
Homework assignments

• HWA3, due Mon, Feb 2, 10:10:
◦ Exercises: 4.3, 4.10, 5.4, 5.11, 5.18.

• HWA2, due Mon, Jan 26, 10:10:
◦ Exercises: 2.8, 3.3, 3.11a, 3.12.
◦ Read Chapter 4 and EITHER formulate one question OR

solve Exercise 4.9.
• HWA1, due Fri, Jan 16, 10:10:

◦ Exercises: 1.2, 1.12, 1.29 + one exercise of your choice in
Chapter 0 (each part of 0.4 is counted as one exercise; you
may upload multiple photos showing your solution).

◦ Read Chapter 2 and EITHER formulate one question OR
solve Exercise 2.6.

Extra-credit problems
These are challenging problems. They may improve your grade, but
they are intended to be done for fun (with the exception of Problem 0).
Solutions should be presented orally. Only the first solution will be
graded. Solutions will not be accepted after Fri, Apr 17.

Problem 0: Find a mistake or misprint in the covered part of lecture
notes. (The score depends on the type of mistake.)

Problems: 1.10, 3.5, 3.8, 3.16, 4.5, 4.6, 4.7, 4.11, 5.12.
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Chapter 0

Puzzles and anecdotes

You have probably heard that for topologists, two shapes are the same
if one can be turned into the other by stretching and squeezing (without
ripping, piercing, gluing, and so on).

This statement is neither precise nor correct, but it helps build
intuition. So, imagine an object made from endlessly stretchy material
that can be twisted and pulled like chewing gum; if you can get one
shape from another, then they have the same topology. Note that the
size plays no role.

The picture above suggests that a square and
a disc have the same topology. It might be more
impressive to see that a donut is topologically
equivalent to a coffee mug. On the other hand,
a disc and an annulus are topologically different.
It might be obvious, but this is a nontrivial state-
ment (it will eventually be proved in our course).
So, at least not all shapes are topologically equivalent.

0.1. Exercise. In the morning, a
topologist looks at his clothes; there
should be a T-shirt, pants, and socks.

Help him to identify each piece of clothing. Which piece has a hole
in it?

0.2. Exercise. A topologist dropped his mug and noticed that the
handle had snapped off. “Its topology has changed,” he thaut, “but it
can still be used for its intended purpose.”

5



6 CHAPTER 0. PUZZLES AND ANECDOTES

He picked the mug up, turned it over, looked at the bottom, and
said: “Oh, I was wrong—the topology has not changed, but it is now
impossible to use.”

What did he see?

0.3. Exercise. The topologist decided to fix the broken mug with
superglue. Being a rather clumsy person, he somehow managed to glue
his index finger to his thumb—in fact, on both hands. Worse still, the

finger rings he’d made were linked together. But after some thinking
and stretching he managed to separate the rings.

What would happen if he had a hair tie on his
hand?

At this point, you might think that topology has no
practical value, and you are almost right. Altho, think-
ing topologically, it is very easy to solve some puzzles:

0.4. Exercise.
(a) Put a loop of cord thru the handles of a pair

of scissors as shown. Have someone hold the
ends. Try to get the scissors off without cut-
ting the string or releasing the ends.

(b) Tie your hands together with a long cord; then
tie the hands of your friend in the same way,
linking your cords, as shown. Now try to get
them apart without cutting the string or unty-
ing the knots.

(c) If there is no friend nearby, try undoing the
knot in the middle of the cord shown in the
last picture. Again, no cutting the string or
untying the little knots.



Chapter 1

Metric spaces

In this chapter we discuss metric spaces — a motivating example that
will guide us toward the definition of our main object of study —
topological spaces.

Examples of metric spaces were considered for thousands of years,
but the first general definition was given only in 1906 by Maurice
Fréchet [7].

A Definition
The following definition grabs together the most important properties
of the intuitive notion of distance.

1.1. Definition. Let X be a set with a function that returns a real
number, denoted as |x − y|, for any pair x, y ∈ X . Assume that the
following conditions are satisfied for any x, y, z ∈ X :
(a) |x− y| ⩾ 0.
(b) x = y if and only if |x− y| = 0.
(c) |x− y| = |y − x|.
(d) |x − y| + |y − z| ⩾ |x − z|; this property is called the triangle inequality

 .
In this case, we say that X is a metric space  and the function

(x, y) 7→ |x− y|

is called a metric. The elements of X are called points of the metric
space. Given two points x, y ∈ X , the value |x − y| is called the distance
 from x to y.

For two points x and y in a metric space the difference x− y may
have no meaning, but |x− y| means the distance.

7



8 CHAPTER 1. METRIC SPACES

Typically, we consider only one metric on a set, but if a few metrics
are needed, we can distinguish them by an index, say |x − y|• or
|x − y|239. If we need to emphasize that the distance is taken in the
metric space X we write |x− y|X instead of |x− y|.
1.2. Exercise. Show that

|x− y|♮ = (x− y)2

is not a metric on the real line R.

1.3. Exercise. Show that if (x, y) 7→ |x− y| is a metric, then so is

(x, y) 7→ |x− y|max = max{1, |x− y|}.

B Examples
Let us give a few examples of metric spaces.

Discrete space.   Let X be an arbitrary set. For any x, y ∈ X ,
set |x − y| = 0 if x = y and |x − y| = 1 otherwise. This metric
is called the discrete metric  on X and the obtained metric
space is called discrete.

Real line.    The set R of all real numbers with the metric de-
fined by |x − y|. (Unless it is stated otherwise, the real line R
will be considered with this metric.)

Metrics on the plane.     Let us denote by R2 the set of all
pairs (x, y) of real numbers. Consider two points p = (xp, yp)
and q = (xq, yq) in R2. One can equip R2 with the following
metrics:

Euclidean metric, 

|p− q|2 =
√
(xp − xq)2 + (yp − yq)2.

(Unless it is stated otherwise, the real line R2 will be con-
sidered with the Euclidean metric.)

Manhattan metric, 

|p− q|1 = |xp − xq|+ |yp − yq|.

Maximum metric, 

|p− q|∞ = max{|xp − xq|, |yp − yq|}.

1.4. Exercise. Prove that (a) |∗ − ∗|1; (b) |∗ − ∗|2 and (c) |∗ − ∗|∞
are metrics on R2.
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C Subspaces

Let us recall the set-builder notation : Given a set X and a prop-
erty P (x) that depends on x ∈ X , we denote by

{x ∈ X : P (x) }

the subset of all elements x ∈ X for which the property P (x) holds.
For example, {x ∈ R : x > 0 } denotes the set of positive reals.

Any subset A of a metric space X forms a metric space on its own;
it is called a subspace of X . This construction produces many more
examples of metric spaces. For example, the disc

D2 =
{
(x, y) ∈ R2 : x2 + y2 ⩽ 1

}
and the circle

S1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
,

are metric spaces with the metrics taken from the Euclidean plane.
Similarly, the interval [0, 1) is a metric space with metric taken from R.

D Continuous maps

Recall that a real-to-real function f is called continuous if for any
x0 ∈ R and any ε > 0 there exists δ > 0 such that |f(x0) − f(x)| <
< ε, whenever |x0 − x| < δ. It admits the following straightforward
generalization to metric spaces:

1.5. Definition. A map f : X → Y between metric spaces is called
continuous if for any x0 ∈ X and any ε > 0 there exists δ > 0 such
that |f(x0)− f(x)|Y < ε, for any x ∈ X such that |x0 − x|X < δ.

1.6. Exercise. Let X be a metric space and z ∈ X be a fixed point.
Show that the function

f(x) := |x− z|X

is continuous.

1.7. Exercise. Let X , Y and Z be metric spaces. Assume that the
maps f : X → Y and g : Y → Z are continuous, and

h = g ◦ f : X → Z
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is their composition ; that is, h(x) = g(f(x)) for any x ∈ X . Show
that h : X → Z is continuous at any point.

1.8. Exercise. Let f : X → Y be a distance-preserving map between
metric spaces; that is,

|x0 − x1|X = |f(x0)− f(x1)|Y

for any x0, x1 ∈ X .
(a) Show that f is continuous.
(b) Show that f is injective; that is, if x0 ̸= x1, then f(x0) ̸=

̸= f(x1).

1.9. Exercise. Let X be a discrete metric space (defined in 1B) and
Y be an arbitrary metric space. Show that any map f : X → Y is
continuous.

1.10. Advanced exercise. Construct a continuous function

f : [0, 1] → [0, 1]

that takes every value in [0, 1] an infinite number of times.

E Balls
Let x be a point in a metric space X , and r > 0. The set of points in
X that lie at distance less than r is called the open ball  of radius r
centered at x. It is denoted as B(x, r) or B(x, r)X ; the latter notation
is used if we need to emphasize that it is taken in the space X .1

The ball B(x, r) is also called an $r$-neighborhood  of x.
Analogously we may define closed balls

B̄[x, r] = B̄[x, r]X = { y ∈ X : |x− y| ⩽ r } .

1.11. Exercise. Sketch the unit balls for the metrics |∗−∗|1, |∗−∗|2
and |∗ − ∗|∞ defined in 1B.

1.12. Exercise. Consider two balls B(x, r) and B(y,R) in a metric
space such that B(x, r) ⊊ B(y,R). Show that r < 2·R.

Give an example of a metric space and a pair of balls as above with
r > R.

1Many authors use the notations Br(x) and Br(x)X as well.
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Let us reformulate the definition of continuous map (1.5) using the
introduced notion of ball.

1.13. Definition. A map f : X → Y between metric spaces is called
continuous if for every x ∈ X and every ε > 0 there exists δ > 0
such that

f(B(x, δ)X ) ⊂ B(f(x), ε)Y ;

that is, the image of the δ-ball centered at x ∈ X lies in the ε-ball
centered at f(x) ∈ Y.

1.14. Exercise. Prove the equivalence of the definitions 1.5 and
1.13.

F Open sets

1.15. Definition. A subset V in a metric space X is called open if
for any x ∈ V there is ε > 0 such that B(x, ε) ⊂ V .

In other words, V is open if, together with each point, V contains
its ε-neighborhood for some ε > 0.

For example, any set in a discrete metric space is open since to-
gether with any point it contains its 1-neighborhood.

Further, the set of positive real numbers

(0,∞) = {x ∈ R : x > 0 }

is an open subset of R; indeed, for any x > 0 its x-neighborhood lies
in (0,∞). On the other hand, the set of nonnegative reals

[0,∞) = {x ∈ R : x ⩾ 0 }

is not open since there are negative numbers in any neighborhood of 0.

1.16. Exercise. Show that any open ball in a metric space is open.2

1.17. Exercise. Show that the union of an arbitrary collection of
open sets is open.

1.18. Exercise. Show that the intersection of two open sets is open.

1.19. Exercise. Show that a set in a metric space is open if and only
if it is a union of balls.

2In other words, show that for any y ∈ B(x, r) there is ε > 0 such that B(y, ε) ⊂
⊂ B(x, r).
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1.20. Exercise. Give an example of a metric space X and an infinite
sequence of open sets V1, V2, . . . such that their intersection V1∩V2∩. . .
is not open.

1.21. Exercise. Show that the metrics |∗−∗|1, |∗−∗|2 and |∗−∗|∞
(defined in 1B) give rise to the same open sets in R2. That is, if
V ⊂ R2 is open for one of these metrics, then it is open for the others.

G Gateway to topology

The following result is the main gateway to topology. It says that
continuous maps can be defined entirely in terms of open sets.

1.22. Proposition. A map f : X → Y between two metric spaces is
continuous if and only if the inverse image of any open set is open;
that is, for any open set W ⊂ Y its inverse image

f−1(W ) = {x ∈ X : f(x) ∈W }

is open.

The following exercise emphasizes that the proposition says noth-
ing about the images of open sets; it is instructive to solve it before
going into the proof (see also 4B).

1.23. Exercise. Give an example of a continuous function f : R → R
and an open set V ⊂ R such that the image f(V ) ⊂ R is not open.

Proof; only-if part. Let W ⊂ Y be an open set and V = f−1(W ).
Choose x ∈ V ; note that f(x) ∈W .

Since W is open,

➊ B(f(x), ε)Y ⊂W

for some ε > 0.
Since f is continuous, by Definition 1.13, there is δ > 0 such that

f(B(x, δ)X ) ⊂ B(f(x), ε)Y .

It follows that together with any point x ∈ V , the set V contains
B(x, δ); that is, V is open.

If part. Fix x ∈ X and ε > 0. According to Exercise 1.16,

W = B(f(x), ε)Y
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is an open set in Y. Therefore its inverse image f−1(W ) is open.
Clearly x ∈ f−1(W ). By the definition of open set (1.15)

B(x, δ)X ⊂ f−1(W )

for some δ > 0. Or equivalently

f(B(x, δ)X ) ⊂W = B(f(x), ε)Y .

Hence the if part follows.

H Limits

1.24. Definition. Let x1, x2, . . . be a sequence of points in a metric
space X . We say that it converges to a point x∞ ∈ X if

|x∞ − xn|X → 0 as n→ ∞.

In this case, we say that the sequence x1, x2, . . . is converging and
x∞ is its limit ; it can be expressed by xn → x∞ as n→ ∞ or

x∞ = lim
n→∞

xn.

Note that we defined the convergence of points in a metric space
using the convergence of real numbers dn = |x∞ − xn|X , which we
assume to be known.

1.25. Exercise. Show that any sequence of points in a metric space
has at most one limit.

1.26. Exercise. Let f : X → Y be a map between metric spaces.
Show that f is continuous if and only if the following condition holds:

• If xn → x∞ as n → ∞ in X , then the sequence yn = f(xn)
converges to y∞ = f(x∞) as n→ ∞ in Y.

I Closed sets

Let A be a set in a metric space X . A point x ∈ X is a limit point 
of A if there is a sequence xn ∈ A such that xn → x as n→ ∞.3

3Sometimes limit points are defined, assuming in addition that xn ̸= x for any n
— we do not follow this convention.
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The set of all limit points of A is called the closure of A and
denoted as Ā. Note that Ā ⊃ A; indeed, any point x ∈ A is a limit
point of the constant sequence xn = x.

If Ā = A, then the set A is called closed.

1.27. Exercise. Give an example of a subset A ⊂ R that is neither
closed nor open.

1.28. Exercise. Show that the closure of any set in a metric space
is a closed set; that is, ¯̄A = Ā.

1.29. Exercise. Show that a subset Q in a metric space X is closed
if and only if its complement V = X \Q is open.



Part I

Point-set topology
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Chapter 2

Topological spaces

In the previous chapter we defined open sets in metric spaces and
showed that continuity could be defined using only the notion of open
sets. In this chapter we collect key properties of open sets and state
them as axioms. It will give us a definition of a topological space as a
set with a distinguished class of subsets called open sets.

The first definition of topological spaces was given by Felix Haus-
dorff in 1914 [10, VII § 1]. In 1922, the definition was generalized
slightly by Kazimierz Kuratowski [12], and it is now standard.

A Definitions
We are about to define abstract open sets without referring to metric
spaces; this definition is based on two properties in exercises 1.17 and
1.18.

2.1. Definition. Suppose X is a set with a distinguished class of
subsets, called open sets  such that
(a) The empty set ∅ and the whole X are open.
(b) The union of any collection of open sets is an open set. That is,

if Vα is open for any α in the index set I, then the set

W =
⋃
α∈I

Vα = {x ∈ X : x ∈ Vα for some α ∈ I }

is open.
(c) The intersection of two open sets is an open set. That is, if V1

and V2 are open, then the intersection W = V1 ∩ V2 is open.
In this case, X is called a topological space . The collection of

all open sets in X is called a topology on X .

17



18 CHAPTER 2. TOPOLOGICAL SPACES

Usually we consider a set with just one topology, therefore it is
acceptable to use the same notation for the set and the corresponding
topological space. Rarely we will need to consider different topologies,
say T1 and T2, on the same set X ; in this case, the corresponding
topological spaces will be denoted by (X ,T1) and (X ,T2).

From 2.1c, it follows that the intersection of a finite collection
of open sets is open. That is, if V1, V2, . . . , Vn are open, then the
intersection

W = V1 ∩ · · · ∩ Vn
is open. The latter is proved by induction on n using the identity

V1 ∩ · · · ∩ Vn = (V1 ∩ · · · ∩ Vn−1) ∩ Vn.

B Examples
For any set X , we can define the following topologies:

• The discrete topology  — the topology consisting of all sub-
sets of a set X .

• The concrete topology  (also known as trivial topology )
— the topology consisting of just the whole set X and the empty
set, ∅.

• The cofinite topology  — the topology consisting of the empty
set, ∅ and the complements of finite sets.

By 1.17 and 1.18 any metric space is a topological space if one
defines open sets as in the definition 1.15. For example, the real line
R comes with a natural metric which defines a topology on R; if not
stated otherwise, the real line R will be considered with this topology.
As follows from Exercise 1.21, different metrics on one set might define
the same topology.

A topological space is called metrizable if its topology can be
defined by a metric — these examples are most important.

2.2. Exercise. Assume an infinite set X equipped with the cofinite
topology. Show that X is not metrizable.

The so-called connected two-point space   is a simple but non-
trivial example of a topological space. This space consists of two points

X = {a, b}

and it has three open sets:

∅, {a} and {a, b}.

It is instructive to check that this is indeed a topology.
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2.3. Exercise. Show that a finite topological space (that is, a finite
set equipped with a topology) is metrizable if and only if it is discrete.
In particular, the connected two-point space is not metrizable.

Let us also mention the Zariski topology : it is a topology on
Rn in which the open sets are complements of solution sets of systems
of algebraic equations. (For n = 1, it is the same as the cofinite
topology.)

This topology plays an essential role in algebraic geometry. Un-
fortunately, proving that this indeed defines a topology requires some
commutative algebra, which is beyond the scope of this text.

C Comparison of topologies
Let W and S be two topologies on the same set. Suppose W ⊂ S ;
that is, any open set in the W -topology is open in the S -topology.
In this case, we say that W is weaker than S , or, equivalently, S is
stronger than W .1

Note that on any set, the concrete topology is the weakest and
discrete topology is the strongest.

2.4. Exercise. Let W and S be two topologies on one set. Suppose
that for any point x and any W ∈ W such that W ∋ x, there is S ∈ S
such that W ⊃ S ∋ x. Show that W is weaker than S .

D Continuous maps
Our challenge is to reformulate definitions from the previous chapter
using only open sets. Continuous maps are first in line. The following
definition is motivated by Proposition 1.22.

2.5. Definition. A map between topological spaces f : X → Y is
called continuous if the inverse image of any open set is open. That
is, if W is an open subset of Y, then its inverse image

V = f−1(W ) = {x ∈ X : f(x) ∈W }

is an open subset of X .

2.6. Exercise. Let R be the real line with the standard topology, and
let X = {a, b} be the connected two-point space described in 2B — it
has only three open sets: ∅, {a}, and {a, b}.

1Some authors use terms smaller or coarser for weaker topology and finer
or larger for stronger topology.
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(a) Construct a nonconstant continuous map R → X .
(b) Show that any continuous function X → R is constant.

2.7. Exercise. Show that the composition of continuous maps is con-
tinuous.

2.8. Exercise. Let T be a collection of subsets of R that consists of
∅, R and the intervals [a,∞), (a,∞) for all a ∈ R.
(a) Show that T is a topology on R.
(b) Show that the topological space (R,T ) is not metrizable.
(c) Show that a function f : R → R is nondecreasing if and only if

it defines a continuous map (R,T ) → (R,T ).

In practice, continuity of maps between topological spaces is often
verified indirectly. In particular, one can use 2.7 together with results
from 1D and also apply the fact that any differentiable map defined on
a subset of Rn is continuous (which should be familiar from calculus).
Bit latter, we will be more flexible in constructing continuous maps;
see 3.11 and 5.3.

2.9. Exercise. Let f be a continuous real-valued function defined on
a topological space. Show that the function x 7→ |f(x)| is continuous.



Chapter 3

Subsets

This chapter starts with the definition of closed sets in a topological
space. Further, we introduce constructions of interior, closure, and
boundary. Finally, we define neighborhoods and discuss limits in a
general topological space.

There is no particular reason why we define a topological space in
terms of open sets — we could use closed sets instead. (In fact, closed
sets were considered before open sets — the former were introduced by
Georg Cantor in 1884 [4], and the latter by René Baire in 1899 [3].)

A Closed sets

Let X be a topological space. A subset K ⊂ X is called closed if its
complement X \K is open.

Sometimes it is easier to use closed sets; for example, the cofinite
topology can be defined by declaring that the whole space and all its
finite sets are closed.

From the definition of topological spaces, the following properties
of closed sets follow.

3.1. Proposition. Let X be a topological space.
(a) The empty set and X are closed.
(b) The intersection of any collection of closed sets is a closed set.

That is, if Kα is closed for any α in the index set I, then the set

Q =
⋂
α∈I

Kα = {x ∈ X : x ∈ Kα for any α ∈ I }

is closed.

21
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(c) The union of two closed sets (or any finite collection of closed
sets) is closed. That is, if K1 and K2 are closed, then the union
Q = K1 ∪K2 is closed.

The following proposition is completely analogous to the original
definition of continuous maps via open sets (2.5).

3.2. Proposition. Let X and Y be topological spaces. A map f : X →
→ Y is continuous if and only if any closed set Q ⊂ Y has a closed
inverse image f−1(Q) ⊂ X .

Proof. In the proof, we will use the following set-theoretical identity.
Suppose A ⊂ Y and B = Y \A (or, equivalently, A = Y \B). Then

➊ f−1(B) = X \ f−1(A)

for any map f : X → Y. This identity is tautological; to prove it,
observe that both sides can be spelled as

{x ∈ X : f(x) /∈ A } .

Only-if part. Let B ⊂ Y be a closed set. Then A = Y\B is open. Since
f is continuous, f−1(A) is open. By ➊, f−1(B) is the complement of
f−1(A) in X . Hence f−1(B) is closed.

The only-if part follows since B is an arbitrary closed set in Y.

If part. Fix an open set B; its complement A = Y \B is closed. There-
fore f−1(A) is closed. By ➊, f−1(B) is the complement of f−1(A) in X .
Hence f−1(B) is open.

The if part follows since B is an arbitrary open set in Y.

3.3. Exercise.
(a) Let X be a metrizable topological space. Show that any closed set

in X is an intersection of a collection of open sets.
(b) Construct a topological space Y with a closed set Q that is not

an intersection of any collection of open sets.

B Interior and closure
Let A be an arbitrary subset of a topological space X .

The union of all open subsets of A is called the interior of A and
denoted as Å or IntA.

Note that Å is open. Indeed, it is defined as a union of open sets
and such union is open by the definition of a topology (2.1). So we
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can say that Å is the maximal open set in A, as any open subset of A
lies in Å.

The intersection of all closed subsets containing A is called the
closure of A and denoted as Ā or ClA.

The set Ā is closed. Indeed, it is defined as an intersection of closed
sets and such intersection has to be closed by 3.1. In other words, Ā is
the minimal closed set that contains A, as any closed subset containing
A contains Ā.

3.4. Exercise. Assume A is a subset of a topological space X ; con-
sider its complement B = X \A. Show that

B̄ = X \ Å.

The following exercise is called the Kuratowski problem .

3.5. Advanced exercise.
(a) Prove that all the inclusions and equalities shown on the diagram

hold for any subset A in a topological space X . Conclude that

¯̄̊
A Ā

¯̊
A

¯̄̊
Å

A

˚̊̄
Ā ˚̄A Å

˚̊̄
A

given a set A one can get at most 7 distinct subsets by repeatedly
applying the set operations of closure and interior.

(b) Give an example of a topological space X with a subset A such
that all the following 7 subsets are distinct:

¯̄̊
A, ˚̄A, Ā, A, Å,

¯̊
A,

˚̊̄
A.

C Boundary
Let A be an arbitrary subset of a topological space X . The boundary
of A (briefly ∂A) is defined as the complement

∂A = Ā \ Å.

3.6. Exercise. Show that the boundary of any set is closed.
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3.7. Exercise. Show that the set A is closed if and only if ∂A ⊂ A.

3.8. Advanced exercise. Find three disjoint open sets on the real
line that have the same nonempty boundary.

D Subspaces

3.9. Proposition. Let A be a subset of a topological space Y. Then
all subsets V ⊂ A such that V = A ∩W for some open set W in Y
form a topology on A.

The described topology is called the induced topology  on A.
A subset A of a topological space Y equipped with the induced

topology is called a subspace of Y. It is straightforward to check
that this notion agrees with the notion introduced in 1C; that is, if Y
is a metric space, then any subset A ⊂ Y comes with a metric, and the
topology defined by this metric coincides with the induced topology
on A.

Proof. We need to check the conditions in 2.1.
First, the whole set A and the empty set are included; indeed,

∅ = A ∩∅ and A = A ∩ Y.
Assume {Vα} is a collection of open sets in A; here α runs in some

index set, say I. In other words, for each Vα there is an open set
Wα ⊂ Y such that Vα = A ∩Wα. Note that

⋃
α

Vα = A ∩

(⋃
α

Wα

)
.

Since the union of {Wα} is open in Y (2.1b), the union of {Vα} is open
in the induced topology on A.

Assume V1 and V2 are open in A; that is, V1 = A ∩W1 and V2 =
= A ∩W2 for some open sets W1,W2 ⊂ Y. Note that

V1 ∩ V2 = A ∩ (W1 ∩W2).

Since the intersection W1 ∩W2 is open in Y (2.1c), the intersection
V1 ∩ V2 is open in the induced topology on A.

3.10. Exercise. Let A be a subspace in X . Given a set S ⊂ A
denote by IntA S, ClAS, IntX S, and ClXS its interior and closure in
A and X , respectively. Show that IntA S ⊃ IntX S and ClAS ⊂ ClXS.
Provide examples showing that these inclusions might be strict.
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Let A be a subset of a topological space X and let Y be another
topological space. A map h : A → Y is called continuous if it is
continuous with respect to the induced topology on A.

Recall the restriction of a map f : X → Y to A ⊂ X is obtained
by keeping the same rule as f but only allowing inputs from A. It is
usually denoted by f |A; so (f |A)(a) = f(a) if a ∈ A and otherwise it
is undefined.

Observe that (f |A)−1(W ) = A∩f−1(W ) for any W ⊂ Y. It follows
that if f is continuous, then so is f |A : A→ Y; here we consider set A
with the induced topology. The following exercise provides a partial
converse.

3.11. Exercise. Let f : X → Y be a map between topological spaces.
Suppose A,B ⊂ X are sets such that A ∪B = X and either
(a) both A and B are open sets, or
(b) both A and B are closed sets.

Show that f is continuous if and only if so are the restrictions f |A and
f |B.

(c) Show that this is no longer true without assumptions of (a)
or (b).

E Neighborhoods

Let x be a point in a topological space X . A neighborhood of x is
any open set N containing x.

In topology, neighborhoods often replace balls, which makes sense
only in metric spaces.

3.12. Exercise. Let A be a set in a topological space X . Show that
x ∈ ∂A if and only if any neighborhood of x contains points of A and
of its complement X \A.

Let A and B be subsets of a topological space X . The set A is said
to be dense in B if Ā ⊃ B.

3.13. Exercise. Show that A is dense in B if and only if any neigh-
borhood of any point in B intersects A.

F Limits

3.14. Definition. Suppose xn is a sequence of points in a topological
space X . We say that xn converges to a point x∞ ∈ X (briefly
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xn → x∞ as n → ∞) if for any neighborhood N of x∞, we have that
xn ∈ N for all sufficiently large n.

Observe that the above definition agrees with 1.24. In other words,
a sequence of points x1, x2, . . . in a metric space converges to a point
x∞ in the sense of the definition 1.24 if and only if it converges in the
sense of the definition 3.14.

3.15. Exercise. Show that a convergent sequence of points in a topo-
logical space is also convergent for every weaker topology.

Note that in a space with the concrete topology any sequence con-
verges to any point. In particular, a sequence might have several
different limits. Furthermore, if we equip R with the cofinite topol-
ogy then any sequence of pairwise distinct numbers converges to every
point in R.

The following exercise shows that converging sequences do not ad-
equately describe the topology of a space; namely, an analog of 1.26
does not hold.1

Recall that a set is called countable if it admits a bijection to a
subset of the set of natural numbers. In particular, all finite sets are
countable.

3.16. Advanced exercise. Let X be R with the so-called cocountable topology
 ; its closed sets are either countable or the whole R.
(a) Construct a map f : X → X that is not continuous.
(b) Describe all convergent sequences in X .
(c) Show that if the sequence xn converges to x∞ in X , then for any

map f : X → X the sequence yn = f(xn) converges to y∞ =
= f(x∞).

1So-called nets [14] provide an appropriate generalization of sequences that
works well in topological spaces, but we are not going to consider them.
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Maps

Recall that continuous maps were defined in 2D; now we will discuss
their relatives.

A Homeomorphisms
A bijection f : X → Y between topological spaces is called a homeomorphism
 if f and its inverse f−1 : Y → X are continuous.1

Topological spaces X and Y are called homeomorphic (briefly,
X ≃ Y) if there is a homeomorphism f : X → Y.

A map f : X → Y is called an embedding if f defines a homeo-
morphism from X to the subspace f(X ) in Y.

4.1. Exercise. Show that any homeomorphism is a continuous bijec-
tion.

Give an example of continuous bijection between topological spaces
that is not a homeomorphism.

4.2. Exercise. Show that x 7→ ex is a homeomorphism R → (0,∞).

4.3. Exercise. Construct a homeomorphism f : R → (0, 1).

4.4. Exercise. Show that ≃ is an equivalence relation; that is, for
any topological spaces X , Y, and Z we have the following:
(a) X ≃ X ;
(b) if X ≃ Y, then Y ≃ X ;
(c) if X ≃ Y and Y ≃ Z, then X ≃ Z.

1The term homomorphism from abstract algebra looks similar and it has a
similar meaning but should not be confused with a homeomorphism.

27



28 CHAPTER 4. MAPS

4.5. Advanced exercise. Prove that the complement of a circle in
the Euclidean space is homeomorphic to the Euclidean space without a
line ℓ and a point p ̸∈ ℓ.
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Recall that a figure F is called star-shaped
 if there exists a point p ∈ F such
that for all x ∈ F the line segment px lies
in F .

4.6. Advanced exercise. Show that any
nonempty open star-shaped set in the plane
is homeomorphic to the open disc.

4.7. Advanced exercise. Show that the
complements of two countable dense subsets of the plane are home-
omorphic.

B Closed and open maps

4.8. Definition. A map between topological spaces f : X → Y is
called open if, for any open set V ⊂ X , the image f(V ) is open in Y.

A map between topological spaces f : X → Y is called closed if,
for any closed set Q ⊂ X , the image f(Q) is closed in Y.

Note that a homeomorphism can be defined as a continuous open
bijection.

4.9. Exercise. Show that a bijective map between topological spaces
is closed if and only if it is open.

4.10. Exercise. Give an example of a map f between topological
spaces such that
(a) f is continuous and open, but not closed,
(b) f is continuous and closed, but not open,
(c) f is closed and open, but not continuous.

4.11. Advanced exercise. Construct a map R → R that is open,
but not continuous.
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Constructions

Here we introduce several constructions that produce new topological
spaces from the given ones.

A Product space

Recall that X × Y denotes the set of all pairs (x, y) such that x ∈ X
and y ∈ Y.

Suppose that the sets X and Y are equipped with topologies. Let
us construct the product topology  on X × Y by declaring that a
set is open in X × Y if it can be presented as a union of sets of the
following type: V ×W for open sets V ⊂ X and W ⊂ Y. In other
words, a subset U is open in X ×Y if and only if there are collections
of open sets Vα ⊂ X and Wα ⊂ Y such that

U =
⋃
α

Vα ×Wα,

here α runs in some index set.
By default, we assume that X × Y is equipped with the product

topology; in this case, X × Y is called the product space .

5.1. Proposition. The product topology is indeed a topology.

Proof. Parts (a) and (b) in 2.1 are evident. It remains to check (c).
Consider two sets

U =
⋃
α

Vα ×Wα and U ′ =
⋃
β

V ′
β ×W ′

β .

29
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where α and β run in some index sets, say I and J respectively. We
need to show that U ∩ U ′ can be presented as a union of products of
open sets; the latter follows from the next set-theoretical identity

➊ U ∩ U ′ =
⋃
α,β

(Vα ∩ V ′
β)× (Wα ∩W ′

β).

Checking ➊ is straightforward. Indeed, (x, y) ∈ U ∩U ′ means that
(x, y) ∈ U and (x, y) ∈ U ′; the latter means that x ∈ Vα, y ∈ Wα and
x ∈ V ′

β , y ∈ W ′
β for some α and β. In other words, x ∈ Vα ∩ V ′

β and
y ∈ Wα ∩W ′

β for some α and β; the latter means that (x, y) belongs
to the right-hand side in ➊.

By spelling the definition of product topology, we get the following
statement.

5.2. Observation. Two maps f : X → Y and g : X → Z are con-
tinuous if and only if the x 7→ (f(x), g(x)) defines a continuous map
X → Y ×Z.

5.3. Exercise. Let f and g be continuous real-valued functions on
the topological space X . Show that (a) h1 = f + g, (b) h2 = f ·g, and
(c) h3(x) := max{ f(x), g(x) } are continuous.

5.4. Exercise. Construct a function f : [0, 1]×[0, 1] → [0, 1] such that
f is not continuous, but the functions x 7→ f(a, x) and x 7→ f(x, b) are
continuous for any a, b ∈ [0, 1].

B Base

5.5. Definition. A collection B of open sets in a topological space
X is called its base if every open set in X is a union of sets in B.

By 1.19, open balls form a base of a metric space.
A base completely defines its topology, but typically a topology

has many different bases. In metric spaces, for example, the set of all
balls with rational radii is a base; another example is the set of all
balls with radii smaller than 1.

In many cases, it is convenient (and also economical) to describe the
topology by specifying its base. For example, the product topology on
X ×Y can be redefined as a topology with a base formed by all products
V ×W , where V is open in X , and W is open in Y.
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5.6. Exercise. Let B be a base for the topology on Y. Show that a
map f : X → Y is continuous if and only if f−1(B) is open for any
set B in B.

5.7. Exercise. Let B be a collection of open sets in a topological
space X . Show that B is a base in X if and only if for any point x ∈ X
and any neighborhood N ∋ x there is B ∈ B such that x ∈ B ⊂ N .

5.8. Proposition. Let B be a set of subsets of some set X . Then B
is a base of some topology on X if and only if it satisfies the following
conditions:
(a) B covers X ; that is, every point x ∈ X lies in some set B ∈ B.
(b) For each pair of sets B1, B2 ∈ B and each point x ∈ B1 ∩ B2

there exists a set B ∈ B such that x ∈ B ⊂ B1 ∩B2.

Proof. Denote by O the set of all unions of sets in B. We need to
show that O is a topology on X .

Evidently, the union of any collection of sets in O is in O. Further,
X is in O by (a). The empty set is in O since it is a union of the
empty collection.

It remains to check 2.1c; suppose

O =
⋃
α

Bα and O′ =
⋃
β

B′
β ,

where α and β run in some index sets, and Bα, B′
β ∈ B for any α

and β. Then x ∈ O∩O′ if and only if for some α and β we have x ∈ Bα
and x ∈ B′

β . By (b), we can choose B ∈ B so that x ∈ B ⊂ Bα ∩B′
β .

Since Bα ∩B′
β ⊂ O ∩O′, it follows that

for any x ∈ O ∩O′ there is Bx ∈ B such that x ∈ Bx ⊂ O ∩O′.

Observe that
O ∩O′ =

⋃
x∈O∩O′

Bx.

It follows that O ∩O′ ∈ O if O,O′ ∈ O.

5.9. Exercise. Let N = { 1, 2, . . . } be the set of natural numbers, and
let B be a set of all arithmetic progressions in N; that is, B includes
{ a, a+ d, a+ 2·d, . . . } for any a, d ∈ N.

Show that B is a base of some topology on N. Is it true that in
this topology the set {1} is open and/or closed?
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C Prebase
Suppose P is a collection of subsets of X that covers the whole space;
that is, X is a union of all sets in P. By 5.8, the set of all finite
intersections of sets in P is a base for some topology on X . The set
P is called a prebase for this topology (also known as a subbase).

5.10. Exercise. Let P be a prebase for the topology on Y. Show
that a map f : X → Y is continuous if and only if f−1(P ) is open for
any set P in P.

There are almost no restrictions on a prebase — we may start with
any collection P of subsets that covers the whole space X and define
a topology by declaring that P is a prebase for the topology. It defines
the weakest topology on X such that every set of P is open.

5.11. Exercise. Let X and Y be topological spaces.
(a) Show that the product topology on X × Y can be redefined as a

topology with a prebase formed by all products X ×W and V ×Y,
where V is open in X and W is open in Y.

(b) Apply part (a) to prove the following: given a map f : X → Y,
consider the map F : X → X × Y defined by F : x 7→ (x, f(x)).
Show that f is continuous if and only if F is an embedding.

D Initial topology
Let X and Y be topological spaces. Note that the product topology on
X ×Y is the weakest topology such that the following two projections
(x, y) 7→ x and (x, y) 7→ y respectively are continuous.

Indeed, these projections are continuous if the inverse images of all
open sets in X and Y are open in X ×Y. In other words, the topology
on X ×Y must contain all sets of the form V ×Y and X ×W for open
sets V ⊂ X and W ⊂ Y. By 5.11a, these sets form a prebase in X ×Y
and its topology is the weakest topology that contains these sets.

More generally, given a collection of maps fα : S → Yα from a
set S to topological spaces Yα, we can introduce a topology on S by
stating that the inverse images f−1

α (Wα) for open sets Wα ⊂ Yα form
its prebase. It defines the topology on S induced by the maps fα; it
is the weakest topology on S that makes all maps fα continuous.

This construction produces a topology on the source space; for that
reason it is also called the initial topology  .

Note that induced topology  on a subset A → Yα discussed in
3D is the initial topology for the inclusion map A → Yα. Further-
more, this construction can be used to define a topology on an infi-
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nite product of spaces, as the induced topology for all its projections.
This topology is called the product topology , or the Tychonoff topology
.

5.12. Advanced exercise. Let O be the topology on R induced by
the maps x 7→ (cos(t·x), sin(t·x)) for all t ∈ R. Show that the space
(R,O) is not metrizable.

E Final topology
In the previous section, we defined a natural way to move a topology
from the target space to the source of a map. Namely, suppose f : X →
Y is a map between two sets. If Y is equipped with a topology, then
we can declare a subset V ⊂ X to be open if there is an open subset
W ⊂ Y such that V = f−1(W ).

The following exercise describes an analogous construction that
moves a topology from source to target. It can be solved by checking
the conditions in 2.1 as we did in 3D.

5.13. Exercise. Let f : X → Y be a map between two sets. Assume
X is equipped with a topology. Declare a subset W ⊂ Y to be open if
the subset V = f−1(W ) is open in X . Show that it defines a topology
on Y.

The constructed topology on Y is called the final topology for f .

5.14. Exercise. Let f : X → Y be a continuous map between topo-
logical spaces.
(a) Show that the initial topology for f on X is weaker than its own

topology.
(b) Show that the final topology for f on Y is stronger than its own

topology.

5.15. Exercise. Let g : X → Y be a continuous map.
(a) Suppose X is equipped with the initial topology. Show that a

map f : W → X is continuous if and only if the composition
g ◦ f : W → Y is continuous.

(b) Suppose Y is equipped with the final topology. Show that a map
h : Y → Z is continuous if and only if the composition h◦g : X →
→ Z is continuous.

5.16. Exercise. Let f : X → Y be a continuous surjective map. As-
sume f is (a) open or (b) closed. Show that Y is equipped with the
final topology.
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F Quotient topology

The initial topology is used mostly for injective maps; in this case,
it is essentially the same as the induced topology . Similarly, the
final topology is mostly used for surjective maps. This particular case
of the construction is called the quotient topology , which we are
about to describe.

Let ∼ be an equivalence relation  on a topological space X ;
that is, for any x, y, z ∈ X the following conditions hold:

• x ∼ x;
• if x ∼ y, then y ∼ x;
• if x ∼ y and y ∼ z, then x ∼ z.
Recall that the set

[x] = { y ∈ X : y ∼ x }

is called the equivalence class  of x. The set of all equivalence
classes in X will be denoted by X/∼.

Observe that x 7→ [x] defines a surjective map X → X/∼. The
corresponding final topology on X/∼ is called the quotient topology
 on X/∼. By default, X/∼ is equipped with the quotient topology;
in this case, it is called a quotient space .

The following exercise ties equivalence relations with maps.

5.17. Exercise. Show that an arbitrary map f : X → Y defines the
following equivalence relation on X :

x ∼ x′ if and only if f(x) = f(x′).

Moreover,

y = f(x) if and only if [x] = f−1{f(x)}.

Given a set A in a topological space X , the space X/A is defined
as the quotient space X/∼ for the minimal equivalence relation such
that a ∼ b for any a, b ∈ A.

5.18. Exercise. Describe the quotient space [0, 1]/(0, 1), where [0, 1]
and (0, 1) are real intervals; that is, list the points and the open sets
of the quotient space.

One may also check by hand that the quotient space [0, 1]/{0, 1} ≃
≃ S1; that is, the unit segment with identified ends is homeomorphic
to the circle. Theorem 8.12 will provide a very general tool that helps
to prove such statements.
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G Actions
Let X be a set. A subset G of bijections X → X that includes the
identity map idX and is closed under composition and inversion is
called a group of symmetries   of X . In this case we may say that
G acts on X , briefly G↷ X .

Typically we are interested in group actions that preserve some
structure of the set X . If X is a topological space, then it is natural
to assume that each g ∈ G is a continuous bijection X → X . Such
an action G ↷ X is called continuous. For such an action each
g ∈ G defines a homeomorphism X → X . Indeed, if g ∈ G, then
g−1 ∈ G; therefore g as well as its inverse must be continuous. Actions
on topological spaces will always be assumed to be continuous.

Given an action G ↷ X , we can equip the set G with product
defined as composition; that is, if g, h ∈ G then its product g ·h ∈ G
is defined as (g ·h)(x) := g(h(x)). With this operation, G becomes a
group; that is, it meets the following properties:

• (associativity) for any f, g, h ∈ G we have

(f ·g)·h = f ·(g ·h);

• (existence of neutral element) there exists 1 ∈ G such that for
every g ∈ G we have

1·g = g ·1 = g;

• (inverse) for each g ∈ G there exists g−1 ∈ G such that

g ·g−1 = g−1 ·g = 1.

Checking these properties is straightforward. Associativity follows
since it holds for composition, and one can take 1 = idX .

Finally note that an abstract group (that is, a set G with product
that meets the three properties above) acts on itself by g : h 7→ g ·h,
so any group acts on some set. Furthermore, we may equip G with
discrete topology and this way we obtain a continuous action G↷ G.
So you may think that actions are more fundamental than groups. A
group should be defined by its action, not the other way around.

For an action G ↷ X , it is common to denote g(x) by g ·x, where
g ∈ G and x ∈ X . Note that associativity implies that the expression

g ·h·x

makes sense for any g, h ∈ G and x ∈ X ; that is, it does not depend
on parentheses.
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H Orbit spaces
Choose a continuous action G↷ X . The set

G·x := { g ·x ∈ X : g ∈ G }

is called the $G$-orbit  of x (or, briefly, orbit).
Set x ∼ y if there is g ∈ G such that y = g ·x. Observe that ∼ is

an equivalence relation on X . Indeed, x ∼ x since x = 1·x. Further,
if y = g ·x, then

x = 1·x = g−1 ·g ·x = g−1 ·y;

since g−1 ∈ G we get that x ∼ y =⇒ y ∼ x. Finally, suppose x ∼ y
and y ∼ z; that is, y = g ·x and z = h·y for some g, h ∈ G, then
z = (h·g)·x; therefore x ∼ z.

For the described equivalence relation, the quotient space X/∼ can
also be denoted by X/G; it is called the quotient of X by the action
of G.

Note that [x] = G·x; that is, the orbit of x coincides with its equiv-
alence class. For that reason, X/G is also called the orbit space .

5.19. Exercise. Positive real numbers R+ act on R by multiplication.
Describe the quotient space R/R+; that is, list the points and the open
sets of the quotient space.

5.20. Exercise. Suppose a group G acts on a topological space X
and f : X → X/G is the quotient map.
(a) Show that f is open.
(b) Assume G is finite. Show that f is closed.



Chapter 6

Compactness

In this chapter we define compact topological spaces — especially nice
spaces that behave in many ways like finite sets, yet are far more
general.

In practice, compactness is a powerful replacement for “closed and
bounded” in Rn, but the general definition does not resemble it at first
glance. On compact spaces continuous functions behave well: they are
bounded and attain their maxima and minima (6.9). Moreover, many
limiting and convergence arguments become simpler and more robust.

A Definition

We will denote by {Vα} = {Vα}α∈I a collection of sets, where α runs
in an arbitrary index set I.

6.1. Definition. A collection {Vα} of open subsets of a topological
space X is called its open cover  if it covers the whole X ; that is, if
every x ∈ X belongs to some Vα.

More generally, {Vα} is an open cover of a subset     S ⊂ X if
any s ∈ S belongs to some Vα.

A subset of cover {Vα} that is also a cover is called its subcover
of {Vα}.

6.2. Exercise. Let {Vα} be an open cover of a topological space X .
Show that W ⊂ X is open if and only if for any α the intersection
W ∩ Vα is open.

Conclude that a map f : X → Y is continuous if for any α the
restriction f |Vα

: Vα → Y is continuous.
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6.3. Definition. A topological space X is called compact if any
cover {Vα} of X contains a finite subcover {Vα1

, . . . , Vαn
}.

Analogously, a subset S of a topological space X is called compact
if any cover of S contains a finite subcover of S.

6.4. Exercise. Show that a subset S of a topological space is compact
if and only if S equipped with the induced topology is a compact space.

Clearly, any finite topological space is compact. In fact, compact
spaces in topology, in many ways, resemble finite sets in set theory.
The next exercise provides a source of examples of infinite compact
spaces. More interesting examples are given in Section 6C.

6.5. Exercise. Show that any set equipped with the cofinite topology
is compact.

6.6. Exercise. Let S be an unbounded subset of the real line; that
is, for any c ∈ R there is s ∈ S such that |s| > c. Show that S is not
compact.

6.7. Exercise. Let S ⊂ R be a subset that is not closed. Show that
S is not compact.

6.8. Exercise. Construct a topological space with two compact sets
such that their intersection is not compact.

6.9. Exercise. Let f be a continuous real-valued function that is
defined on a compact space K.
(a) Show that f is bounded; that is there is a constant C such that

|f(x)| ⩽ C for any x ∈ K.
(b) Show that f attains its maximum and minimum; that is there

are points xmin, xmax ∈ K such that

f(xmin) ⩽ f(x) ⩽ f(xmax)

for any x ∈ K.

B Finite intersection property

6.10. Proposition. A space X is compact if for any collection of
closed sets {Qα} in X such that⋂

α

Qα = ∅
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There is a finite collection {Qα1
, . . . , Qαn

} such that

Qα1 ∩ · · · ∩Qαn = ∅.

The condition in the above proposition is called the finite intersection property
 ; it redefines compactness via closed sets.

Proof. By the definition of closed sets, the complements Vα = X \Qα
are open. Note that

⋃
α

Vα = X \

(⋂
α

Qα

)
= X ;

that is, {Vα} is an open cover of X .
Choose a finite subcover {Vα1 , . . . , Vαn}; so, Vα1 ∪ · · · ∪ Vαn = X .

Observe that

Qα1
∩ · · · ∩Qαn

= X \ (Vα1
∪ · · · ∪ Vαn

) = ∅. □

Cantor set  is constructed the following way: start with the unit
interval [0, 1], subdivide it into three equal inervals and remove the
interior of the middle one. Repeat this procedure recursively for each
of the remaining closed intervals. Observe that the following exercise
imlies that the Cantor set is not empty.

6.11. Exercise. Let Q1 ⊃ Q2 ⊃ . . . be a nested sequence of closed
nonempty sets in a compact space K. Show that there is a point q ∈ K
such that q ∈ Qn for any n.

6.12. Advanced exercise. Let Q1, Q2, . . . be a sequence of nonempty
disjoint closed sets in [0, 1]. Show that Q1 ∪Q2 ∪ . . . ̸= [0, 1].

C Real interval

6.13. Theorem. Any closed interval [a, b] is a compact subset of R.

Proof. Set a0 = a and b0 = b, so [a, b] = [a0, b0].
Arguing by contradiction, assume that there is an open cover {Vα}

of [a0, b0] that has no finite subcovers.
Note that {Vα} is also a cover for two intervals

[a0,
a0+b0

2 ] and [a0+b02 , b0].
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Furthermore, if {Vα} has a finite subcover of each of these two subin-
tervals, then these two subcovers together give a finite cover of [a, b].
Thus {Vα} must have no finite subcovers of at least one of these subin-
tervals; denote it by [a1, b1]; so either a1 = a0 and b1 = a0+b0

2 or
a1 = a0+b0

2 and b1 = b0.
Continuing in this manner we get a sequence of intervals

[a0, b0] ⊃ [a1, b1] ⊃ . . .

such that no finite collection of sets from {Vα} covers any of the in-
tervals [an, bn]. In particular,

➊ [an, bn] ̸⊂ Vα for any n and α.

Observe that

a0 ⩽ a1 ⩽ . . . ⩽ b1 ⩽ b0 and bn − an = b−a
2n .

Denote by x the least upper bound of {an}. Note that x ∈ [an, bn] for
any n.1

Since {Vα} is a cover, we can choose Vα ∋ x. Since Vα is open,
it contains an interval (x − ε, x + ε) for some ε > 0. Choose a large
n so that b−a

2n < ε. Clearly, Vα ⊃ (x − ε, x + ε) ⊃ [an, bn]; the latter
contradicts ➊.

D Images

6.14. Proposition. Let f : X → Y be a continuous map between
topological spaces and K is a compact set in X . Then the image Q =
= f(K) is compact in Y.

Proof. Choose an open cover {Wα} of Q. Since f is continuous,
Vα = f−1(Wα) is open for each α. Note that {Vα} covers K.

Since K is compact, there is a finite subcover {Vα1 , . . . , Vαn}. It
remains to observe that {Wα1

, . . . ,Wαn
} covers Q.

6.15. Exercise. Show that the circle

S1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
is compact.

1In fact, an → x and bn → x as n → ∞, but we will not use it directly.
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E Closed subsets

6.16. Proposition. A closed set in a compact space is compact.

Proof. Let Q be a closed set in a compact space K. Since Q is closed,
its complement W = K \Q is open.

Consider an open cover {Vα}α∈I of Q. Add to it W ; that is,
consider the collection of sets that includes W as well as Vα for all
α ∈ I. Note that we get an open cover of K. Indeed, W covers
all points in the complement of Q and any point of Q is covered by
some Vα.

Since K is compact, we can choose a finite subcover, say {W,Vα1 , . . .
. . . , Vαn

} — without loss of generality, we can assume that it in-
cludes W . Observe that {Vα1

, . . . , Vαn
} is a cover of Q, hence the

result.

In the proof, we add an extra open set to the cover, use it, and
take it away.2

6.17. Exercise. Show that any closed bounded subset of the real line
is compact.

F Product spaces

6.18. Theorem. Assume X and Y are compact topological spaces.
Then their product space X × Y is compact.

The following exercise provides a partial converse.

6.19. Exercise. Suppose that a product space X × Y is nonempty
and compact. Show that its factors X and Y are compact.

In the proof, we will need the following definition.

6.20. Definition. Let {Vα} and {Wβ} be two covers of a topological
space X . We say that {Vα} is inscribed in {Wβ} if for any α there
is β such that Vα ⊂Wβ.

2This type of reasoning is useful in all branches of mathematics; sometimes it
is called the 17 camels trick   [1]. The name comes from the following mathe-
matical parable: A father left 17 camels to his three sons and, according to the
will, the eldest son should be given half of all camels, the middle son the 1/3 part,
and the youngest son the 1/9. It was impossible to follow his will until a wise
man appeared. He added his own camel, the oldest son took 18/2 = 9 camels, the
second son took 18/3 = 6 camels, and the third son 18/9 = 2 camels, the wise
man took his camel and went away.
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6.21. Exercise. Let B be a base in a topological space X . Show that
for any cover {Vα} of X there is an inscribed cover made from sets
in B.

Suppose that {Vα} is inscribed in {Wβ}. If {Vα} has a finite sub-
cover {Vα1

, . . . , Vαn
}, then for each αi we can choose βi such that

Vαi
⊂ Wβi

. Note that {Wβ1
, . . . ,Wβn

} is a finite subcover of {Wβ}.
It proves the following:

6.22. Observation. A space X is compact if and only if any cover
of X has a finite inscribed cover.

It is instructive to solve the following exercise before reading the
proof of 6.18.

6.23. Exercise. Find a flaw in the following argument.

Fake proof of 6.18. Fix an open cover {Uβ} of X × Y. Consider all
product sets Vα ×Wα such that Vα ×Wα ⊂ Uβ for some β (as before,
Vα and Wα are open in X and Y respectively). Note that {Vα ×Wα}
is a cover of X ×Y that is inscribed in {Uβ}. By the observation, it is
sufficient to find a finite subcover of {Vα ×Wα}.

Note that {Vα} is a cover of X . Since X is compact, we can choose
its finite subcover {Vα1

, . . . , Vαn
}. Similarly, {Wα} is a cover of Y. So

we can choose its finite subcover {Wα′
1
, . . . ,Wα′

m
}.

Finally observe that

{Vα1 ×Wα1 , . . . , Vαn ×Wαn , Vα′
1
×Wα′

1
, . . . , Vα′

m
×Wα′

m
}

is a finite cover of X × Y.

Proof of 6.18. Recall that by definition of the product topology, any
open set in X × Y is a union of product sets Vα ×Wα, where Vα is
open in X and Wα is open in Y.

Fix an open cover {Uβ} of X×Y. Consider all product sets Vα×Wα

such that Vα ×Wα ⊂ Uβ for some β (as before, Vα and Wα are open
in X and Y respectively). Note that {Vα ×Wα} is a cover of X × Y
that is inscribed in {Uβ}. By the observation, it is sufficient to find a
finite subcover of {Vα ×Wα}.

Fix x ∈ X . Note that the subspace {x}×Y is homeomorphic to Y;
see 5.11. In particular, the set {x}×Y is compact. Therefore, {x}×Y
has a finite cover {Vα1 ×Wα1 , . . . , Vαn ×Wαn}; that is,

(Vα1
×Wα1

) ∪ · · · ∪ (Vαn
×Wαn

) ⊃ {x} × Y

Consider the set
Nx = Vα1

∩ · · · ∩ Vαn
;
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note that Nx is open in X . Since Nx ⊂ Vαi
for any i, we have

Nx × Y ⊂ (Vα1
×Wα1

) ∪ · · · ∪ (Vαn
×Wαn

).

We get that

➋ every point x ∈ X admits an open neighborhood Nx such that Nx×Y
can be covered by finitely many product sets from {Vα ×Wα}.

The sets {Nx}x∈X form a cover of X . Since X is compact, there is
a finite subcover {Nx1 , . . . , Nxm}. Note that

X × Y = (Nx1 × Y) ∪ · · · ∪ (Nxm × Y);

that is, X ×Y can be covered by a finite set of sets from {Nx×Y}x∈X .
Applying ➋, we get that X × Y can be covered by a finite number of
product sets from {Vα ×Wα}.

6.24. Advanced exercise. Let f : X → K be a map between topo-
logical spaces. Assume K is compact. Show that f is continuous if and
only if its graph Γ = { (x, f(x)) : x ∈ X } is a closed set in X ×K.

G Remarks
We omit the proof of the following theorem, but it is worth knowing
this result.

6.25. Alexander prebase theorem. A topological space X is com-
pact if and only if for some (and therefore any) prebase P in X , every
cover of X by elements of P admits a finite subcover.

6.26. Exercise. Use the Alexander prebase theorem to give a short
proof of 6.18.
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Chapter 7

Metric spaces revisited

Recall that any metric space comes with a natural topology. In partic-
ular, we may talk about compact metric spaces  . In this chapter
we discuss specific properties of metric spaces that are related to com-
pctness.

A Lebesgue number

7.1. Lebesgue number. Let {Vα} be an open cover of a compact
metric space M. Then there is ε > 0 such that for every x ∈ M there
is α such that Vα ⊃ B(x, ε).

The number ε in the lemma is called the Lebesgue number  of
the cover; this is a very useful characteristic of an open cover.

Proof. Given a point p ∈ M we can choose r = r(p) > 0 such that the
ball B(p, 2·r) lies in Vα for some α. Observe that all balls B(p, r(p))
form an open cover of M. Since M is compact, we can choose a finite
subcover {B(p1, r1), . . . ,B(pn, rn)}.

Let ε = min{r1, . . . , rn}. For any p ∈ M we can choose a ball
B(pi, ri) ∋ p. Observe that B(p, ε) ⊂ B(pi, 2·ri) . Since B(pi, 2·ri) lies
in some Vαi

, so is B(p, ε).

7.2. Exercise. Construct a noncompact metric space M such that 1
is a Lebesgue number for any cover of M.
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B Compactness ⇒ sequential compactness
A topological space is called sequentially compact   if every se-
quence in it has a converging subsequence. For general topological
spaces sequential compactness does not imply compactness, and the
other way around. The following proposition states that these two
notions are equivalent for metric spaces.

7.3. Exercise. Show that the product of two sequentially compact
spaces is sequentially compact.

7.4. Proposition. A metric space M is compact if and only if it is
sequentially compact.

In this section, we prove the only-if part. The if part requires
deeper diving into metric spaces; it will be done in 7F after proving
auxiliary statements in the following two sections.

Proof of the only-if part in 7.4. Choose a sequence x1, x2, . . . ∈ M.
Note that a point p ∈ M is a limit of a subsequence of xn if

and only if for any ε > 0, the ball B(p, ε) contains infinitely many
elements xn. Indeed, if this property holds, then we can choose i1
such that xi1 ∈ B(p, 1), further i2 > i1 such that xi2 ∈ B(p, 12 ) and so
on; on the nth step we get in > in−1 such that xin ∈ B(p, 1

n ). The
obtained subsequence xi1 , xi2 , . . . converges to p.

Assume the sequence xn has no converging subsequence. Then for
any point p there is εp > 0 such that B(p, εp) contains only finitely
many elements of xn. Note that all balls B(p, εp) form a cover of M.
Since the sequence is infinite, this cover does not have a finite subcover.
That is, if a sequence xn has no converging subsequence, then M is
not compact.

C Complete spaces
A sequence x1, x2, . . . of points in a metric space is called Cauchy if
for any ε > 0 there is n such that |xi − xj | < ε for all i, j > n. It
is easy to prove that any converging sequence is Cauchy, the converse
does not hold in general. A metric space M is called complete if any
Cauchy sequence in M converges to a point in M.

For example, as it follows from the Cauchy test, the real line R
with the standard metric is a complete space. On the other hand, an
open interval (0, 1) forms a noncomplete subspace of R; indeed, the
sequence xn = 1

2·n is Cauchy, it also converges to zero in R which not
a point of the subspace (0, 1).
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7.5. Exercise. Show that any compact metric space is complete.

D Nets and separability
Let M be a metric space. A subset A ⊂ M is called an $\eps $-net of M
if for any p ∈ M there is a ∈ A such that |p− a|M < ε.

7.6. Lemma. Let M be a sequentially compact metric space. Then
for any ε > 0 there is a finite ε-net in M.

Proof. Choose ε > 0. Consider the following recursive procedure.
Choose a point x1 in M. Further, choose a point x2 so that |x1 −

− x2| > ε. Further, choose a point x3 so that |x1 − x3| > ε and
|x2 − x3| > ε; and so on. On the nth step we choose a point xn such
that |xi − xn| > ε for all i < n.

Suppose that the procedure terminates at some n; that is, there is
no point xn such that |xi − xn| > ε for all i < n. In this case, the set
{x1, . . . , xn−1} is an ε-net in M — the lemma is proved.

If the procedure does not terminate, we get an infinite sequence of
points x1, x2, . . . such that |xi−xj | > ε for all i ̸= j. Any of its subse-
quence has the same property; in particular none of its subsequences
converges — a contradiction.

A topological space is called separable if it contains a countable
dense subset.

7.7. Corollary. Sequentially compact metric spaces are separable.

Proof. Let M be a sequentially compact metric space.
By 7.6, for each positive integer n, we can choose a finite ε-net

Nn ⊂ M. It remains to observe that the union N1 ∪ N2 ∪ . . . is
countable and dense.

E Countable base

7.8. Proposition. Any sequentially compact metric space has a count-
able base.

Topological spaces that admit a countable base are called second-countable
. So the proposition states that any sequentially compact
metric space is second-countable.

Proof. Let M be a sequentially compact metric space. By 7.7, we can
choose a countable dense subset A ⊂ M.
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Consider the set of all balls B(a, 1
n ) for a ∈ A and positive inte-

gers n. Note that this set is countable; it remains to show that it forms
a base in M.

Let x be a point in an open set V . Then B(x, ε) ⊂ V for some
ε > 0. Choose n so that 1

n < ε
2 . Since A is everywhere dense, we

can choose a ∈ A so that |a − x| < 1
n . By the triangle inequality,

x ∈ B(a, 1
n ) ⊂ B(x, ε); in particular,

x ∈ B(a, 1
n ) ⊂ V.

It remains to apply 5.8.

7.9. Lemma. Let X be a topological space with a countable base.
Then any open cover of X has a countable subcover.

Proof. Choose an open cover {Vα}.
Let {B1, B2, . . . } be a countable base of X . By 5.7, for any x ∈ X

we can choose i = i(x) such that x ∈ Bi ⊂ Vα for some α. Denote
by S all integers that appear as i(x) for some x. Then {Bi}i∈S is a
countable open cover that is inscribed in {Vα}. That is for every Bi
there is αi such that Bi ⊂ Vαi . It remains to observe that {Vαi}i∈S is
a countable cover of X .

F Sequential compactness ⇒ compactness

Proof of the if part in 7.4. Choose an open cover of M. By 7.9, we
can assume that the cover is countable; denote it by {V1, V2, . . . }.

Assume {V1, V2, . . . } does not have a finite subcover. Then we can
choose a sequence of points x1, x2, · · · ∈ M such that

xn /∈ V1 ∪ · · · ∪ Vn

for any n.
Since M is sequentially compact, a subsequence of x1, x2, . . . has

a limit, say x; we have that x ∈ Vn for some n. It follows that xi ∈ Vn
for an infinite set of indices i, but by construction, xi /∈ Vn for all i > n
— a contradiction.



Chapter 8

Hausdorff spaces

Hausdorff spaces are especially nice topological spaces that share many
features of metric spaces; for example, any convergent sequence in a
Hausdorff space has a unique limit.

Historically, Hausdorff included an extra property in his definition
of a topological space, and thus he defined what we now call a Haus-
dorff space. Later it became clear that this convention is too restric-
tive: dropping this extra property leads to a broader and more useful
notion of a topological space. Nevertheless, many important examples
of topological spaces are Hausdorff, so it makes sense to study them.

A Definition

8.1. Definition. A topological space X is called Hausdorff if for
each pair of distinct points x, y ∈ X there are disjoint neighborhoods
V ∋ x and W ∋ y.

8.2. Observation. Any metrizable space is Hausdorff.

Proof. Assume that the topology on the space X is induced by a metric
|∗ − ∗|.

If the points x, y ∈ X are distinct, then |x−y| > 0. By the triangle
inequality B(x, r2 ) ∩ B(y, r2 ) = ∅. Hence the statement follows

Recall that in general, a sequence of points in a topological space
might have different limits; see 3F. For example, for the R with the
cofinite topology most sequences of points converge to every point
in R.
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8.3. Exercise. Show that any converging sequence in Hausdorff space
has a unique limit.

8.4. Exercise. Show that topological space X is Hausdorff if and only
if for any two distinct points x, y ∈ X there is an open set V ∋ x such
that V̄ ̸∋ y.

8.5. Exercise. Show that a topological space X is Hausdorff if and
only if the diagonal

∆ = { (x, x) ∈ X × X }

is a closed set in the product space X × X .

B Observations

8.6. Observation. Any one-point set in a Hausdorff space is closed.

If every one-point set is closed in a topological space is closed,
then the space is called $T_1$-space  or sometimes Tikhonov space .
Therefore the observation above states that any Hausdorff space is T1.

Proof. Let X be a Hausdorff space and x ∈ X . By 8.1, given a point
y ̸= x, there are disjoint open sets Vy ∋ x and Wy ∋ y. In particular
Wy ̸∋ x.

Note that
X \ {x} =

⋃
y ̸=x

Wy.

It follows that X \ {x} is open, and therefore {x} is closed.

8.7. Observation. Any subspace of a Hausdorff space is Hausdorff.

Proof. Choose two points x, y in a subspace A of a Hausdorff space X .
Since X is Hausdorff, we can choose neighborhoods V ∋ x and W ∋ y
such that V ∩W = ∅. Then A ∩ V and A ∩W are neighborhoods of
x and y in A. Clearly,

(A ∩ V ) ∩ (A ∩W ) ⊂ V ∩W = ∅.

Whence the observation follows.
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C Hausdorff meets compactness

8.8. Proposition. Any compact subset of a Hausdorff space is closed.

Note that any one-point set is compact. Therefore the proposition
generalizes Observation 8.6. The proof is similar but requires an extra
step. It is instructive to solve the following exercise before reading the
proof.

8.9. Exercise. Describe a topological space X with a nonclosed, but
compact subset K.

The proof of the proposition is based on the following theorem.

8.10. Theorem. Let X be a Hausdorff space and K ⊂ X be a com-
pact subset. Then for any point y /∈ K there are open sets V ⊃ K and
W ∋ y such that V ∩W = ∅

Proof of 8.8 modulo 8.10. For y /∈ K, let us denote by Wy the open
set provided by 8.10; in particular, Wy ∋ y and Wy ∩ K = ∅. Note
that

X \K =
⋃
y/∈K

Wy.

It follows that X \K is open; therefore, K is closed.

Proof of 8.10. By definition of Hausdorff space, for any point x ∈ K
there is a pair of disjoint open sets Vx ∋ x and Wx ∋ y. Note that
{Vx}x∈K is a cover of K. Since K is compact we can choose a finite
subcover {Vx1

, . . . , Vxn
}. Set

V = Vx1
∪ · · · ∪ Vxn

and W =Wx1
∩ · · · ∩Wxn

.

It remains to observe that V and W are open, y ∈W , K ⊂ V , and

V ∩W ⊂
⋃
i

(Vxi
∩Wxi

) = ∅. □

8.11. Exercise. Let X be a Hausdorff space and K,L ⊂ X be two
compact subsets. Assume K ∩ L = ∅. Show that there are open sets
V ⊃ K and W ⊃ L such that V ∩W = ∅.
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D Compact-to-Hausdorff maps

8.12. Observation. Let f be a continuous map from a compact space
K to a Hausdorff space Y. Then f is a closed map.

If in addition, the map f is onto, then Y is equipped with the
quotient topology induced by f .

Recall that every homeomorphism is a continuous bijection, but
not the other way around; see 4.1.

8.13. Corollary. A continuous bijection from a compact space to a
Hausdorff space is a homeomorphism.

Proof of 8.12. Since K is compact, any closed subset Q ⊂ K is compact
(6.16). Since the image of a compact set is compactl (6.14), we have
that f(Q) is a compact subset of Y. Since Y is Hausdorff, f(Q) is
closed (8.8). Hence the first statement follows.

The second statement follows from 5.16.

Recall that D2 denotes the unit disc and S1 denotes the unit circle;
that is,

D2 =
{
(x, y) ∈ R2 : x2 + y2 ⩽ 1

}
,

S1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
.

8.14. Exercise. Show that S1 is homeomorphic to the quotient space
[0, 1]/{0, 1}. (In other words, S1 is homeomorphic to the unit interval
with glued ends.)

8.15. Exercise. Show that the quotient space D2/S1 is homeomorphic
to the unit sphere

S2 =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
.

Recall that a convex body  is a compact convex set with non-
empty interior in R3.

8.16. Exercise. Show that the boundary or a convex body is homeo-
morphic to S2.



Chapter 9

Connected spaces

A Definitions
A subset of a topological space is called clopen if it is closed and open
at the same time.

9.1. Definition. A topological space X is called connected if it has
exactly two clopen sets ∅ and the whole space X .

According to our definition, the empty space is not connected. Not
everyone agrees with this convention.1

Suppose V is a proper clopen subset of a topological space X ;
that is, V ̸= ∅ and V ̸= X . Note that its complement W = X \ V
is also a proper clopen subset. In particular, there are two open sets
V,W ⊂ X such that V ̸= ∅, W ̸= ∅, V ∪W = X and V ∩W = ∅.

9.2. Exercise. Let f : X → R be a continuous function defined of a
connected space. Suppose that for f(x1) > 0 and f(x2) < 0 for some
x1, x2 ∈ X . Show that there is x3 ∈ X such that f(x3) = 0.

A subset of a topological space is called connected or disconnected
if the corresponding subspace is connected or disconnected, respec-
tively. Spelling out the notion of subspace we get the following defini-
tion.

9.3. Definition. A subset A of a topological space is called disconnected
 if it is empty or there are two open sets V and W such that

V ∩W ∩A = ∅, V ∩A ̸= ∅, W ∩A ̸= ∅, and V ∪W ⊃ A.

1This convention is similar in spirit to saying that 1 is not prime — if prime
meant no nontrivial divisors, then 1 would be prime, but it is not. Similarly,
if a connected space meant no proper clopen sets, then the empty set would be
connected, but it is not (at least in this course).
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Otherwise, we say that A is connected.

A pair of open sets V and W as in the definition will be called
an open splitting   of A. So we can say that a nonempty set A is
disconnected if and only if it admits an open splitting.

9.4. Proposition. Let f : X → Y be a continuous map between topo-
logical spaces. Suppose A ⊂ X is a connected set. Then the image
B = f(A) is a connected set in Y.

Proof. We can assume that B ̸= ∅; otherwise the statement is trivial.
Assume that B = f(A) is disconnected. Choose an open splitting

V and W of B; that is,

➊ V ∩W ∩B = ∅, V ∩B ̸= ∅, W ∩B ̸= ∅, and V ∪W ⊃ B.

Since f is continuous, V ′ = f−1(V ) and W ′ = f−1(W ) are open
sets in X . Note that ➊ implies that V ′ and W ′ form an open splitting
of A; that is,

V ′ ∩W ′ ∩A = ∅, V ′ ∩A ̸= ∅, W ′ ∩A ̸= ∅, and V ′ ∪W ′ ⊃ A.

Therefore A is disconnected — a contradiction.

9.5. Exercise. Let X be a connected space. Show that the quotient
space X/∼ is connected for any equivalence relation ∼ on X .

9.6. Proposition. Assume {Aα}α∈I is a collection of connected sub-
sets of a topological space. Suppose that

⋂
αAα ̸= ∅. Then

A =
⋃
α

Aα

is connected.

Proof. Assume that A is disconnected; choose its open splitting V ,
W . Since

⋂
αAα ̸= ∅, we can choose p ∈

⋂
αAα. Without loss of

generality, we can assume that p ∈ V .
In particular, V ∩ Aα ̸= ∅ for any α. Since Aα is connected, we

have that W ∩ Aα = ∅ for each α; otherwise V and W form an open
splitting of Aα. Therefore

W ∩A =W ∩
(⋃
α

Aα

)
=

=
⋃
α

(W ∩Aα) =

= ∅
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— a contradiction.

9.7. Exercise. Let A be a connected set in a topological space X .
Suppose that A ⊂ B ⊂ Ā. Show that B is connected.

B Real interval

9.8. Proposition. The real interval [0, 1] is connected.

The proof reuses the construction in 6C.

Proof. Assume the contrary; let V and W be an open splitting of [0, 1].
Fix a a0 ∈ V and b0 ∈ W ; without loss of generality, we can assume
that a0 < b0.

Let us construct a nested sequence of closed intervals

[a0, b0] ⊃ [a1, b1] ⊃ . . .

such that

➋ bn − an = 1
2n (b0 − a0), an ∈ V, and bn ∈W

for any n.
The construction is recursive. Assume [an−1, bn−1] is already con-

structed. Set c = 1
2 ·(an−1 + bn−1). If c ∈ V , then set an = c and

bn = bn−1; if c ∈W , then set an = an−1 and bn = c. In both cases, ➋
holds.

Observe that
a0 ⩽ a1 ⩽ . . . ⩽ b1 ⩽ b0.

In particular, the sequence an is nondecreasing and bounded above
by b0. Therefoe, it converges; denote its limit by x. Since bn − an =
1
2n ·(b0 − a0), the sequence bn also converges to x. The point x has
to belong to V or W . Since both V and W are open, one of them
contains an and bn for all large n, which contradicts ➋.

9.9. Exercise. Show that the real line R is a connected space. Con-
clude that any continuos map R → Z is constant; here Z ⊂ R denotes
the set of integer numbers.
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C Connected components

Let x be a point in a topological space X . The intersection of all
clopen sets containing x is called the connected component  of x.
Note that the space X is connected if and only if X is a connected
component of some (and therefore of any) point in X .

9.10. Exercise. Show that any connected component is a closed set.
Construct an example of a topological space X and a point x ∈ X

such that the connected component of x is not open.

9.11. Exercise. Show that two connected components either coincide
or are disjoint.

9.12. Exercise. Suppose that a space X has a finite number of con-
nected components. Show that each connected component of X is
open.

9.13. Advanced exercise. Let us denote by N the set of positive
integers. Show that that arithmetic progressions {a, a+d, a+2·d, . . . }
for relatively prime all realtivley prime positive integers a ⩽ d form a
basis of some topology, and N equipped with this topology is a connected
Hausdorff space.

D Cut points

Evidently, the number of connected components is a topological invari-
ant; that is, if two spaces are homeomorphic, then they have the same
number of connected components. In particular, a connected space is
not homeomorphic to a disconnected space.

Let us describe a more refined way to apply this observation. Sup-
pose X is a connected space. A point x ∈ X is called a cut point  if
removing x from X produces a disconnected space; that is, the subset
X \ {x} is disconnected.

Note that if f : X → Y is a homeomorphism, then a point x ∈ X
is a cut point of X if and only if y = f(x) is a cut point of Y. Indeed,
the restriction of f defines a homeomorphism X \ {x} → Y \ {y}. In
particular, we get that the spaces X \ {x} and Y \ {y} have the same
number of connected components.

These observations can be used to solve the following exercises.

9.14. Exercise. Show that the circle S1 is not homeomorphic to the
line segment [0, 1].
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9.15. Exercise. Show that the plane R2 is not homeomorphic to the
real line R.

9.16. Exercise. Show that no two of the following four closed con-
nected sets in the plane are homeomorphic. (Each set is a union of
four line segments, and if it looks like they share an end point, then
this is ideed so.)

(a) (b) (c) (d)

9.17. Exercise. Let Q be the set shown in the picture; it
is a union of a cicle and a closed line segment. Consider
that action on Q of the group H of all homeomorphisms
Q→ Q. Describe the quotient space Q/H; that is, list its
points and the open sets.

Sierpi\'nski gasket  is constructed the following
way: start with a solid equilateral triangle, subdivide
it into four smaller congruent equilateral triangles
and remove the interior of the central one. Repeat
this procedure recursively for each of the remaining
solid triangles.

9.18. Advanced exercise.
(a) Prove that the Sierpiński triangle is connected (in particular,

nonempty).
(b) Describe all the homeomorphisms from the Sierpiński triangle to

itself.

E Open-close argument
The followowing exercise gives an example of application of the so-
called open-close argument .

9.19. Exercise. Let f : [0, 1]× [0, 1] → [0, 1]× [0, 1] is an arbitrary
map that increases the firs coordinate; that is, if (x1, y1) = f(x0, y0)
then x1 > x0. Show that there is a path h : [0, 1] → [0, 1] × [0, 1] that
connects the point (0, 0) to some point (1, y) such that for any any
point h(t) for t ∈ [0, 1) lies on a line segment from (x, y) to f(x, y)
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Chapter 10

Path-conneced spaces

Here we discuss paths and path-connected spaces,

A Paths
A continuous map f : [0, 1] → X is called a path. If x = f(0) and
y = f(1) we say that f is a path from x to y.

Let us start with several examples and constructions of paths
• A path f is called constant if stays at one point. In other

words, f(t) = p for some fixed point p; in this case, the path f
can be denoted by εp.

• Given a path f : [0, 1] → X , one can consider the time-reversed
 path f̄ , defined by

f̄(t) = f(1− t).

Note that f̄ is continuous since f is.
• Let f and h be paths in the topological space X . If f(1) = h(0)

we can join these two paths into one g : [0, 1] → X that follows
f and then h; so it is defined as

g(t) =

{
f(2·t) if t ⩽ 1

2

h(2·t− 1) if t ⩾ 1
2

The path g is called the product (or concatenation) of paths
f and h; it is denoted as g = f ∗ h. Note that 3.11b implies that
f ∗ h is continuous; in other words f ∗ h is indeed a path.

Consider the following relation on the set of points of a topological
space:

x ∼ y ⇔ there is a path from x to y.
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From above we have that ∼ is an equivalence relation on the set
of points in X ; in other words, the following properties hold for any
points x, y, z ∈ X :

• x ∼ x (since εx is a path from x to x);
• if x ∼ y, then y ∼ x (indeed, if f is a path from x to y, then f̄

is a path from y to x);
• if x ∼ y and y ∼ z, then x ∼ z (indeed, if f is a path from x to
y, and h is a path from y to x then f ∗ h is a path from x to z).

The equivalence class of a point x for the equivalence relation ∼ is
called the path-connected component  of x; this is the set of all
point in X that can be jointed with y by a path.

B Path-connected spaces
A space X is called path-connected if it is nonempty and any two
points in X can be connected by a path; that is, for any x, y ∈ X there
is a path f from x to y. One can say that X is path-connected if X is
a connected component of one (and therefore every) point x ∈ X .

10.1. Exercise. Show that the connected two-point space (defined in
2B) is path-connected.

10.2. Theorem. Any path-connected space is connected; the converse
does not hold.

Proof; main part. Let X be a path-connected space.
By Proposition 9.8, the unit interval [0, 1] is connected. By Propo-

sition 9.4, for any path f : [0, 1] → X the image f([0, 1]) is connected.
Fix x ∈ X . Since X is path-connected,

X =
⋃
f

f([0, 1]),

where the union is taken for all paths f starting from x. It remains to
apply 9.6.

Second part. We need to present an example of a space that is con-
nected, but not path-connected.

Denote by I the closed line segment from (0, 0) to (1, 0) in R2.
Further, denote by Jn the closed line segment from ( 1n , 0) to ( 1n , 1).
Consider the union of all these segments

W = I ∪ J1 ∪ J2 ∪ . . .

and set
W ′ =W ∪ {y},
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where y = (0, 1). The space W ′ is called the flea and comb  ; the
set W is called the comb, and the point y is called the flea.

. . .

y

x
I

J1J2

Note that W ⊂ W ′ ⊂ W̄ . Therefore, by
9.7, W ′ is connected.

It remains to show that W ′ is not path-
connected. Assume the contrary. Let f be a
path from x = (0, 0) to y = (0, 1).

Note that f−1({y}) is closed subset of com-
pact space [0, 1]. Therefore f−1({y}) is com-
pact (6.16). In particular, the set f−1({y})
has the minimal element, denote it by b. Note
that b > 0, f(b) = y and f(t) ̸= y for any t < b.

Choose a positive ε < 1. Since f is continuous, there is a < b such
that |f(t)− y| < ε for any t ∈ [a, b]. Note that f(a) ∈ Jn for some n.

Denote by N the intersection of the ε-neighborhood of y with the
comb. Note that the intersection of Jn with ε-neighborhood of y forms
a connected component of N . By 9.4, f(t) ∈ Jn for any t ∈ [a, b]; in
particular, f(b) ̸= y — a contradiction.

10.3. Exercise. Show that the image of a path-connected set under
a continuous map is path-connected.

10.4. Exercise. Show that the product of path-connected spaces is
path-connected.

10.5. Exercise. Describe path-connected components in the flea and
comb.

10.6. Exercise. Assume every path-connected component in a topo-
logical space X is open. Show that X is connected if and only if X is
path-connected.

10.7. Advanced exercise. Consider the lexicographical order
≺ on R2:

(x1, y1) ≺ (x2, y2) ⇔ x1 < x2 or x1 = x2 and y1 < y2.

Show that the following sets for all pairs (x1, y1) ≺ (x2, y2) in R2

I(x1,y1),(x2,y2) :=
{
(x, y) ∈ R2 : (x1, y1) ≺ (x, y) ≺ (x2, y2)

}
form a base of some topology T on R2.

Furthermore, show that the squre ([0, 1]× [0, 1] with the topology in-
duced by T is compact, Hausdorff, connected, but not path-connected,
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and each path-conencted component in ([0, 1] × [0, 1],T ) is a veritcal
interval {x} × [0, 1].

10.8. Advanced exercise. Recall that Q denotes the set of rational
numbers. Consider the following sets in the plane:

A =
{
(x, y) ∈ R2 : x, y ∈ Q

}
and B =

{
(x, y) ∈ R2 : x, y /∈ Q

}
.

Show that A ∪B is path-connected.

C Sets of Euclidean space
The following theorem provides a class of topological spaces for which
connectedness implies path-connectedness.

10.9. Theorem. An open set in a Euclidean space Rn is path-connected
if and only if it is connected.

Proof. The only-if part follows from 10.2; it remains to prove the if
part.

Let Ω ⊂ Rn be an open subset. Choose a point p ∈ Ω; denote by
P ⊂ Ω the path-connected component of p.

Let us show that for any point q ∈ Ω there is ε > 0 such that either
B(q, ε) ⊂ P , or B(q, ε) ∩ P = ∅.

Indeed, since Ω is open, we can choose ε > 0 such that the ball
B(q, ε) lies in Ω. Note that B(q, ε) is convex, in particular path-
connected. Therefore B(q, ε) ∩ P ̸= ∅ if and only if B(q, ε) ⊂ P .

It follows that P and its complement Ω \ P are open. Since Ω is
connected, we get that Ω \ P = ∅ — hence the result.

A topological space X is called locally path-connected   if for
any point p ∈ X and any open set V ∋ p there is a path-connected
open set W such that V ⊃ W ∋ p. For instance, Euclidean space is
locally path-connected; it follows since any open ball in a Euclidean
space is path-connected. Therefore the following exercise generalizes
the theorem above.

10.10. Exercise. Show that a connected open set in a locally path-
connected space is path-connected.

10.11. Advaneced exercise. Construct a bounded open set V in
the plane such its boundary is connected, but totally path-disconnected 
; that is each connected component in ∂V consists of a sinle
point.



Chapter 11

Homotopy

A Homotopy
Two continuous maps f, g : X → Y are called homotopic (briefly,
f ∼ g) if f can be continuously deformed into g. Formally, this means
that there exists a continuous map

H : X × [0, 1] → Y

such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X . The map
H : X × [0, 1] → Y is called homotopy from f to g.

It is often convinient to think of the homotopyH as a one-parameter
family of maps ht : X → Y defined by ht(x) = H(x, t).

We say that map is null-homotopic if it is homotopic to a constant
map.

11.1. Exercise. Show that any two continuous maps X → R2 are
homotopic.

Recall that

S2 :=
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
.

11.2. Exercise. Suppose that for two continuous maps f0, f1 : X →
→ S2, we have that f0(x) + f1(x) ̸= 0 for any x ∈ X . Show that
f0 ∼ f1.

11.3. Exercise. Let f0, f1 : X → Y and g0, g1 : Y → Z be four maps
between topological spaces. Assume that f0 ∼ f1 and g0 ∼ g1. Show
that g0 ◦ f0 ∼ g1 ◦ f1.
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B Relative homotopy
Let H : X × [0, 1] → Y be a homotopy, and let A ⊂ X . Suppose that
for any a ∈ A the point H(a, t) does not depend on t. Then we say
that H is a homotopy relative to $A$  . Two maps f, g : X → Y are
called homotopic relative to $A$   , briefly, f ∼ g (rel A) if there is
a homotopy relative to A from f to g.

Note also that if f ∼ g (rel A), then f agrees with g on A; that is,
f(a) = g(a) for any a ∈ A.

The properties of homotopies that we are about to describe admit
straightforward generalizations to its relative version.

C Operations on homotopies
Observe that

• the constant homotopy  H(x, t) = f(x) joins f with itself;
• if H is a homotopy from f with g, then the time-reversed

homotopy defined by

H̄(x, t) = H(x, 1− t)

is a homotopy from g to f ;
• Consider two homotopies H and G from f to g and from g to h,

respectively. Then their concatenation F = H ∗G defined by

F (x, t) =

{
H(x, 2·t), t ⩽ 1

2 ,

G(x, 2·t− 1), t ⩾ 1
2 ,

defines a homotopy from f with h. (By 3.11b, F is continuous.)
Recall that

S1 :=
{
(x, y) ∈ R2 : x2 + y2 = 1

}
.

11.4. Exercise. Let f : S1 → S1, be a continuous map such that
(a) f(x) ̸= −x for any x, or
(b) f(x) ̸= x for any x.

Show that f is homotopic to the identity map.

D Homotopy classes
The previous section implies that ∼ is an equivalence relation on the
set of continuous maps X → Y; in other words, the following properties
hold for any continuous maps f, g, h : X → Y:
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• f ∼ f ;
• if f ∼ g, then g ∼ f ;
• if f ∼ g, and g ∼ h, then f ∼ h.
The equivalence classes for ∼ are called homotopy classes ; the

equivalence class of a map f : X → Y will be denoted by [f ]. Given
two spaces X and Y, the set of all homotopy classes will be denoted
by π(X ,Y).

Often the set π(X ,Y) admits a direct description; this is precisely
its advantage over the vast set of all continuous maps X → Y. Note
that any homeomorphism Y → Y ′ defines a bijection between homo-
topy classes π(X ,Y) → π(X ,Y ′) for any given space X . So, stydying
the homotopy classes may help to distiguish topological spaces.

This construction is meaningful even for very simple choices of X .
If X is the one-point space, then π(X ,Y) is also denoted by π0(Y).
Note that π0(Y) is the set of path-connected components in Y — this
was the main subject of the previous chapter. The set π(S1,Y) is
closely related to the fundamental group of Y, which will be soon
introduced.

The idea to use homotopy classes to distiguish topological spaces
will guide us in the right direction. However, the true motivation to
consider homotopy classes is different; it will described in Capter 13.

E Retracts
Let A be a subset in a topological space X . A continuous map r : X →
→ A is called a retraction if r(a) = a for any a ∈ A. In this case
A is called a retract of X . If in addition, r : X → A is homotopic to
the identity map idX , then A is called deformation retract  of X .
If r ∼ idX (rel A), then A is called strong deformation retract 
of X .

11.5. Exercise. Show that a retract of a Hausdorff space has to be
a closed subset.

.

.

.

J∞

J1

11.6. Exercise. Given a positive integer n, denote
by Jn the closed line segment from the origin to the
point (1, 1

n ) in R2, and let J∞ be the closed line seg-
ment from the origin to the point (1, 0). Let F be the
union of all the these line segments; it is called fan.
(a) Show that J1 is a strong deformation retract of

F .
(b) Show that J∞ is a deformation retrtact of F , but not strong

deformation retract of F .
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F Contractible spaces

A topological space X is called contactable if the identity map
idX : X → X is homotopic to a constant map; that is, there is a
homotopy ht : X → X such that h0(x) = x and h1(x) = p for some
fixed point p ∈ X and any t.

Soon we will show that the circle S1 is an example of path-connected
space that is not contractible; in particular, there are noncontratible
path-connected spaces.

11.7. Exercise. Show that any convex subset of the Euclidean space
is contractible.

11.8. Exercise. Show that any contractible space is path-connected.

11.9. Exercise. Let X be a contractible space.
(a) Show that any two continuous maps from a topological space to

X are homotopic.
(b) Show that any two continuous maps from X to a path-connected

space are homotopic.

G Homotopy type

Two topological spaces X and Y have the same homotopy type
(briefly X ∼ Y) if there are continuous maps f : X → Y and h : Y → X
such that h ◦ f ∼ idX and f ◦ h ∼ idY . In this case f (as well as h)
is called a homotopy equivalence  and g is called its homotopy inverse
 of f .

11.10. Exercise. Show that ∼ defines an equivalence relation on
topological spaces. (The corresponding class of equivalence is called
homotopy type )

11.11. Exercise. Show that a topological space X is contractible if
and only if it has the same homotopy type with the one-point space.

11.12. Proposition. If A is a deformation retract of X , then X
and A have the same homotopy type.

Proof. Let r : X → A be the retraction and ι : A ↪→ X the inclusion.
By definition, we have a homotopyH from idX to ι◦r, hence idX ∼ ι◦r.
On the other hand, r ◦ ι = idA since r is a retraction. Therefore ι and
r define a homotopy equivalence between A and X .
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This proposition can be used together with 11.10 to prove that
given spaces have the same homotopy type; here is one example:

11.13. Exercise. Show that the two closed connected sets in the
picture have the same homotopy type. (Each set is a union of several
line segments.)

11.14. Advaned exercise. Show that two topological spaces have
the same homotopy type if and only if they homeomorphic to two de-
formation reatracts of one topological space.
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Chapter 12

Fundamental group

Let X be a topological space with marked point x0 ∈ X . Choose a
point s0 on the circle S1. Consider all continuous maps S1 → X that
send u0 to x0. Let us denote by π1(X , x0) the set of homotopy classes
of these maps within the described class of maps. In this chpter we
will equip this set with multiplication and show that it is indeed a
group, after that we will have right to call it the fundamental group
X with marked point x0.

A Homotopy of paths

Any path is a continuous map defined on the unit interval [0, 1]. By
homotopy of paths we will understand homotopy realive to the ends
of [0, 1]; in the notations of 11B, we have X = [0, 1] and A = {0, 1}.
If we need to talk about general homotopy of paths we say free homotopy
.

p q

Let p and q be two points in a topolog-
ical sapce X and fτ : [0, 1] → X be a one-
parameter family of paths from p to q; here
τ ∈ [0, 1]. If the map [0, 1] × [0, 1] → X , de-
fined as (τ, t) 7→ fτ (t) is continuous, then fτ
is called a homotopy of paths   in X .

Intuitively, homotopy of paths is a path in the space of paths with
fixed ends. To make this statement precise, one has to introduce an
appropriate topology on the space of all paths with fixed ends; the
so-called compact-open topology  provides a right choice, but we
are not going to touch this subject.

Two paths g, h : [0, 1] → X are called homotopic (briefly g ∼ h)
if there is a homotopy fτ : [0, 1] → X such that g = f0 and h = f1.
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Recall that ∼ is an equivalence relation. Therefore, we can talk
about the equivalence class of a path f that will be called its homotopy class
 ; it will be denoted by [f ].

12.1. Exercise. Suppose that f and g are two paths in R with com-
mon ends; that is, f(0) = g(0) and f(1) = g(1). Show that f ∼ g.

B Technical claims

12.2. Claim. Suppose f0 is a path from p to q, and g0 is a path from
q to r. Suppose f0 ∼ f1 and g0 ∼ g1, then

f0 ∗ g0 ∼ f1 ∗ g1.

Proof. Choose homotopies fτ from f0 to f1, and gτ from g0 to g1.
Observe that 3.11b implies that fτ ∗ gτ is a homotopy from f0 ∗ g0 to
f1 ∗ g1.

Each of the following claims proved by explicit construction of the
needed homotopy. Each time the homotopy constructed as a composi-
tion h◦sτ (t), where h is a fixed path and sτ is a one-parameter family
of functions [0, 1] → [0, 1]. The graphs of sτ provide more intuitive
descriptions of the families; the formulas presented just to make it
formally correct.

Recall that εp is the constant path with image p; that is, εp(t) = p
for any t.

12.3. Claim. Suppose f is a path from p to q, then

εp ∗ f ∼ f ∗ εq ∼ f.

1

1

τ

1

2

Proof. Consider the function

sτ (t) =

{
2·τ ·t if t ⩽ 1

2 ,

2·τ − 1 + 2·(1− τ)·t if t ⩾ 1
2 .

Observe that (τ, t) 7→ sτ (t) and therefore
(τ, t) 7→ f(sτ (t)) are continuous maps. There-
fore hτ (t) = f(sτ (t)) is a homotopy.

Further,

f(s0(t)) = εp ∗ f(t),
f(s 1

2
(t)) = f(t),

f(s1(t)) = f(t) ∗ εq
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for any t. Whence the claim follows.

12.4. Exercise. Suppose that f is a path in a Hausdorff space. As-
sume f(0) = p, f(1) = q, and εp ∗ f = f . Show that f = εp; in
particular, p = q.

12.5. Claim. Suppose f is a path from p to q, then

f ∗ f̄ ∼ εp and f̄ ∗ f ∼ εq.

1

1

τ

1

2

Proof. Consider the function

sτ (t) =

{
2·τ ·t if t ⩽ 1

2 ,

1− 2·τ ·t if t ⩾ 1
2 .

Observe that (τ, t) 7→ sτ (t) and therefore (τ, t) 7→ f(sτ (t)) are contin-
uous maps.

Note that f(s1(t)) = f ∗ f̄(t) for any t. Therefore hτ (t) = f(sτ (t))
is a homotopy from εp to f ∗ f̄ .

It proves the first statement. The second statement follows from
the first one since ¯̄f = f .

The product of paths is not associative; that is, in general,

(f ∗ g) ∗ h ̸= f ∗ (g ∗ h)

for paths f, g, h such that both products are defined. In other words,
we have to specify the order of product. The following claim says that
product of paths is not associative up to homotopy.

12.6. Claim. Suppose f , g, and h are paths such that f(1) = g(0)
and g(1) = h(0). Then

(f ∗ g) ∗ h ∼ f ∗ (g ∗ h).

1

1

1+τ

4

2+τ

4

1

2

3

4

Proof. Consider the function sτ defined by

sτ (t) =


1+τ
2 ·t if t ⩽ 1

2 ,
τ−1
4 + t if 3

4 ⩾ t ⩾ 1
2 ,

τ − 1 + (2− τ)·t if t ⩾ 3
4 .

Observe that (τ, t) 7→ sτ (t) and therefore (τ, t) 7→ f ∗ (g ∗h)(sτ (t)) are
continuous maps.
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Note that s1(t) = t, and therefore

f ∗ (g ∗ h)(t) = f ∗ (g ∗ h)(s1(t))

for any t. Further,

(f ∗ g) ∗ h(t) = f ∗ (g ∗ h)(s0(t))

for any t. It remains to observe that f ∗ (g ∗ h)(sτ (t)) is the needed
homotopy.

12.7. Exercise. Let f and g be paths from p to q. Show that f ∼ g
if and only if f ∗ ḡ ∼ εp.

12.8. Advanced exercise. Let f , g, and h be paths in a Hausdorff
space. Suppose that (f ∗ g) ∗ h = f ∗ (g ∗ h) and both sides of the
equation are defined. Show that f = g = h = εp for some point p.

C Fundamental group
Let X be a topological space. A path f : [0, 1] → X is called a loop
with base at p ∈ X if f(0) = f(1) = p;

Note that if f and g are loops based at p, then their products f ∗g,
g∗f are defined and they are loops based at p as well; see Section 11C.
Moreover, the time-reversed paths f̄ , ḡ are also loops based at p.

Recall that [f ] denotes the homotopy class of f ; recall that homo-
topy of paths and loops does not move their ends. The multiplication
of homotopy classes of loops based at p is defined by

[f ]·[g] = [f ∗ g];

that is, the product of homotopy classes of loops f and g is the homo-
topy class of the product f ∗ g.

Observe that the product is well defined; that is, if [f0] = [f1] and
[g0] = [g1], then [f0 ∗ g0] = [f1 ∗ g1]. In other words, if f0 ∼ f1 and
g0 ∼ g1, then f0 ∗ g0 ∼ f1 ∗ g1. The latter is stated in Claim 12.2.

Denote by π1(X , p) the set of all homotopy classes of loops at p.

12.9. Theorem. π1(X , p) with the introduced multiplication is a
group.

The group π1(X , p) is called the fundamental group  of X with
base point p.

Proof. Recall that εp denotes the constant loop at p in X ; that is,
εp(t) = p for any t. We will show that the homotopy class [εp] is the
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neutral element of π1(X , p) and [f̄ ] = [f ]−1, where f̄ denoted the
time-reversed f .

Note that conditions in the definition of group follow from the next
three conditions for any loops f , g, and h based at p in X .

(i) f ∗ εp ∼ εp ∗ f ∼ f ;
(ii) f ∗ f̄ ∼ f̄ ∗ f ∼ εp;
(iii) (f ∗ g) ∗ h ∼ f ∗ (g ∗ h).
These statements are provided by 12.3, 12.5, and 12.6.

12.10. Exercise. Suppose that V and W are open subsets of topolog-
ical space X such that X = V ∪W , and the set V ∩W is path-connected.
Let p ∈ V ∩W . Show that any loop in X based at p is homotopic to a
product of loops in V or W with the same base.

D Simply-connected spaces
Recall that a group is called trivial if it contains only one element
which is necessary the neutral element.

A path connected topological space with trivial fundamental group
is called simply-connected.

If the fundamental group π1(X , p) is trivial, it is common to write
π1(X , p) = 0 despite that this equality does not have much sense —
in general the group π1(X , p) is not commutative and so it would be
more reasonable to write π1(X , p) = {1}, meaning that 1 is the only
element of π1(X , p).

12.11. Exercise. Show that any contractible space is simply-connected.
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Chapter 13

Meeting algebra

In the previous chapter we gave a construction of the fundamental
group for a given topological space with marked point. This construc-
tion gives a bridge between topology and abstract algebra.

In this chapter we explain how to use this bridge. In this chapter
we describe In the next chapter, we will calculate fundamental group
of the circle — this will be the first example of a space with nontrivial
fundamntal group. Once this group is calculated, the connections of
this chapter will lead to many applications.

A Induced homomorphism

13.1. Claim. Let φ : X → Y be a continuous map and φ(p) = q.
Suppose that f0 and f1 are loops bases at p in X . Then
(a) φ ◦ (f0 ∗ f1) = (φ ◦ f0) ∗ (φ ◦ f1),
(b) if f0 ∼ f1, then φ ◦ f0 ∼ φ ◦ f1.

Proof; (a). Applying the definition of the product of paths and com-
position of maps to φ ◦ (f0 ∗ f1) and (φ ◦ f0) ∗ (φ ◦ f1) we get exactly
the same expression: {

φ ◦ f0(t) if t ⩽ 1
2 ,

φ ◦ f1(t) if t ⩾ 1
2 .

Hence (a) follows.

(b). Observe that if fτ is a homotopy from f0 to f1, then φ ◦ fτ is a
homotopy from φ ◦ f0 to φ ◦ f1. Hence (b) follows.
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13.2. Corollary. Let φ : X → Y be a continuous map between topo-
logical spaces; suppose φ(p) = q. Given a loop f with base at p in
X , the composition φ ◦ f is a loop with base at q in Y. Moreover,
φ∗ : [f ] 7→ [φ ◦ f ] defines a homomorphism φ∗ : π1(X , p) → π1(Y, q).

13.3. Exercise. Consider continuous maps X φ→ Y ψ→ Z between
topological spaces. Show that ψ∗ ◦ φ∗ = (ψ ◦ φ)∗.

13.4. Exercise. Let A be a retract of X with retraction r : X → A.
Choose a ∈ A. Show that r∗ : π1(X , a) → π1(A, a) is a surjective
homomorphism.

B Base point

13.5. Theorem. Let p and q be two points in a topological space X .
Suppose there is a path h from p to q, then the fundamental groups
π1(X , p) and π1(X , q) are isomorphic.

Recall that product of paths is not associative; that is, we might
have that (f ∗ g) ∗ h ̸= f ∗ (g ∗ h) for some paths f, g, h such that both
sides of the equation are defined. In other words, we have to fully
parenthesize the products of paths. If the product is not parenthesized
we assume that the product is taken in the usual order; that is,

f ∗ g ∗ h ∗ k := ((f ∗ g) ∗ h) ∗ k.

Proof. Suppose f is a loop based at p. Note that h̄ ∗ f ∗ h is a loop
at q. Moreover, the map f 7→ h̄ ∗ f ∗ h induces a homomorphism
uh : π1(M,p) → π1(M, q).

Indeed, suppose fτ is a homotopy of loops at p. Then h̄ ∗ fτ ∗ h is
a homotopy of loops at q. It follows that the map

uh : [f ] 7→ [h̄ ∗ f ∗ h]

is defined; that is, the right-hand side does not depend on the choice
of loop f in the homotopy class [f ].

Further, if f and g are loops based at p, then 12.3, 12.5, and 12.6
imply that

(h̄ ∗ f ∗ h) ∗ (h̄ ∗ g ∗ h) ∼ h̄ ∗ f ∗ (h ∗ h̄) ∗ g ∗ h ∼
∼ h̄ ∗ (f ∗ εp) ∗ g ∗ h ∼
∼ h̄ ∗ (f ∗ g) ∗ h.
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Whence the map uh : π1(M,p) → π1(M, q) is a homomorphism; that
is,

uh([f ]·[g]) = uh[f ]·uh[g] for any [f ], [g] ∈ π1(X , p).
The same argument shows that uh̄ : π1(M, q) → π1(M,p) defined

by
uh̄ : [k] 7→ [h ∗ (k ∗ h̄)]

is a homomorphism.
Finally note that

h ∗ (h̄ ∗ f ∗ h) ∗ h̄ ∼ (h ∗ h̄) ∗ f ∗ (h ∗ h̄) ∼
∼ εp ∗ f ∗ εp ∼
∼ f

for any loop f based at p. Therefore, uh̄ is a left inverse of uh. The
same way we show that uh is a left inverse of uh̄. It follows that uh is
an isomorphism.

According to the theorem, the fundamental group (more precisely
its isomorphism class) of path-connected space does not depend on
its base point. Therefore, for a path-connected space X we do not
need to specify the base point of its fundamental group; so we could
write π1(X ) instead of π1(X , p) (if we think about the group up to
isomorphism).

13.6. Exercise. Let φτ : X → Y be a homotopy. Suppose that q0 =
φ0(p) and q1 = φ1(p); consider the path from q0 to q1 defined by
h(t) = φτ (p). Show that

uh ◦ φ0∗ = φ1∗.

13.7. Exercise. Suppose that path-connected topological spaces X
and Y have the same homotopy type. Use 13.6 to show that their
fundamental groups are isomorphic.

C Product space

13.8. Exercise. Let X and Y be two path-connected topological
spaces. Choose points p ∈ X and q ∈ Y. Consider the projections
φ : X ×Y → X and ψ : X ×Y → Y and their induced homomorphisms
φ∗ : π1(X ×Y, (p, q)) → π1(X , p) and ψ∗ : π1(X ×Y, (p, q)) → π1(Y, q).
Define Φ: π1(X × Y, (p, q)) → π1(X , p)× π1(Y, q) by

Φ: α 7→ (φ∗(α), ψ∗(α))
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for any α ∈ π1(X×Y, (p, q)). Note that the map Φ is a homomorphism.
(a) Show that Φ is a monomorphism; that is, if Φ(α) = Φ(β) for

some α, β ∈ π1(X × Y, (p, q)), then α = β.
(b) Show that Φ is an epimorphism; that is, for any γ ∈ π1(X , p)×

× π1(Y, q) there is α ∈ π1(X × Y, (p, q)) such that Φ(α) = γ.
Conclude that π1(X × Y) is isomorphic to π1(X )× π1(Y).

13.9. Advanced exercise. Let X be a topological space. Consider
the quotient space Y = (X×X )/ ∼ where ∼ is the minimal equivalence
relation such that (x, y) ∼ (y, x). Show that the fundamental group
π1(Y, (x, x)) is commutative for any x ∈ X .



Chapter 14

Fundamental group of a
circle

A The statement

14.1. Theorem. The fundamental group of the circle S1 is isomor-
phic to the additive group of integers Z.

Given a loop f : [0, 1] → S1, denote by deg f the number of times it
goes aroond S1 counteclockwise (each clockwise turn is counded with
minus). In the following sections we will define deg formally, prove
that it depends only on the homotopy class of f (in other words, if
f0 ∼ f1, then deg f0 = deg f1) and then show that deg : π1(S1) → Z is
an isomorphism.

Let us show how to apply this theorem before diving into the proof.

14.2. Exercise. Apply the theorem to show the following.
(a) The space R3 is not homeomorphic to the plane R2.
(b) The circle S1 = ∂D2 is not a retract of the disc D2.
(c) Given x ∈ D2 the complement D2 \ {x} is simply connected if

and only if x ∈ S1 = ∂D2. Conclude that any homeomorphism
D2 → D2 maps ∂D to itself.

(d) The complement of any finite nonempty set F ⊂ R2 is not con-
tractible.

Part (b) in the last exercise has the following application.

14.3. Brouwer fixed point theorem in the plane. Any contin-
uous map f : D2 → D2 has a fixed point.
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Proof. Arguing by contradiction, assume x ̸= f(x) for all x ∈ D2.
Consider given x ∈ D2 consider the half-line H from f(x) to x. Note
that H intesects S1 = ∂D2 at a sinle point; denote it by h(x). Note
that h is continuous and h(x) = x if x ∈ ∂D2; that is, h defines a
retruction D2 → S1. The later contradicts 14.2b.

K1 K2

14.4. Advanced exercise. Con-
sider two sets K1 and K2 in the
plane, shown in the picture. Each
one being a closed annulus with two
attached line segments. In K1 one
segment is attached from the inside
and another from the outside; in K2 both segments are attached from
the outside.
(a) Show that K1 ̸≃ K2.
(b) Show that K1 × [0, 1] ≃ K2 × [0, 1].

B Liftings
Let us identify R2 with the complex plane C; namely, we will encode a
point (x, y) ∈ R2 by the complex number z = x+i·y; here i denotes the
imaginary unit. In particular, S1 =

{
z = x+ i·y ∈ C : |z|2 = x2 + y2 = 1

}
.

Consider the map e : R → S1 ⊂ C defined by

e : x 7→ exp(2·π ·i·x) = cos(2·π ·x) + i· sin(2·π ·x)).

(The last equality is called Euler’s idenity, it can be taken as a defini-
tion of exp(2·π ·i·x).)

Let f : X → S1 be a continuous map. A continuous map f̃ : X → R
will be called lifting    of f if f = e ◦ f̃ ; in other words if the following
diagram commutes; the latter means that following directed paths in

R

X S1
e

f

f̃

the diagram with the same start and endpoints lead to the same result.
Even in this simple case, using a commutative diagram is helpful, and
later on you simply can’t do without them.

14.5. Proposition. Let f0 : [0, 1] → S1 be a path and let x0 ∈ R be
a point such that e(x0) = f0(0). Then there is unidue lifting f̃0 of f
such that f̃0(0) = x0. Moreover, if f0 ∼ f1 then f̃0 ∼ f̃1.
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14.6. Lemma. Let W = S1 \ {u0} for some u0 = e(x0) ∈ S1. Then
e−1(W ) is a disjoint union of open intervals Vn = (x0 +n, x0 +n+1)
for n ∈ Z and e defines a homeomorphism Vn → U for each n.

In particular, given a connected space X , continuous map f : X →
→ W , and a point q ∈ R such that e(q) = f(p) for some p ∈ X there
is a unique lifting f̃ : X → R of f such that f̃(p) = q.

Proof. Observe that en = e|Vn
is homeomorphism Vn → W . Indeed,

en is a continuous bijection. Furthermore, by 8.12 e|V̄n
is a closed

map. Therefore en = e|Vn
is a closed continuous bijection Vn → W

and hence a homeomorphism.
Note that the intervals Vn are connected components of e−1W . In

particular, q ∈ Vn for some n. Since X is connected, f̃(X ) ⊂ Vn for
any lifting f̃ lifting of f such that e(q) = f(p). Since en = e|Vn

is
a homeomorpism, we have f̃ = e−1

n ◦ f , which proves existance and
uiqueness.

Proof of 14.5. Consider two open subsets W1 = S1 \ (1, 0) and W2 =
S1 \ (−1, 0). Note that S1 = W1 ∪W2. Therefore, [0, 1] = f−1(W1) ∪
∪ f−1(W2).

Let ε > 0 be the Lebesgue number of this covering; see 7.1. Con-
sider a particition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] into equal inter-
vals shorter than ε. Note that f([ti, ti+1]) ⊂ W1 or f([ti, ti+1]) ⊂ W2

for each i.
By 14.6, there is unique lifting of f |[t0,t1] such that f̃(0) = x0; let

x1 = f̃(t1). By the same argument, there is unique lifting of f |[t1,t2]
such that f̃(t1) = x1. Repeating this argument finitely many times
produces a lift of f , which is unique by construction. The continuity
of f follows from 3.11b.

1 2 3 · · · n

2·n

3·n

.

.

.

n
2The proof of the last statement is similar.

Choose a homotopy F : [0, 1] × [0, 1] → S1 from
f0 to f1. Applying 7.1 again, we can subdivide
[0, 1]× [0, 1] into small squares by horizontal and
vertical lines so that F maps each small square
in W1 or in W2. Then we can build the lifting F̃
square by square, from button up in the order
shown in the picture.

When we extending F̃ over a small square □ the value of F̃ is al-
ready defined at its lower left corner, say v. So we can apply 14.6. The
part of □ on which F̃ was already defined is one or two sides adjacent
to v. In both cases this set is connected and by 14.6 the extension
agrees with the already constructed part. Again, the continuity of F̃
follows from 3.11b.
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Degree
A loop in S1 based at 1 is a continuous map f : [0, 1] → S1 such that
f(0) = f(1) = 1. Let f̃ : [0, 1] → R be the unique lift with f̃(0) = 0.
Since e−1(1) = Z, we have f̃(1) ∈ Z. The integer f̃(1) will be called
degree of the loop f , it will be denoted by deg f .

14.7. Theorem. The map [f ] 7→ deg f defines an isomorphism π1(S1, 1) →
Z.

Proof. First let us show that deg f depends only on the homotopy
class of f . In other words the map [f ] 7→ deg f is well defined.

Suppose f0 and f1 are two homotopic loops in S1. ...
It remains to show that deg f0 ∗ f1 = deg f0 + deg f1 for any two

loops f0 and f1. Let f̃0 and f̃1 be liftings of f0 and f1 such that
f̃0(0) = f̃1(0) = 0. Recall that deg f0 = f̃0(1) and deg f1 = f̃1(1).
Observe that t 7→ deg f0 + f̃1 is a lifting of f1 s

We proved that degree defines a homomorphism π1(S1, 1) ∼= Z; it
remains to show that this homomorphism is injective and surjective.
Surjectivity follows ???.

C Fundamental theorem of algebra

14.8. Theorem. Every non-constant complex polynomial has a com-
plex root.

Proof. If a polynomial p has no roots, then for each r ⩾ 0 the loop
t 7→ p(r exp(2πit))/|p(r exp(2πit))| lies in S1. For large r this loop is
homotopic to t 7→ exp(2πikt), where k is the degree of p, while for
r = 0 it is constant; this forces a change of degree, which is impossible
under a homotopy rel endpoints.
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Jordan curve theorem

15.1. Theorem. Suppose Γ ⊂ R2 is a closed set homeomorphic to
R. Then R2 \ Γ has at least two connected components.

Note that the assumption that Γ is closed is necessary; indeed, a
finite open interval I of a line in R2 is homeomorphic to R, but its
complement R2 \ I is connected.

The theorem follows from 15.2, 15.5, and 15.7.

15.2. Proposition. Suppose Γ ⊂ R2 is a closed set such that the
complement X = R2\Γ is connected. Let us identify R2 with the (x, y)-
plane in R3. Then the complement Y = R3 \ Γ is simply-connected.

The proof is based on the following partial case of the Van Kampen
theorem.

15.3. Exercise. Suppose that V and W are open simply-connected
subsets of a topological space X such that X = V ∪W , and the set
V ∩W is path-connected. Show that X is simply-connected.

Conclude that the sphere S2 is simply-connected.

Proof of 15.2. Denote by A (respectively B) the sets that include Γ
and the points below (respectively above) Γ; that is,

A = { (x, y, z) : (x, y) ∈ Γ and z ⩽ 0 } ,
B = { (x, y, z) : (x, y) ∈ Γ and z ⩾ 0 } .

Consider their complements V = R3 \ A and W = R3 \ B. Note that
Y = V ∪W .

The sets V and W are simply-connected. Indeed, the horizontal
plane z = 1 is a deformation retract of V ; a retraction can be defined
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by (x, y, z) 7→ (x, y, 1) and the following homotopy shows that it is
homotopic to the identity map:

ht(x, y, z) = (x, y, (1− t)·z + t).

The plane is contractible, in particular simply-connected; therefore so
is V . Similarly, one proves that W is simply-connected.

Since X is an open and connected set in R2, by 10.9, X is path-
connected. Further, note that V ∩W = X × R. Therefore V ∩W is
path-connected as well.

Summarizing, V and W are open simply-connected sets, Y = V ∪
∪W , and V ∩W is path-connected. Applying 15.3, we get that Y is
simply-connected.

15.4. Exercise. Observe that 15.2 above does not hold without as-
suming that Γ is closed. Spot the place in the proof that breaks in this
case.

15.5. Proposition. Suppose Γ ⊂ R2 is a closed subset homeomorphic
to R. Then there is a homeomorphism R3 → R3 that maps Γ to the
z-axis.

The following exercise provides a partial case of the so-called Tietze--Urysohn extension theorem
  .

15.6. Exercise. Let φ be a continuous map from a closed subset
Γ ⊂ R2 to the open interval (1, 2). Given x ∈ R2, set

a(x) = inf
y∈Γ

{ |x− y| } and b(x) = inf
y∈Γ

{φ(y)·|x− y| }.

Show that

f(x) =

{
φ(x) if x ∈ Γ,
b(x)
a(x) if x /∈ Γ

defines a continuous function f : R2 → (1, 2).
Conclude that if there is a homeomorphism h : R → Γ, then there

is a function f : R2 → R such that f ◦ h(t) = t for any t ∈ R.

The following proof uses the so-called Klee trick , which is quite
useful in many topological problems.

Proof of 15.5. Let h : t 7→ (a(t), b(t)) be a homeomorphism R → Γ.
By 15.6, there is a function f : R2 → R such that

f(a(t), b(t)) = f ◦ h(t) = t

for any t ∈ R.
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Note that the map

F : (x, y, z) 7→ (x, y, z + f(x, y))

is a homeomorphism. Indeed, this map is continuous and its inverse

F−1 : (x, y, z) 7→ (x, y, z − f(x, y))

is continuous as well.
Similarly, the map

G : (x, y, z) 7→ (x− a(z), y − b(z), z)

is a homeomorphism as well. Indeed, G is continuous and it has an
inverse

G−1 : (x, y, z) 7→ (x+ a(z), y + b(z), z)

that is continuous as well.
It follows that the composition G ◦ F : R3 → R3 is a homeomor-

phism. Since f(a(t), b(t)) = t,

G ◦ F (a(t), b(t), 0) = G(a(t), b(t), t) = (0, 0, t).

It follows that G ◦ F sends Γ to the z-axis as required.

15.7. Exercise. Show that the complement of the z-axis in R3 is not
simply-connected.

15.8. Theorem. Let J ⊂ S2 be a subset homeomorphic to S1. Then
S2 \ J has at least two connected components.

This theorem is a partial case of the famous Jordan theorem; it is
known for its simple formulation and annoyingly tricky proofs. The
presented proof is due to Patrick Doyle [6]; it is among the shortest
proofs, but it uses quite a bit of topology.

Proof. Remove a point p from J to get a closed line Γ = J \ {p} in
S2 \ {p} ≃ R2. It remains to apply 15.1.
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Appendix A

Semisolutions

0.1. Topologically speaking, a T-shirt is a disc
with three holes, two for the hands and one for
the head; pants have two holes, one for each leg.
In an ideal universe socks should not have holes,
but apparently our universe is not ideal.

0.2. He saw a hole in the bottom, so the topol-
ogy of the mug is the same as a donut (topolog-
ically speaking, a solid torus).

0.3. Draw the hair tie on
each picture, the last one
is shown.

Source. Suggested by
Rostislav Matveev.

0.4; (a). Push the loop up thru the other han-
dle, bring it around over the points and back
over the handles; the string will come off.

(b). Take the center of the string holding your
wrists, push it up thru one of the loops on your
friend’s wrist and bring it down over his hand.

(c). Use the same trick as in (b).

Source. Part (a) and (b) appear in Harry Hou-
dini’s book [11]. A version of part (a) appears
earlier in the collection of Sam Loyd [13] un-
der the name “The Gordian knot”. Part (b)
under the name “The prisoners’ release puzzle”
appears in Cassell’s book [5] published in 1881.
Both puzzles should be much older.

1.2. Check the triangle inequality for 0, 1
2
,

and 1.

1.3. Check the conditions in 1.1.

1.4. Check all the conditions in Definition 1.1.
Further we discuss the triangle inequality — the
remaining conditions are nearly evident.

Let a = (xa, ya), b = (xb, yb), and c =
= (xc, yc). Set

x1 = xb − xa, y1 = yb − ya,

x2 = xc − xb, y2 = yc − yb.

(a). The inequality

|a− c|1 ⩽ |a− b|1 + |b− c|1
can be written as

|x1 + x2|+ |y1 + y2| ⩽ |x1|+ |y1|+ |x2|+ |y2|.

The latter follows since |x1 + x2| ⩽ |x1| + |x2|
and |y1 + y2| ⩽ |y1|+ |y2|.

(b). The inequality

➊ |a− c|2 ⩽ |a− b|2 + |b− c|2
can be written as√(

x1 + x2

)2
+

(
y1 + y2

)2 ⩽

⩽
√

x2
1 + y21 +

√
x2
2 + y22 .

Take the square of the left and the right-hand
sides, simplify, take the square again and sim-
plify again. You should get the following in-
equality:

0 ⩽ (x1 ·y2 − x2 ·y1)2,

which is equivalent to ➊ and evidently true.

(c). The inequality

|a− c|∞ ⩽ |a− b|∞ + |b− c|∞
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can be written as

➋
max{|x1 + x2|, |y1 + y2|} ⩽

⩽ max{|x1|, |y1|}+max{|x2|, |y2|}.

Without loss of generality, we may assume that

max{|x1 + x2|, |y1 + y2|} = |x1 + x2|.

Further,

|x1 + x2| ⩽ |x1|+ |x2| ⩽
⩽ max{|x1|, |y1|}+max{|x2|, |y2|}.

Hence ➋ follows.

1.6. Show that the triangle inequality implies
that |f(x) − f(y)| < ε if |x − y|X < ε; make a
conclusion.

1.7. Fix x ∈ X and y ∈ Y such that f(x) = y.
Fix ε > 0. Since g is continuous at y, there

is a positive value δ1 such that

|g(y′)− g(y)|Z < ε if |y′ − y|Y < δ1.

Since f is continuous at x, there is δ2 > 0
such that

|f(x′ − f(x)|Y < δ1 if |x′ − x|X < δ2.

Since f(x) = y, we get that

|h(x′)− h(x)|Z < ε if |x′ − x|X < δ2.

Hence the result.

1.8. (a) Show that the triangle inequality im-
plies that |f(x) − f(y)|Y < ε if |x − y|X < ε;
make a conclusion.

(b). Apply 1.1b.

1.9. Show and use that in 1.5 one can take
δ = 1 for any ε > 0.

1.10. Learn about space-filling curves and
think.

1.11. Figure out which is which.

1.12. Apply the triangle inequality to x, y, and
z ∈ B(y,R) \ B(x, r). For the second part, con-
sider the balls B(2, 3) and B(0, 4) in [0,∞).

Comment. Note that we used that B(y,R) ̸=
̸= B(x, r), without this condition there are no

general restrictions on r in terms of R. For ex-
ample the inclusion B(x, 1000) ⊂ B(y, 1) holds
in the discrete space.

1.14. Spell the definitions.

1.16. If y ∈ B(x,R), then r = R − |x − y| >
> 0. Use the triangle inequality to show that
B(y, r) ⊂ B(x,R). Make a conclusion.

1.17. Apply 1.15.

1.18. Apply 1.15.

1.19. The if part follows from 1.16 and 1.17. It
remains to prove the only-if part.

Let V be an open set. By 1.15, for any
x ∈ V there is rx > 0 such that B(x, rx) ⊂ V .
Observe that

V =
⋃
x∈V

B(x, rx).

1.20. Consider the open segments (−ε, ε) for
all ε > 0 in R. Note that

{0} =
⋂
ε>0

(−ε, ε)

and the one-point set {0} is not open.

1.21. Show and use that

B(x, r)1 ⊂ B(x, r)2 ⊂ B(x, r)∞ ⊂ B(x, 2·r)1;

here B(x, r)1, B(x, r)2, and B(x, r)∞ denote the
balls in the metrics |∗−∗|1, |∗−∗|2, and |∗−∗|∞
respectively.

1.23. Look at the image of R under the function
x 7→ |x|.

1.25. Assume the contrary; that is, a sequence
x1, x2, . . . has two limits y and z. Set r = |y −
z|. Note that B(y, r

2
) contains all but finitely

many elements of the sequence x1, x2, . . . ; the
same holds for B(z, r

2
). Observe that B(y, r

2
) ∩

∩ B(z, r
2
) = ∅ and arrive at a contradiction.

1.26. Suppose f is not continuous. This means
that there is a point x∞ and ε > 0 such that
there is a point xn ∈ B(x∞, 1

n
) such that

|f(xn)− f(x∞)| > ε. In particular, yn = f(xn)
does not converge to y∞ = f(x∞). It proves
the if part of the exercise.

To prove the only-if part, suppose that there
is a sequence xn → x∞ such that yn ̸→ y∞ as
n → ∞. Note that in this case we can pass
to a subsequence so that xn ∈ B(x∞, 1

n
) and

|yn−y∞| > ε for some fixed ε > 0. From above,
f is not continuous.
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1.27. Show that the semiopen interval [0, 1) is
neither open nor closed in R.

1.28. Choose a point z ∈ ¯̄A. It means that
there is a sequence y1, y2, · · · ∈ Ā such that
yn → z as n → ∞. The latter means that
for each yi there is a sequence xi,1, xi,2, · · · ∈ A
such that xi,n → yi as n → ∞. Try to choose
a sequence of integers mn such that xn,mn → z
as n → ∞. Make a conclusion.

1.29. Show that Q is closed if x ∈ Q if and
only if B(x, ε) ∩ Q ̸= ∅ for any ε > 0. Show
that the latter is equivalent to y ∈ V if and
only if B(y, ε) ⊂ V for some ε > 0. Make a
conclusion.

2.2. Let X be an infinite set with cofinite topol-
ogy. Show that any two nonempty open sets in
X have nonempty intersection. Show that the
latter does not hold for open balls in a metric
space with at least two points.

2.3. Let F be a finite metric space. Observe
that there is ε > 0 such that |x − y| > ε for
any two distinct points x, y ∈ F . It follows that
{x} = B(x, ε) for any x ∈ F ; in particular, each
one-point set is open. By 2.1b, any set in F is
open.

2.4. Choose W ∈ W . By assumption, for any
w ∈ W there is Sw ∈ S such that W ⊃ Sw ∋ w.
Observe that

W =
⋃

w∈W

Sw.

It follows that W ⊂ S ; in other words, any W -
open set is S -open.

2.6; (a). Consider the function defined by

f(x) =

{
a if x < 0,

b if x ⩾ 0.

(b). Suppose f : X → R is nonconstant; that
is, f(a) ̸= f(b). Note that W = R \ {f(a)} is
an open set containing b. Assume f is contin-
uous. Then {b} = f−1(W ) is an open set — a
contradiction.

2.7. Apply the definitions.

2.8. Note that S ∈ T if and only for any
x0 ⩽ x1, if x0 ∈ S, then x1 ∈ S.

(a). Check the conditions in 2.1 using the prop-
erty above.

(b). Show that every two nonempty open sets
in (R,T ) intersect. Show that the latter state-
ment does not hold in a metric space with at
least two points. Make a conclusion.

(c). To do the only-if part check the condition
in 2.5.

To do the if part, suppose f is not nonde-
creasing; that is, we can find x0 < x1 such that
f(x0) > f(x1). Note that the inverse image
V = f−1([f(x0),∞)) contains x0 but does not
contain x1. Conculde that V is not open in
(R,T ), so f : (R,T ) → (R,T ) is not continu-
ous.

2.9. Apply 2.7 together with the fact that
x 7→ |x| is a continuous real-to-real function (the
latter is assumed to be known from calculus).

3.3; (a) Choose a metric that induces the topol-
ogy on X . Let Q be a closed set in X . Given
ε > 0, let Wε be the union of ε-balls centered
at points in Q. Show that Wε is open and that
Q =

⋂
Wε.

(b). Try to find the needed closed set in the
connected two-point space; see 2B.

3.4. Suppose V is an open subset and Q is its
complement. Recall that Q is closed; see 3A.
Show and use that V ⊂ A if and only if Q ⊃ B.

3.5; Show and use the following for any two
subsets A and B:

• ˚̊
A = Å ⊂ A ⊂ Ā = ¯̄A.

• if A ⊂ B, then Ā ⊂ B̄ and Å ⊂ B̊.
For the second part, try to choose a subset

A in R so that it meets the following conditions:
• A and R \A contain isolated points,

• A and R \A contain intervals,

• A and R \A are dense in some interval.

3.6–3.7. Apply the definitions of boundary and
closed set.

3.8. Read about the Cantor set and think.

3.10. Spell the definitions. The needed exam-
ples can be found for A = [0, 1) ⊂ R = X .

3.11. Set a = f |A and b = f |B . Note that for
any set S ⊂ Y, we have

a−1(S) = f−1(S) ∩A,

b−1(S) = f−1(S) ∩B,

f−1(S) = a−1(S) ∪ b−1(S).
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(a). Choose an open set W ⊂ Y. Show that
a−1(W ) and b−1(W ) are open in X . Conclude
that f−1(W ) is open.

(b). Choose a closed set Q ⊂ Y. Use 3.2 to show
that a−1(Q) and b−1(Q) are closed. Apply 3.1c
to show that f−1(Q) is closed. Apply 3.2 again.

(c). Consider function f that is constant on
disjint sets A and B such that Ā ∩B ̸= ∅.

3.12. Let A be a subset of a topological space
X . Denote by B its complement; that is B =
= X \ A. Show and use that the statement is
equivalent to the following

X \ ∂A = Å ∪ B̊.

3.13. Apply the definitions of neighborhood
and dense set.

3.15+3.16. Apply the definition of the conver-
gence.

4.1. Let f : X → Y be a homeomorphism. Re-
call that by the definition of inverse, we have
f−1(f(x)) = x and f(f−1(y)) = y for any
x ∈ X and y ∈ Y. It remains to show that
the existence of f−1 : Y → X implies that f is
a bijection X ↔ Y.

For the second part, try to find such bi-
jection for the subspaces A = [0, 1) ∪ {2} and
B = [0, 1] of R.

4.2. Observe that y 7→ ln y is the inverse of
x 7→ ex, and show that both functions are con-
tinuous. (You can use that differentiable func-
tions are continuous.)

4.3. Try to build the needed function from
x 7→ arctanx or x 7→ e−ex

4.4. Apply the definitions of homeomorphism
and 2.7.

4.5. Learn about inversion and try to apply it.

4.6. Let Ω be an open star-shaped set with re-
spect to the origin. Assume Ω can be described
by the inequality r < fn(θ) in the polar (r, θ)-
coordinates, where fn : S1 → R is a continuous
function. In this case it is not hard to prove the
statement. But a general star-shaped set, for
example the one on the diagram is problematic.

To do the general case, show that Ω can
be presented as a union of a nested sequence of
open sets Ω0 ⊂ Ω1 ⊂ . . . such that each Ωn

can be described by the inequality r < fn(θ)
in the polar (r, θ)-coordinates with continuous
fn : S1 → R. We can assume that Ω0 is a round
disc around the origin.

Further construct a sequence of homeomor-
phisms φn : Ωn−1 → Ωn such that the compo-
sitions Φn = φn ◦ · · · ◦ φ1 : Ω0 → Ωn stabilizes
for each x ∈ Ω0; that is, Φn(x) is a fixed point
for all sufficiently large n. Set

Φ(x) = lim
n→∞

Φn(x),

and show that Φ defines the needed homeomor-
phism Ω0 ↔ Ω.

4.7. Suppose that the sets are P = {p1, p2, . . . }
and Q = {q1, q2, . . . }. Try to construct
a sequence of homeomorphisms Φn : R2 ↔
↔ R2 such that Φn converges to a homeomor-
phism Φ: R2 ↔ R2 and for any n we have
Φn({p1, . . . , pn}) ⊂ Q and Φ−1

n ({q1, . . . , qn}) ⊂
⊂ P .

4.9. Apply the definitions.

4.10. Try the maps between two-point spaces
with appropriate topologies.

4.11. Construct a nonempty closed nowhere
dense set K without isolated points. Map K
to 0 and map each component of R \ K by a
homeomorphism to R.

Comment. If a function f : R → R is closed and
open, then it has to be continuous; see the paper
by Ivan Baggs [2].

5.3. Apply the observation together with the
facts that (x, y) 7→ x + y, (x, y) 7→ x·y, and
(x, y) 7→ max{x, y} = 1

2
·|x + y| + 1

2
·|x − y| are

continuous functions on R2.

5.4. Check the following function

f(x, y) =


0 if x = 0 or y = 0,
x
y

if 0 < x ⩽ y,
y
x

if 0 < y < x,

5.6; only-if part. Use that a base is a collection
of open sets.

If part. Choose an open set W ⊂ Y. By 5.5,

W =
⋃
α

Bα,
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for some collection {Bα} of sets in the base.
Then

f−1(W ) =
⋃
α

f−1(Bα).

By the assumption f−1(Bα) is open for any α;
it remains to apply 2.1b.

5.7; if part. Choose an open set N . For any
x ∈ N choose an element Bx of the base such
that x ∈ Bx ⊂ N . Observe that

N =
⋃

x∈N

Bx.

Only-if part. Suppose that B is a base. Then

N =
⋃
α

Bα,

where Bα ∈ B for each α. Then for any x ∈ N
there is α such that Bα ∋ x; in this case,
x ∈ Bα ⊂ N .

5.9. Let B1 = {a1, a1 + d1, a1 + 2·d1, . . . } and
B2 = {a2, a2 + d2, a2 + 2·d2, . . . }. Show that if
a ∈ B1 ∩B2, then

{ a, a+ d, a+ 2·d, . . . } ⊂ B1 ∩B2,

where d = d1 ·d2. Apply 5.8.
Show that the set {1} is closed but not open.

Comment. This topology was introduced by
Harry Furstenberg [8]; he used it to deduce from
the last statement that the set of primes is infi-
nite. The resulting proof is not truly new; it is
just the classical proof from Euclid’s Elements
written in the topological language.

5.10; only-if part. Apply that a prebase is a
collection of open sets.

If part. Show that for any finite collection of
sets P1, . . . , Pn in the prebase the inverse image
f−1(P1 ∩ · · · ∩ Pn) is open. Further apply 5.7.

5.11; (a) Observe that (V × Y) ∩ (X × W ) =
= V × W . Further, show and use that all the
sets V ×W for open subset V ⊂ X and W ⊂ Y
form a base in X × Y.

(b). To show that the map F is continuous,
apply 5.10 to the prebase described before the
exercise. Further, show and use that projection
G : (x, f(x)) → x is a continuous left inverse;
that is G(F (x)) = x for any x.

5.12. Show that every two disjoint closed sets
of a metric space have disjoint open neighbor-
hoods; that is, for any two closed sets A and

B there are open sets V ⊃ A and W ⊃ B such
that V ∩W = ∅. (Topological spaces that share
this property are called normal; so you need to
show that any metrizable space is normal.)

Observe that arithmetic progression is a
closed set in the initial topology. Construct two
disjoint arithmetic progressions that do not ad-
mit disjoint open neighborhoods.

5.13. Check the conditions in 2.1 directly.

5.14+5.15. Spell out the definitions.

5.16. Since f is continuous, V = f−1(W ) is
open for any open set W ⊂ Y. It remains to
show that if V is open, then so is W ⊂ Y.

Note that W = f(V ). If f is open, then
W = f(V ) is open as well.

Set A = X \ V and B = Y \ W . Since
V is open A is closed. Since f is surjective,
B = f(A). Since f is a closed map, B = f(A)
is closed as well. Therefore, W = Y \B is open.

5.17. Check the conditions in the definitions of
equivalence relation and equivalence class.

5.18. Show that it has three points a = [0],
b = [ 1

2
], and c = [1] and the open sets are

∅, {b}, {a, b}, {b, c}, and {a, b, c}.

5.19. Note that all positive numbers are in one
R+-orbit. Similarly, all negative numbers are
in one orbit and 0 forms another orbit. Thus,
R/R+ contains three points, say p, n, and z that
correspond to positive numbers, negative num-
bers, and zero. It remains to describe all open
subsets in {p, n, z}.

5.20. Let f : X → X/G be the quotient map.
Show that for any set V ⊂ X we have

f−1 ◦ f(V ) =
⋃
g∈G

g ·V.

(a). Apply this formula to show that if V is
open, then so is f−1 ◦ f(V ). Finally apply the
definition of quotient topology.

(b). Apply this formula to show that if G is
finite and V is closed, then so is f−1 ◦ f(V ).

6.2. Use 2.1b and 2.1c.

6.4. Spell the definitions.

6.5. We may assume that the space is
nonempty; otherwise there is nothing to prove.
Choose a nonempty set V0 from the cover. Its
complement is a finite set, say {x1, . . . , xn}. For
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each xi choose a set Vi ∋ xi from the cover. Ob-
serve that {V0, . . . , V0} is a subcover.

6.6. Consider cover of S by intervals (−c, c) for
all c > 0.

6.7. Choose a point s ∈ S̄ \ S and consider the
cover by intervals (−∞, s− ε) and (s+ ε,+∞)
for all ε > 0.

6.8. Choose a noncompact space X and con-
sider topology on the union X ∪ {a, b} that in-
cludes X ∪{a, b}, X ∪{a}, X ∪{b} and all open
sets in X . Observe that the sets X ∪ {a} and
X ∪ {b} are compact, but their intersection is
not.

6.11. Apply the finite intersection property.

6.12. Let us write A ⋑ B if the interior of A
contains closure of B.

Construct a strongly nested sequence of in-
tervals [0, 1] = [a0, b0] ⋑ [a1, b1] ⋑ . . . such that
[an, bn] ∩ Qm = ∅ for any m ⩽ n. Apply the
finite intersection property (6.10) to show that
the intersection X = [a0, b0] ∩ [a1, b1] ∩ . . . is
nonempty. Note that X ∩Qm = ∅ for any m.

6.15. Show that S1 is an image of closed inter-
val under a continuous map, and apply 6.14.

6.17. Apply 6.16 and 6.13.

6.19. Apply 6.14 to the projections X ×Y → X
and X × Y → Y.

6.21. Apply 5.6.

6.23. Show by example that the obtained
collection {Vα1 × Wα1 , . . . , Vαn × Wαn , Vα′

1
×

× Wα′
1
, . . . , Vα′

m
× Wα′

m
} might not cover the

whole X × Y.

6.24. By 3.2, it is sufficient to show that any
closed set A ⊂ K has closed inverse image
B = f−1(A) ⊂ X .

Observe that the set C = Γ ∩ (X × A) is
closed, so its complement U can be presented
as a union

⋃
α Vα ×Wα.

Suppose B is not closed, choose a point p ∈
∈ B̄\B. Note that {p} × K is a compact set
in U . Argue as in 6.18 to prove that there is an
open set Np ∋ p such that Np ×K ⊂ U . Arrive
at a contradiction.

Remark. The following function f : R → R has
closed graph, but is not continuous:

f(x) =

{
1
x

if x ̸= 0,

0 if x = 0.

It shows that compactness of K is a necessary
assumption.

6.26. Apply the theorem to the prebase from
5.11a.

7.2. Consider an infinite set of points with dis-
crete metric.

7.3. Suppose that a sequence xn converges to
x∞ in X and yn converges to y∞ in Y. Show
and use that (xn, yn) converges to (x∞, y∞) in
X × Y as n → ∞.

7.5. By 7.4, any sequence has a converging sub-
sequence; denote by x the limit of this subse-
quence. Show that if the sequence is Cauchy,
then it converges to x.

8.3. Arguing by contradiction, assume a se-
quence has two limits x and y. Since the space
is Hausdorff we can choose disjoint neighbor-
hoods V ∋ x and W ∋ y. Since the sequence
converges to x, the set V contains all but finitely
many elements of the sequence. The same holds
for W — a contradiction.

8.4. Let V and W be a pair of open sets and
W ′ = X \ V̄ . Show and use V and W meet 8.1
if and only if V and W ′ meet 8.1.

8.5. The set ∆ is closed if and only if its com-
plement U = (X × X ) \ ∆ is open. Show and
use that the latter means that there is a family
{(Vα,Wα)} of disjoint pairs of open sets in X
such that

U =
⋃
α

Vα ×Wα.

8.9. Look at the subsets of a concrete space.

8.11. By 8.10, for any y ∈ L there is a pair of
open sets Vy , Wy such that Vy ⊃ K and Wy ∋ y
such that Vy∩Wy = ∅. Mimic the proof of 8.10
using these pairs.

8.14. Apply 8.12 to the map [0, 1] → S1 defined
by t 7→ (cos(2·π ·t), sin(2·π ·t)).

8.15. Apply 8.12 to the map D → R3 that is
written from polar to spherical coordinates as

(r, θ) 7→ (1, θ, π ·r).

8.16. Let K ⊂ R3 be a convex body; we can
assume that the origin lies in the interior of K.

Show that the boundary ∂K is compact.
Show that any half-line that starts from the
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origin intersects ∂K at a single point. Con-
clude that x 7→ x

|x| defines a continuous bijec-
tion ∂K → S2 and apply 8.13.

9.5. Apply 9.4.

9.7. Show that any open splitting of B splits A
as well.

9.9. Apply 9.8, 9.4, and 9.6.

9.10. Connected component is an intersection
of clopen sets; in particular it is closed.

Consider the following subspace of real line
A = {0, 1, 1

2
, 1
3
, . . . }. Show that the one-point

set {0} is a connected component in A and it is
not open in A.

Remark. A more interesting example is the
Cantor set; denote it by K. Each connceted
compontnt of K is a one-point set is not open
in K.

9.11. Check that being in one connected com-
ponent defines an equivalence relation on points
of topological space.

9.12. Use 9.10 and 9.11.

9.14. Show that S1 has no cut points, but [0, 1]
has.

9.13. Read the note by Solomon Colomb [9]

9.15. Show that R2 has no cut points, but R
has.

9.16. Count cut points and noncut points for
each space.

9.17. Let x the cross pont; let us keep notation
x for the corresponding point in Q/H. Observe
that any two points distict from x one the circle
can be mapped to eachother by a homeomor-
phism Q → Q. It implies that all these points
corresponfd to one point in Q/H; denote it by c.
Furthe, let e1 and e2 be the endpoint of the seg-
ment. Observe that there is a homeomorphsim
that sends e1 to e2; let e be the corresponding
point in Q/H. Observe that any two points on
the line segments distict from x, e1 and e2 can
be mapped to eachother by a homeomorphism
Q → Q; denote by i the corresponding point on
Q/H.

Argue as in 9.16 to show that x, c, e, and i
are distinct points in Q/H. List the open subset
of {x, c, e, i}.

9.18; (a) Let Tn be a the union of all sides of
the 3n thriangles after nth iteration. Note that

the sequence is nested; that is, T0 ⊂ T1 ⊂ . . .
Use induction to show that each Ti is connected.
Conclude that the union T = T0∪T1∪. . . is con-
nected. Finally, show that Sierpiński triangle is
the closure of T and apply 9.7.

(b). Denote the Sierpiński triangle by △.

x

y

z

Let {x, y, z} be a 3-point set in △ such that
△\{x, y, z} has 3 connected components. Show
and use that there is a unique choice for the set
{x, y, z} and it is formed by the midpoints of
the original triangle.

10.1. Recall that {a} is an open set in X . Show
and use that f : [0, 1] → X defined by

f(t) =

{
a if t < 1,

b if t = 1

is a continuous map.

10.8. Show and use that for any rational num-
bers a and b, the line y = a·x+ b lies in A ∪B.

10.6. Choose path-connected component V .
Assume its complement, say W , is nonempty.
Observe that W is a union of path-connected
components. Therefore, W is open, and the pair
V , W forms an open splitting of the space.

To prove the converse, apply 10.2

10.7. Check the conditions in 5.8. To prove
compactness, try to modify the proof of 6.13.
Hausdorfness follows from the definition. To
prove connectedness, modify the proof of 9.8.
To show that the space is not path-connected,
use that any path contains at most countable
subsets of isolated points. Finally observe that
every path-connected component in [0, 1]× [0, 1]
is a vertical segment {x} × [0, 1].

10.3. Show and use that for any continuous
map φ and any path f , the composition φ ◦ f is
a path.

10.4. Suppose that f and g are paths in X
and Y respectively. Show and use that t 7→
7→ (f(t), g(t)) is a path in X × Y.

10.5. The flea and the comb.

10.10. Mimic the proof of 10.9.
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10.11. Read about pseudo-arc and think.

14.2; (a). Suppose there is a homeomorphism
h : R3 → R2. Choose a point p ∈ R3 and let
q = h(p). Observe that R3 \ {p} is homeomor-
phic to R2 \ {q}. Show that π1(R3 \ {p}) is
trivial, but π1(R2 \ {q}) is not and arrive at a
contradiction.

(b). Apply 11.7, 12.11, 13.4, 14.1.

(c). Apply 11.7, 12.11, and 14.1.

(d). Apply 11.7 and 14.1.

14.4; (a). Assume there is a homeomorphism
h : K1 → K2. Argue as in 9.16 and 14.2c to
show that (1) h maps interior points of K1 to in-
etrior points of K2, (2) h maps boundary points
of K1 to boundary points of K2, and (3) h maps
the attached segents of K1 to attached segents
of K2. Try to arrive at a contradiction.

(b). Realize that each products K1 × [0, 1] and
K2 × [0, 1] is a solid torus with attaced pair of
squares. To construct a homeomorphism, whist
one solid torus.

15.3. Consider a loop γ with the base point
p0 ∈ V ∩ W . Show that there is a partition
0 = t0 < t1 < . . . < tn = 1 such that the arc
γ|[ti−1,ti]

lies in V or in W for each i. Denote
by γi the arc γ|[ti−1,ti]

reparametrized by [0, 1].
Show that we can choose a path βi in V ∩W

from p0 to pi = γ(ti) for each i. Set

α1 = γ1 ∗ β̄1,

α2 = β1 ∗ γ2 ∗ β2,

...
αn = βn−1 ∗ γn.

Observe that α1 ∗ · · · ∗ αn ∼ γ. Observe that
each αi lies entirely in V or W . Conclude that
each αi is null homotopic. Finally, observe that
α1 ∗ · · · ∗ αn ∼ γ, and conclude that γ is null
homotopic.

15.4.

15.6. Show that the functions a and b are con-
tinuous. Note that 0 < a(x) < b(x) < 2·a(x)
for any x ∋ Γ. Conclude that f is continuos in
the complement of Γ. Further, show that for
any x ∈ Γ and ε > 0 there is a neighborhood
V ∋ x such that |f(y)−f(x)| < ε for any y ∈ V .
Conclude that f is continuos on the entire plane.

For the second part, choose an increasing
continuous function σ : R → (1, 2) such that
σ(x) → 1 as x → −∞ and σ(x) → 2 as
x → +∞, say σ(x) = 1 + 1

2
· e

x−e−x

ex+e−x . Consider
function φ : Γ → (0, 1) defined by σ◦h−1, apply
the first part of the exercise and apply σ−1 to
the obtained function.

15.7. Show and use that the com-
plement of z-axis has unit circle{
(x, y, 0) ∈ R3 : x2 + y2 = 1

}
as a homotopy

retract.
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proper subset, 53

quotient space, 34
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