for the rest, let us leave the same symbol for corresponding objects

in Nn and N ′
n (it is an abuse of notation). Note that∫

M ′
n∩B1(xn)

Sc+M ′
n
=

1

(2an)n−2

∫
Mn∩B2an (xn)

Sc+Mn
,

∫
M ′

n∩B2(xn)

K−
M ′

n
=

1

(2an)n−2

∫
Mn∩B4an (xn)

K−
Mn

.

Therefore, since an → 0,∫
Mn∩B2an (x̃n)

Sc+Mn

1 +
∫
Mn∩B4an (x̃n)

K−
Mn

→ ∞ as n → ∞.

This implies ∫
M ′

n∩B1(x̃n)
Sc+M ′

n

1 +
∫
M ′

n∩B2(x̃n)
K−

M ′
n

→ ∞ as n → ∞.

Passing to a subsequence if necessarily, we can assume that (N ′
n, x

′
n) →

(N ′, x′) and repeat for N ′ the same procedure as for N . It only remains to
show

4.7. Claim. There may be only a finite number of such repetitions. In other
words, after a finite number of repetitions, we will get a case with no spires.

This claim follows from the fact that dirδk N
′ > dirδk N (see property 3.6)

plus the fact that dirδk N is an integer and dirδk N ⩽ dirδk(Rq) < ∞ , see 3.3.
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